

University of Technology

Chemical Engineering Department B.Sc. Program In Chemical Engineering

OUTLINE OF SYLLABUSES ALLOCATION OF SUBJECTS AND WEEKLY LOAD

Website: http://www.uotechnology.edu.iq/dep-chem-eng/index.htm E-mail: chemical_eng@uotecnology.edu.iq

1. Introduction:

1.1 Department of Chemical EngineeringHistory

Department of chemical engineering was established in 1975 after the establishment of the University of Technology directly to cover Iraq's growing need for chemical engineers on the basis of industrial development and coverage plans.

Since 1975, the University of Technology has expanded which led to expansion the chemical engineering department. This expansion included the development of the curriculum and establishment of specialized programs of undergraduate studies as well as the accumulated experience of the department has been invested to expand the postgraduate programs of the Diploma, Masters, PhD and increasing the number of students in these programs. The first batch of the students in specialty chemical engineering was graduated in 1979 at a rate of 100 engineers per year in the country.

The department currently offers three programs specialization that are constructed by careful of technical courses to provide specialized knowledge,

- 1. Chemical Processing Engineering
- 2. Oil and Gas Refinery Engineering

3. Industrial and Petroleum Pollution Engineering

1.2 Program Educational Objective:

The undergraduate programs in chemical engineering at the university of technology has a strong focus on the integration of engineering science and process design with complementary areas of study in bioprocess engineering, environmental engineering, fuels and energy, materials and oil and gas refining engineering. Undergraduate are prepared for life-long opportunities to participate in diverse sectors of the economy and to assume leadership roles throughout their professional careers.

The graduates of the Chemical Engineering Programs are expected to :-

- **a**. To prepared engineers with basic scientific and chemical knowledge.
- **b**. To give the graduates the ability to design the factories which are related to the chemical, petroleum, petrochemical and food industry.
- **c**. To prepare graduates able on operation and management of the chemical factories through concentrating on the theoretical and practical side.
- **d**. To enrich the learning process with the high studies curriculum and the applied scientific researches, also stressing on its role to serve the society and solving its problems.

The educational program of Chemical Processing Engineering program are to produce graduate who:-

- 1- Able to engage engineering theories with chemical engineering practice to design and analyze process problems taking into account environmental impacts and safety.
- 2- Effective communication team work and Successful leadership in chemical engineers related careers (industries, water treatment, catalytic reactor).
- 3- Maintain a lifelong interest in learning for personal and professional developments.

The educational program of Oil and Gas RefineryEngineering program are to produce graduate who:-

- 1- Achievea successful graduated with a broad knowledge in refinery, petrochemicals, gas industries and other related processes.
- 2- Integrate academic preparation with oil and gas refinery engineering technology developments
- 3- Work effectively in a team environment and well communicate with other professional collages

The educational program of Industrial and PetroleumPollution Engineeringare to produce graduate who:-

- 1. Practice environmental engineering science in a manner that is ethically responsible and consistent with regulatory and social concerns.
- 2. Have a broad knowledge and critical thinking skills required to analyze industrial and petroleum pollution problems taking into account, safety, and societal impact.
- 3. Be exposed to current and emerging technologies and have the ability to pursue lifelong learning through continuing education or post-graduate education.

1.4 Program Outcomes (ABET):

A program outcome is a skill, understanding, knowledge, or any other characteristic that describes what students are expected to know and are able to do bythe time of graduation as well as during their professional career.

The student outcomes for the Chemical Processing Engineering Program, Oil and Gas Refinery EngineeringProgram and Industrial and Petroleum Pollution Engineering Programat the department of chemical engineering - University of technology are encompass all of the ABET Criterion 3 outcomes (a-k):-

- a. an ability to apply knowledge of mathematics, science, and engineering.
- b. an ability to design and conduct experiments, as well as to analyze and interpret data.
- c. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- d. an ability to function on multi-disciplinary teams.
- e. an ability to identify, formulate, and solve engineering problems.
- f. an understanding of professional and ethical responsibility.
- g. an ability to communicate effectively.
- h. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- i. a recognition of the need for and an ability to engage in life-long learning.
- j. a knowledge of contemporary issues; and.
- k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice .

1.5 Programs Curriculum

The curriculum for the **Chemical Engineeringprograms** have been designed by the faculty to produce a graduate broadly acquainted with tools and principles that would be used in the engineering field. While designed to develop the essential knowledge, skills, and abilities needed for professional practice or graduate study.

Also, the curriculum is designed that students may acquire the abilities and skills to be productive in the workplace upon graduation. With several additional years of relevant work experience, our graduates are capable of demonstrating that the program educational objectives have been met. The curriculum and its associated prerequisite structure support the attainment of the student outcomes.

1.5.1. Course Description

The **Chemical Engineering** programs curriculum have been deliberately designed in main three categories of courses:

1975

1.General Engineering (Engineering Science and Engineering Design): These courses are common to most undergraduate engineering students and instruct students in general engineering methods. They provide the introduction to engineering fundamentals and complement the mathematics and basic sciences that precede or are taken concurrently with these courses. The general engineering courses rapidly establish the context of the mathematics and basic sciences that students must take, but have trouble appreciating.

2. **Basic Mathematics and Science**: Students in the undergraduate program are required to complete extensive coursework in Mathematics I and II ,EngineeringMathematicsIand II , Chemistry, Physics ,Engineering Drawing, Computer Programming, AutoCAD , Eng. Statistics, Numerical Analysis, Engineering Mechanics &Strength of Materials, Electrical

Technology, Chemical Reaction Kinetics and Basic Principles of Chem. Eng. The mathematics sequence (five courses, 14 credits plus Engineering Statistics) includes calculus through differential equations and an applied math course in engineering.

3. **General Education**: These are largely university requirements, but also support engineering student outcomes. These courses provide the student with the knowledge and skills required to appreciate the global perspective of engineering and to be prepared in technical communications. They also include courses to broaden the horizons of the student and provide opportunities for service learning.

The courses that comprise the topic requirements are listed in Table (1.1, 1.2, 1.3).

The CodeCredit"units" are arranged as the theory 1 hour per semester = 1 Credit, practical 2-3 hours per semester = 1 Credit, and the tutorial hoursCredit = 0.Prerequisites, if any, are indicated at the course description. These have been established to assure an adequate and uniform background for students in advanced classes.

Course code is presented according to three requirements:

- 1- University requirement
- 2- Engineering College requirement
- 3- Department or Program Requirement

Course code started by capital letters **CES** then latter represent the program and followed bynumber of 3-digits as following:

1975

ENGINEERING

1st digit represents the class number

2nd digit represents the course requirement

3rd digit represents the course number

The code for three programs

CES.P....Chemical Processing Engineering

CES.R...Oil and Gas Refinery Engineering

CES.E....Industrial and Petroleum Pollution Engineering

Example:-

CES.P.211	Computer Programming II	1 st digit represents the 2 nd class, 2 nd digit represents university requirement, 3 rd digit represents the course number
CES.P.431	Unit Operations II	1 st digit represents the 4 ^{ed} class, 2 nd digit represents Program requirement, 3 rd digit represents the course number

Table (1.1) Courses Comprising the Topic Requirements for Chemical Processing Engineering

Categories	Subject	L	Р	Т	Crds	Total Crds
General	Technical English I	2	0	0	2	
	Technical English II	2	0	0	2	
Education(Humanities	Human Rights	1	0	0	1	6
and Social Sciences)	Democracy	1	0	0	1	1
	Mathematics I	2	0	1	2	
	Mathematics I	2	0	1	2	
			0	1	2	
	Chemical Engineering Principles I	2	-			
	Chemistry I	2	2	0	3	
	Chemistry I I	2	2	0	3	
	Physics	2	0	0	2	
	Electrical Technology	_1	0	1	1	
Math & Basic Sciences	Computer Programming I	1	2	0	2	35
	AutoCAD	1	2	0	2	
	Engineering Drawing	_1	2	0	2	
	Engineering Mechanics &Strength of	2	0	1	2	
	Materials		1	1		
	Engineering MathematicsI	2	0	1	2	
	Engineering MathematicsII	2	0	1	2	
	Eng. Statistics	2	2	1	3	
	Numerical Analysis Chemical Reaction Kinetics	2	2	1	3	
		2	0	0	2	
	Chemical Engineering Principles II	2	0	1	2	
	Workshop I	0	6	0	34	in/
	Workshop I I	0	6	0		La la
	Energy Balance	2	0	1	2	
	Material & Energy Balance	2	0	1	2	
	Fluid FlowI	2	2	1	3	
	Fluid FlowII	2	2	1	3	
	Physical ChemistryI	2	2	0	3	
	Physical ChemistryII	2	0	0	2	
	Computer Programming II	1	2	1	2	
	Computer Programming III	1	2	1	2	C.
	Materials Eng. I	2	0	1	2	5
	Materials Eng. II	2	2	1	3	4
	Fuel's Technology	2	2	0	3	L 11
	Renewable Energy	2	0	0	2	7 0
	Thermodynamics I	2	2	1	3	
	Thermodynamics I I	2	0	1	2	- / 5-
	Applied Mathematics in chemical Engineering	2	0	1	2	2
	Mass Transfer	2	2	1	3	V7 /
	Unit Operation I	2	0	1	2	QY/
Engineering	Reactor Design	2	0	1	2	92
	Heat Transfer I	2	0	1	2	O'
	Heat Transfer II	2	2	1	3	
	Chemical Process IndustriesI	2	0	0	2	1. 1.
	Chemical Process Industries II				3	
	Bio Chemical Engineering	2	0	0	2	
	Particles& Nanotechnology	2	0	A CONTRACTOR	2	
	Equipment Design Equipment Design Using CAD	-	0	1	3	
		2	2	1 0	2	
	Project I Project II	1	2			
	Project II Unit Operations II	2	2	0	2	
				1	3	
	Unit Operations III Process dynamics	2	0	1	2	
	Process dynamics	2	0	1	2	
	Process Control and Instruments	2	2	1	3	
	Petroleum Refinery Processing	2	0	1	2	
	Petrochemical Industries	2	0	1	2	
	Heterogeneous Reactor &Catalysis	2	0	1	2	
	Industrial Management and Ethics	2	0	0	2	
	Corrosion Eng.	2	-	-	2	
	Environment Eng. & Industrial Safety Optimization	2	0	1	2	

tegories	Subject	L	Р	Т	Crds	Total Crds
eneral	Technical English I	2	0	0	2	
lucation(Humanities	Technical English II	2	0	0	2	6
	Human Rights	1	0	0	1	U
Social Sciences)	Democracy	1	0	0	1	<u> </u>
	Mathematics I	2	0	1	2	
	Mathematics I I	2	0	1	2	
	Chemical Engineering Principles I	2	0	1	2	
	Chemistry	2	2	0	3	
	Chemistry of Petroleum	2	2	0	3	
	Physics	2	0	0	2	
	Electrical Technology	1	0	1	1	
& Basic Sciences	Computer Programming I	1	2	0	2	35
	AutoCAD	1	2	0	2	
	Engineering Drawing	2	0	1	2	
	Engineering Mechanics &Strength of	2	0	1	2	
	Materials	4.50	5			
	Engineering MathematicsI	2	2	1	3	
	Engineering MathematicsII	2	2	1	3	
	Eng. Statistics	2	0	0	2	
	Numerical Analysis Chemical Reaction Kinetics	2	0	1	2	
	Chemical Engineering Principles II	2	0	1	2	
	Workshop I	0	6	0	2	In'
	Workshop I I	0	6	0		(Ur.
	Energy Balance	2	0	1	2	1
	Material & Energy Balance	2	0	1	2	
	Fluid FlowI	2	2	1	3	
	Fluid FlowII	2	2	1	3	
	Physical ChemistryI	2	2	0	3	
	Physical ChemistryII	2	0	0	2	
	Computer Programming II	1	2	1	2	
	Computer Programming III	1	2	1	2	
	Materials Eng. I	2	0	1	2	5
	Materials Eng. II	2	2	1	3	
	Properties of Petroleum fuels	2	2	0	3	
	Properties of Petroleum Products	2	0	0	2	7 5
	Thermodynamics I	2	2	1	3	15
	Thermodynamics I I	2	0	1	2	- 15
	Applied Mathematicsin chemical Engineering	2	0	1	2	~ ~
	Mass Transfer	2	2	1	3	27
	Unit Operation I	2	0	1	2	RI
eering	Reactor Design	2	0	1	2	92
-	Heat Transfer I	2	0	1	2	0.
	Heat Transfer II	2	2	1	3	1. 1
	Combustion	2	0	0	2	1. 1
	Petroleum and Gas Field Processing	2	0	0	2	
	Chemicals from Petroleum	2	0	1	2	
	Petroleum Refinery Eng I	2	2	1	3	
	Equipment Design	2	0	1	2	1
	Equipment, Storage Design Using CAD	2	2	1	3	1
	Project I	1	2	0	2	1
	Project II	1	2	0	2	1
	Unit Operations II	2	2	1	3	1
	Unit Operations III	2	2	1	2	1
	1		-			4
	Process dynamics Process Control and Instruments for	2	0	1	2	4
	Process Control and Instruments for Petroleum Refinery	2	2	1	3	
	Petroleum Refinery Eng II	2	0	1	2	1
	Refinery Economics	2	0	0	2	1
	Heterogeneous Reactor &Catalysis	2	0	1	2	1
	Industrial Management and Ethics	2	0	0	2	1
	Corrosion Eng. In Petroleum Refinery	2	0	0	2	4
			· · · ·	- U	L 2	

Table (1.2) Courses Comprising the Topic Requirements for Oil and Gas Refinery Engineering

Table (1.3) Courses Comprising the Topic Requirements for Industrial and Petroleum Pollution Engineering

Categories	Subject	L	Р	Т	Crds	Total Crds
General	Technical English I	2	0	0	2	
	Technical English II	2	0	0	2	
Education(Humanities	Human Rights	1	0	0	1	6
and Social Sciences)	Democracy	1	0	0	1	
	Mathematics I	2	0	1	2	
	Mathematics II	2	0	1	2	
	Chemical Engineering Principles I	2	0	1	2	
	Chemistry	2	2	0	3	
	Bio- Chemistry	2	2	0	3	
	Electrical Technology	1	0	1	1	
	Physics for Environmental Engineering	2	0	- 0	2	
Math & Basic Sciences	Computer Programming I	1	2	0	2	35
	AutoCAD	1	2	0	2	
	Engineering Drawing	1	2	0	2	
	Engineering Mechanics &Strength of Materials	2	0	1	2	2
	Engineering MathematicsI	2	0	1	2	
	Engineering MathematicsII	2	0	1	2	
	Eng. Statistics	2	2	1	3	
	Numerical Analysis	2	2	1	3	
	Chemical Reaction Kinetics	2	0	0	2	A 10
	Chemical Engineering Principles II	2	0	1	2	(N
	Workshop I	0	6	0	1	5.01
	Workshop II	0	6	0	-	Mr.
	Energy Balance	2	0	1	2	
	Material &Energy Balance	2	0	1	2	
	Fluid FlowI	2	2	1	3	
	Fluid FlowII	2	2	1	3	100
	Physical Chemistry and colloid science	2	2	1	3	
	Physical Chemistry	2	0	1	2	-
	Computer Programming II	1	2	1	2	
	Computer Programming III	1	2	1	2	
	Materials Eng. I	2	0	1	2	
	Materials Eng. II	2	2	1	3	77
	Fuel's Technology	2	2	0	3	Di Di
	Fundamentals of Environmental Engineering Thermodynamics I	2	0	0	2	
	Thermodynamics I Thermodynamics I I	2	2	1	3	12
	Applied Mathematics in Environmental		1.			15
	Engineering	2	0	1	2	2
	Mass Transfer	2	2	1	3	57
	Unit Operation I	2	0	1	2	OYA
Engineering	Biochemical Reaction Eng.	2	0	0	2	92
0	Heat Transfer I	2	0	1	2	Y /
	Heat Transfer II	2	2	1	3	1.
	Air Pollution Control Engineering	2	0	0	2	
	Solid Waste Treatment	2	0	0	2	11
	Industrial Safety	2	0	0	2	100 - C
	Environmental Instrumentation and Analysis	2	2	0	3	
	Equipment Design	2	0	1	2	
	Equipment Design in Environmental Engineering	2	2	1	3	
	Using CAD Project I	1	2	0	2	
	Project I Project II	1	2	0	2	
	,					
	Unit Operations II	2	2	1	3	
	Unit Operations III	2	0	1	2	
	Process dynamics	2	0	1	2	
	Process Control and Instruments for Petroleum	2	2	1	3	
	Pollution Water and Wastewater Treatment Engineering I	2	0	1	2	
	Water and Wastewater Treatment Engineering I Water and Wastewater Treatment Engineering II	1	2	1	2	
	Industrial & Petroleum Pollution Control	2	0	1	2	
	Reactor Design	2	0	0	2	
	Corrosion and degradation	2	0	0	2	
			~	, v		

1.5.2. Graduation Requirements:

1-Uni	versity Requireme	nt				
No.	Code Course	Subject	L	Р	Т	Credits
1	CES.P.111	Technical English I	2	0	0	2
2	CES.P.112	Technical English I I	2	0	0	2
3	CES.P.113	Computer Programming	1	2	0	2
4	CES.P.114	AutoCAD	1	2	0	2
5	CES.P.115	Human Rights	1	0	0	1
6	CES.P.211	Computer Programming II	1	2	1	2
7	CES.P.212	Computer Programming III	1	2	1	2
8	CES.P.213	Democracy	1	0	0	1
		1112	61			

		a mang	114			
		Jun Ault		~	1 3	
2-Coll	age Requirement	21.00		8	Y.	
No.	Code Course	Subject	L	Р	T	Credits
1	CES.P.121	Mathematics I	2	0	1	2
2	CES.P.122	Mathematics II	2	0	1	2
3	CES.P.123	Chemistry I	2	2	0	3
4	CES.P.124	Chemistry II	2	2	0	3
5	CES.P.125	Physics	2	0	0	2
6	CES.P.126	Engineering Mechanics &Strength of Materials	2	0	1	52
7	CES.P.127	Engineering Drawing	1	2	0	2
8	CES.P.128	Electrical Technology	1/	0	1	≤ 1
9	CES.P.129	Workshop I 1975	0	6	0	× -
10	CES.P.1210	Workshop II	0	6	0.0	- / -
11	CES.P.221	Engineering Mathematics I	2	0	18	2
12	CES.P.222	Engineering Mathematics II	2	0	Y	2
13	CES.P.223	Materials Eng. I	2	0	1	2
14	CES.P.224	Materials Eng. II	2	2	1	3
15	CES.P.225	Eng. Statistics	2	2	1	3
16	CES.P.321	Numerical Analysis	2	2	1	3
17	CES.P.322	Applied Mathematics in chemical Engineering	2	0	1	2
18	CES.P.421	Project I	1	2	0	2
19	CES.P.422	Project II	1	2	0	2
20	CES.P.423	Industrial Management & Ethics	2	0	0	2

3-Program Requirement

No.	Code Course	Subject	L	Р	Т	Credits
1	CES.P.131	Chemical Engineering Principles I	2	0	1	2
2	CES.P.132	Chemical Engineering Principles II	2	0	1	2
3	CES.P.231	Energy Balance	2	0	1	2
4	CES.P.232	Material & Energy Balance	2	0	1	2
5	CES.P.233	Fluid FlowI	2	2	1	3
6	CES.P.234	Fluid FlowII	2	2	1	3
7	CES.P.235	Physical ChemistryI	2	2	0	3
8	CES.P.236	Physical ChemistryII	2	2	0	3
9	CES.P.237	Fuel's Technology	2	2	0	3
10	CES.P.238	Renewable Energy	2	0	0	2
11	CES.P.331	Thermodynamics I	2	2	1	3
12	CES.P.332	Thermodynamics II	2	0	1	2
13	CES.P.333	Mass Transfer	2	2	1	3
14	CES.P.334	Unit OperationI	2	0	1	2
15	CES.P.335	Chemical Reaction Kinetics	2	0	0	2
16	CES.P.336	Reactor Design	2	0	1	2
17	CES.P.337	Heat Transfer I	2	0	1	2
18	CES.P.338	Heat TransferII	2	2	1	3
19	CES.P.339	Chemical Process IndustriesI	2	0	0	2
20	CES.P.3310	Chemical Process Industries II	2	3	0	3
21	CES.P.3311	Bio Chemical Engineering	2	0	0	2
22	CES.P.3312	Particles& Nanotechnology	2	0	0-	2
23	CES.P.3313	Equipment Design	2	0	100	2
24	CES.P.3314	Equipment Design using CAD	2	2	15	3
25	CES.P.431	Unit Operations II	2	2	A	3
26	CES.P.432	Unit Operations III	2	0	at 1	2
27	CES.P.433	Process Dynamics	2	0	$\nabla 1$	2
28	CES.P.434	Process Control and Instruments	2	2	> 1	3
29	CES.P.435	Petroleum Refinery Processing	2	0	1	2
30	CES.P.436	Petrochemical Industries	2	0	1	2
31	CES.P.437	Heterogeneous Reactor & Catalysis	2	0	1	2
32	CES.P.438	Environment Eng. & Industrial Safety	2	0	1	2
33	CES.P.439	Corrosion Eng.	2	0	0	2

<u>First Year</u> Chemical Processing Engineering

No.		First Semeste	er			
	Code Course	Subject	L	Р	Т	Credits
1	CES.P.111	Technical English I	2	0	0	2
2	CES.P.121	Mathematics I	2	0	1	2
3	CES.P.131	Chemical Engineering Principles I	2	0	1	2
4	CES.P.123	Chemistry I	2	2	0	3
5	CES.P.125	Physics	2	0	0	2
6	CES.P.127	Engineering Drawing	/ 1	2	0	2
7	CES.P.113	Computer Programming I	1	2	0	2
8	CES.P.129	Workshop I	0	6	0	-
	- 4	P	1	Y		N
	6	Total	12	12	2	15
	171	Hours/week		26	Dr.	

No.		Second Semes	tor	1		
	Code Course	Subject	L	Р	Т	Credits
1	CES.P.112	Technical EnglishII	2	0	0	2
2	CES.P.122	Mathematics II	2	0	-1Z	2
3	CES.P.132	Chemical Engineering Principles II	2	0	N ^H W	2
4	CES.P.124	Chemistry II	2	2	0	3
5	CES.P.126	Engineering Mechanics &Strength of Materials	20	0	271	2
6	CES.P.114	AutoCAD	1	2	0	2
7	CES.P.128	Electrical Technology	1	0	1	1
8	CES.P.1210	Workshop II	0	6	0	-
9	CES.P.115	Human Rights	9	0	0	1
		Total	13	10	4	15
		Hours/week		27		

Second Year Chemical Processing Engineering

No.		First Semest	er					
	Code Course	Subject	L	Р	Т	Credits		
1	CES.P.221	Engineering Mathematics I	2	0	1	2		
2	CES.P.231	Energy Balance	2	0	1	2		
3	CES.P.233	Fluid Flow I	2	2	1	3		
4	CES.P.235	Physical ChemistryI	2	2	0	3		
5	CES.P.211	Computer Programming II	1	2	1	2		
6	CES.P.223	Materials Eng. I	2	0~	1	2		
7	CES.P.237	Fuel's Technology	2	2	0	3		
8	CES.P.213	Democracy	1	0	0	1		
		Total	14	8	5	18		

	Second Semest	ter	1.0		
Code Course	Subject	L	Р	Т	Credits
CES.P.222	Engineering Mathematics II	2	0	MRN	2
CES.P.232	Material & Energy Balance	2	0	AR7	2
CES.P.234	Fluid FlowII	2	2	591	3
CES.P.236	Physical ChemistryII	2	0	0	2
CES.P.212	Computer Programming III	1 ING	2	1	2
CES.P.224	Materials Eng. II	2	2	1	3
CES.P.238	Renewable Energy	2	0	0	2
CES.P.225	Eng.Statistics	2	2	1	3
	Total	15	8	6	19
	Hours/week		29		

Third Year Chemical Processing Engineering

No.		First Semest	er			
	Code Course	Subject	L	Р	Т	Credits
1	CES.P.331	Thermodynamics I	2	2	1	3
2	CES.P.321	Numerical Analysis	2	2	1	3
3	CES.P.333	Mass Transfer	2	2	1	3
4	CES.P.335	Chemical Reaction Kinetics	2	0	0	2
5	CES.P.337	Heat Transfer I	2	0	1	2
6	CES.P.339	Chemical Process Industries I	2	0	0	2
7	CES.P.3311	Bio Chemical Engineering	2	0	0	2
8	CES.P.3313	Equipment Design	2	0	1	2
	- 4:	Total	16	6	5	19
	5	Hours/week	K	27	ID:	

	Second Semest	er			
Code Course	Subject	L	Р	Т	Credits
CES.P.332	Thermodynamics I I	2	0	1 5	2
CES.P.322	Applied Mathematicsin chemical Engineering	2	0	12	2
CES.P.334	Unit Operation I	2	0	12	2
CES.P.336	Reactor Design	2	0	N.	2
CES.P.338	Heat TransferII	2	2	451	3
CES.P.3310	Chemical Process Industries II	2	3	0	3
CES.P.3312	Particles& Nanotechnology	2	0	0	2
CES.P.3314	Equipment Design Using CAD	2	2	1	3
	Total	16	7	6	19
	Hours/week		29		

Fourth Year Chemical Processing Engineering

No.		First Semest	er			
	Code Course	Subject	L	Р	Т	Credits
1	CES.P.421	Project I	1	2	0	2
2	CES.P.431	Unit Operations II	2	2	1	3
3	CES.P.433	Process Dynamics	2	0	1	2
4	CES.P.435	Petroleum Refinery Processing	2	0	1	2
5	CES.P.437	Heterogeneous Reactor &Catalyst	2	0	1	2
6	CES.P.423	Industrial Management &Ethics	2	0	0	2
7	CES.P.438	Environment Eng. & Industrial Safety	2	0	1	2
		Total	13	4	5	15
		Hours/week		22		
	G				THENT	

Ē	Second Semester										
Code Course	Subject	L	Р	Т	Credits						
CES.P.422	Project II	1	2	0	2						
CES.P.432	Unit Operations I I I	2	0	$\sqrt[3]{1}$	2						
CES.P.434	Process Control and Instruments	2	2	1	3						
CES.P.436	Petrochemical Industries	2	0	1	2						
CES.P.424	Optimization	2	0	1	2						
CES.P.439	Corrosion Eng.	2	0	0	2						
	Total		4	4	13						
	Hours/week 19										

No.		First Semeste	er			
	Code Course	Subject	L	Р	Т	Credits
1	CES.R.111	Technical English I	2	0	0	2
2	CES.R.121	Mathematics I	2	0	1	2
3	CES.R.131	Chemical Engineering Principles I	2	0	1	2
4	CES.R.123	Chemistry	2	2	0	3
5	CES.R.125	Physics	2	0	0	2
6	CES.R.127	Engineering Drawing	1	2	0	2
7	CES.R.113	Computer Programming I	1	2	0	2
8	CES.R.129	Workshop I	0	6	0	-
	1. 9		4	J/		
		Total	12	12	2	15
	1. 7:	Hours/week	~	26	na.	

<u>First Year</u> Oil and Gas Refinery Engineering

Code Course	Subject	L	Р	Т	Credits
CES.R.112	Technical English II	2	0	0	2
CES.R.122	Mathematics II	2	0	12	2
CES.R.132	Chemical Engineering PrinciplesII	2	0	1 1	2
CES.R.124	Chemistry of Petroleum	2	2	0 _>	3
CES.R.126	Engineering Mechanics & Strength	2	0	/15-	2
100	of Materials	1	S 1	~ ~	
CES.R.114	AutoCAD	1	2	0	2
CES.R.128	Electrical Technology	1	0	451	1
CES.R.1210	WorkshopII	0	6	0	-
CES.R.115	Human Rights	1	0	0	1
	Total	13	10	4	15
	Hours/week	ING	27		

Second Year Oil and Gas Refinery Engineering

No.	First Semester								
	Code Course	Subject	L	Р	Т	Credits			
1	CES.R.221	Engineering Mathematics I	2	0	1	2			
2	CES.R.231	Energy Balance	2	0	1	2			
3	CES.R.233	Fluid Flow I	2	2	1	3			
4	CES.R.235	Physical ChemistryI	2	2	0	3			
5	CES.R.211	Computer Programming II	1	2	1	2			
6	CES.R.223	Materials Eng. I	2	0	1	2			
7	CES.R.237	Properties of Petroleum fuels	2	2	0	3			
8	CES.R.213	Democracy	1	0	0	1			
		Total	14	8	5	18			
	-192	Hours/week		27					
	5		No.		1 in				

17	Second Semester										
Code Course	Subject	L	Р	Т	Credits						
CES.R.222	Engineering Mathematics II	2	0	1	2						
CES.R.232	Material &Energy Balance	2	0	1	2						
CES.R.234	Fluid FlowII	2	2	1	3						
CES.R.236	Physical ChemistryII	2	0	0	2						
CES.R.212	Computer Programming III	1	2	14	2						
CES.R.224	Materials Eng. II	2	2	1 0	3						
CES.R.238	Properties of Petroleum Products	2	0	0 <	2						
CES.R.225	Eng. Statistics	2	2	12	3						
	Total	15	8	6	19						
	Hours/week	CHANGO	29	5							

ENGINEERING

<u>Third Year</u> Oil and Gas Refinery Engineering

No.	First Semester								
	Code Course	Subject	L	Р	Т	Credits			
1	CES.R.331	Thermodynamics I	2	2	1	3			
2	CES.R.321	Numerical Analysis	2	2	1	3			
3	CES.R.333	Mass Transfer	2	2	1	3			
4	CES.R.335	Chemical Reaction Kinetics	2	0	0	2			
5	CES.R.337	Heat Transfer I	2	0	1	2			
6	CES.R.339	Combustion	2	0	0	2			
7	CES.R.3311	Chemicals from Petroleum	2	0	1	2			
8	CES.R.3313	Equipment Design	2	0	1	2			
		Total	16	6	6	19			
	- set.	Hours/week	1	28					
	i di lai								

	Second Semeste	e r		6	
Code Course	Subject	L	Р	Т	Credits
CES.R.332	Thermodynamics I I	2	0	1	2
CES.R.322	Applied Mathematicsin chemical Engineering	2	0	1 Z	2
CES.R.334	Unit Operation I	2	0	1 4	2
CES.R.336	Reactor Design	2	0	1	2
CES.R.338	Heat TransferII	2	2	16	3
CES.R.3310	Petroleum and Gas Field Processing	2	0	0	2
CES.R.3312	Petroleum Refinery Eng I	2	2	0^{1}	3
CES.R.3314	Equipment, Storage Design Using CAD	2	2	1	3
		16	6	7	19
	Hours/week		29		

Fourth Year
Oil and Gas Refinery Engineering

No.		First Semester							
	Code Course	Subject	L	Р	Т	Credits			
1	CES.R.421	Project I	1	2	0	2			
2	CES.R.431	Unit Operations II	2	2	1	3			
3	CES. R.433	Process Dynamics	2	0	1	2			
4	CES. R.435	PetroleumRefinery Eng II	2	0	1	2			
5	CES. R.423	Refinery Management and	2	0	1	2			
3		Ethics							
6	CES. R.437	Heterogeneous Reactor	2	0	1	2			
0		&Catalyst	· · · · ·		S				
	CES. R.438	Environment Pollution &	2	0	1	2			
7		Safety in Petroleum	1	N.					
		Refineries	5.	Y	· . \				
	7: X	Total	13	4	6	15			
	E.A.	Hours/week		23					

		200			
	Second Semest	ter			
Code Course	Subject	L	Р	Т	Credits
CES. R.422	Project II	1	2	0	2
CES. R.432	Unit Operations I I I	2	0	1.2	2
CES. R.434	Process Control and	2	2	15	3
-	Instruments for Petroleum	/ /	° (A.F.	
	Refinery	0		SI	1
CES. R.436	Petroleum Refinery Economics	2	0	0	2
CES. R.424	Optimization	2	0	1	2
CES. R.439	Corrosion Eng. In Petroleum	2	0	0	2
	Refinery	ING			
	GINEER	1			
	Total	11	4	3	13
	Hours/week	18			

<u>First Year</u> Industrial and Petroleum Pollution Engineering

No.	First Semester					
	Code Course	Subject	L	Р	Т	Credits
1	CES.E.111	Technical English I	2	0	0	2
2	CES.E.121	Mathematics I	2	0	1	2
3	CES.E.131	Chemical Engineering Principles I	2	0	1	2
4	CES.E.123	Chemistry	2	2	0	3
5	CES.E.125	Physics for Environmental Engineering	2	0	0	2
6	CES.E.127	Engineering Drawing	1	2	0	2
7	CES.E.113	Computer Programming I	1	2	0	2
8	CES.E.129	Workshop I	0	6	0	-
	- 4.	2018	1	Y		1 million (1997)
	5	Total	12	12	2	15
	171	Hours/week		26	La	

	Second Semes	ter		2	
Code Course	Subject	L	Р	Т	Credits
CES.E.112	Technical English II	2	0	0	2
CES.E.122	Mathematics II	2	0	1.5	2
CES.E.132	Chemical Engineering Principles II	2	0	12	2
CES.E.124	Bio-Chemistry	2	2	0	3
CES.E.126	Engineering Mechanics & Strength of Materials	2	0	R.	2
CES.E.114	AutoCAD	01	2	0	2
CES.E.128	Electrical Technology	1	0	1	1
CES.E.1210	WorkshopII	0	6	0	-
CES.E.115	Human Rights	TNIG.	0	0	1
	Total	13	10	4	15
	Hours/week	1	27		

Second Year Industrial and Petroleum Pollution Engineering

No.		First Semest	er			
	Code Course	Subject	L	Р	Т	Credits
1	CES.E.221	Engineering Mathematics I	2	0	1	2
2	CES.E.231	Energy Balance	2	0	1	2
3	CES.E.233	Fluid Flow I	2	2	1	3
4	CES.E.235	Physical Chemistryand colloid science	2	2	1	3
5	CES.E.211	Computer Programming II	1	2	1	2
6	CES.E.223	Materials Eng.I	2	0	1	2
7	CES.E.237	Fuel's Technology	2	2	0	3
8	CES.E.213	Democracy	1	0	0	1
	5	Total	14	8	6	18
	1.7'	Hours/week		28		

No.		Second Semes	ter		H	
	Code Course	Subject	L	Р	T	Credits
1	CES.E.222	Engineering Mathematics II	2	0	1	2
2	CES.E.232	Material & Energy Balance	2	0	14	2
3	CES.E.234	Fluid FlowII	2	2	di	3
4	CES.E.236	Physical Chemistry	2	0	7T	2
5	CES.E.212	Computer Programming III	1	2	>1	2
6	CES.E.224	Materials Eng.II	2	2	1	3
7	CES.E.238	Fundamentals of Environmental Engineering	2	0	0	2
8	CES.E.225	Eng. Statistics	2	2	1	3
		Total	15	8	7	19
		Hours/week		30		

<u>Third Year</u> Industrial and Petroleum Pollution Engineering

No.		First Semester						
	Code Course	Subject	L	Р	Т	Credits		
1	CES.E.331	Thermodynamics I	2	2	1	3		
2	CES.E.321	Numerical Analysis	2	2	1	3		
3	CES.E.333	Mass Transfer	2	2	1	3		
4	CES.E.335	Chemical Reaction Kinetics	2	0	0	2		
5	CES.E.337	Heat Transfer I	2	0	0	2		
6	CES.E.339	Air Pollution Control Engineering	2	0	0	2		
7	CES.E.3311	Industrial Safety	2	0	0	2		
8	CES.E.3313	Equipment Design	2	0	1	2		
		Total	16	6	4	19		
		Hours/week		26				

	Second Semest	ter		E	1
Code Course	Subject	L	Р	T	Credits
CES.E.332	Thermodynamics I I	2	0	1 2	2
CES.E.322	Applied Mathematicsin Environmental Engineering	2	0	LL &	2
CES.E.334	Unit Operation I	2	0	te	2
CES.E.336	Biochemical Reaction Eng.	2	0	0	2
CES.E.338	Heat TransferII	2	2	\mathcal{Y}_{1}	3
CES.E.3310	Solid Waste Treatment	2	0	0	2
CES.E.3312	Environmental Instrumentation and Analysis		2	0	3
CES.E.3314	Equipment Design in Environmental Engineering Using CAD	2	2	1	3
	Total	16	6	5	19
	Hours/week		27		

Fourth Year Industrial and Petroleum Pollution Engineering

No.		First Semeste	er			
	Code Course	Subject	L	Р	Т	Credits
1	CES.E.421	Project I	1	2	0	2
2	CES.E.431	Unit Operations II	2	2	1	3
3	CES.E.433	Process Dynamics	2	0	1	2
4	CES.E.435	Water and Wastewater Treatment Engineering I	2	0	1	2
5	CES.E.423	Industrial & Petroleum Pollution Control	2	0	1	2
6	CES.E.437	Catalysis and Catalytic Eng.	2	0	0	2
7	CES.E.438	Environmental Engineering Managementand Ethics	2	0	1	2
	Y:	Total	13	4	5	15
	25	Hours/week	12	22	in'	
	in the		~	M	-	

No.		Second Semes	ter			
	Code Course	Subject	L	Р	Т	Credits
1	CES.E.422	Project II	1	2	0	2
2	CES.P.432	Unit Operations I I I	2	0	1	2
3	CES.E.434	Process Control and Instruments	2	2	1	3
4	CES.E.436	Water and Wastewater Treatment Engineering II	1	2	IEN	2
5	CES.E.424	Optimization	2	0	12	2
6	CES.E.439	Corrosion and degradation	2	0	0	2
	5	1973			7	1
		Total	10	6	4	13
	.2	Hours/week	1	20		
		ENGINEERIN	G			

Program	Chemical	Processing Engineering						
Course Code	CES.P.111		Credits h	ır				
Course Title	Technical English "I"					Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Basic principles in English language (grammars and vocabularies)	2	-	-	2	2		

Course Description

Define a specialknowledge and basic concepts in English language, review of (words, terms and phrases commonly utilized) with practical everyday language that students need, the fundamental principles of grammars used in English language such as question and answer, the negative, the tail questions, the singular and plural, the numbers, nouns, pronouns, the verb (to be, to have, and to do), adjectives, regular and irregular verbs, using so & neither, and adverbs, degrees of comparison, conjunctions and interjections, kinds of letter (S) with general exercises. Also, accurate description of the nature of vocabularies and idioms used by the chemical engineers and that the student needs in his/her academic and/or in his/her professional career by means of applying two reading passages focus mainly on studying the chemical engineer work in the factories as well as equipment, tools and materials used.

Course Text

- 1- The language of chemical engineering in English, Roy V. Hughson (1979), Regents publishing company, Inc.
- 2- New headway plus (English Course), Liz & John Soars (2014), Oxford University press. Other support books :-
 - 1- Life Lines workbook (Pre-intermediate and Intermediate level), Tom Hutchinson (2007), Oxford University press.
 - 2- English in a simplified way, Tahir Al- Bayati (1991), Baghdad.

Course Objectives: at the end of the semester the student should be able to :-

The objective of this course focuses on:

1-in-depth understanding and comprehension of the essential grammars in the English language that usually used in writing and/or speaking with choosing the correct way of speaking and/or listening the vocabulary (phonetics and spelling) by the use of common phrases and words.

2-Also, focus on the use of technical English(reading passages) as a heart of chemical engineer work, such as what chemical engineers do, research and development.

3- The development of the student's ability to apply and arrange knowledge in English language and thus become able to employ them appropriately in his/her daily dealing without the complexity.

4- As well, encourage students to develop their capabilities in the field of English language through participation by the training on the use and improve their language.

No.	Contents	Duration
1	Academic Comprehension: (Reading passages related to chemical engineering) The first reading passage (<i>What chemical engineers do</i>) (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion)	8 hrs
2	Academic Comprehension: (Reading passages related to chemical engineering) The second reading passage (<i>Research and development</i>). (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion).	8 hrs
3	English Grammar: A general introduction to the English language and its importance as a means of communication between different peoples around the world, Review of the words, terms and phrases commonly used, Review of the simple grammars in English language, such as question and answer, the negative, the tail questions, the singular and plural, the numbers, telling the date, and telling the time, Nouns, pronouns, the verb to be, the verb to have, the verb to do, Adjectives and regular and irregular verbs, Reading and writing grammars that include short forms and words with two different meanings, The use of so & neither, and adverbs, Degrees of comparison, Conjunctions and interjections with general exercises, Kinds of letter (S) with general exercises.	14 hrs

Program	Chemical Processing Engineering						
Course Code	CES.P.121		Credi	ts hr			
Course Title	Mathematics I		Units				
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Mathematic of secondary school	2	-	1	3	2	

Course Description

Introduction to functions, limits, Special functions, Derivatives, Chain rule, and their applications. Introduction to integral calculus, Methods of integration.

Course Text

Jeffreys.

1- Thomas Calculus, by George B.Thomas, Jr, Elevnth Edition Media Upgrade 2008" Other support books :-

2- Mathematical methods for science students, Second Edition, by G. Stephenson .

3- Advanced Engineering Mathematics, Fifth Edition, by C.Raywylie,LouisC.Barrett . Mathematical Methods in chemical Engineering, Second Edition, by V.G.Jenson and G.V.

Course Objectives : at the end of the semester the student should be able to :-

1.To develop an understanding with the concepts of calculus and analytic geometry and the applications of these concepts to the solution of engineering problems.

2.Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

3. Develop a deep understanding of issues related to the basic principles of calculus, and how to solve problems in chemical engineering

ENGINEERING

Topics Covered (Syllabus)/ Mathematics I

	Preliminaries Absolute value, coordinates of the plane, slope of lines, angle of	
i i	inclination, functions, graph of the functions, domain and range, identifying functions, sum, differences, products and quotients, composite functions, shifting a graph of a function, scaling and reflecting a graph of a function.	6hr
2	Limits and Continuity Properties, limits involving infinity, continuity	4hr
3]	Transcendental functions Logarithmic and exponential functions, trigonometric functions, inverse trigonometric functions, hyperbolic functions, inverse hyperbolic trigonometric functions.	4hr
4]]	Derivatives Definition, chain rule, derivative of inverse trigonometric functions, of hyperbolic functions, of inverse hyperbolic functions, derivative of exponential and logarithmic functions, L, hopitals rule, partial derivative, function of two or more variables.	6hr
5] 1	Integration Indefinite integration, integration of inverse trigonometric functions, integration of hyperbolic functions, integration of inverse hyperbolic functions, integration methods; (substitution, by part, trigonometric substitution, partial fraction).	10hr

Program	Cher	nical Pro	ocessing	g Engin	eering	5
Course Code	CES.P.131		Credit	s hr		
Course Title	Chemical Engineering Principles I					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	1-Basics Maths 2-Chemistry Basics	2	-	1	3	2

Course Description

To teach students fundamental knowledge of chemical engineering and application of this knowledge in the solving of material balances of chemical processes.

The course will cover concepts ranging from basics such as units and dimensions, stoichiometry to the simultaneous application of material and energy balances with and without occurrence of chemical reaction.

Behavior of ideal gases including the procedures for estimation of vapor pressure and heats of vaporization will be extensively covered.

Course Text

1- Himmelblau, D.M. and J.B.Riggs," Basic principles and calculations in chemical engineering",8^{ed}, Prentice-Hall Inc., New Jersey,2013.

2- Sikdar, D.C., Chemical process calculations, PHI Learning private ltd., New Delhi, 2013.

Course Objectives: at the end of the semester the student should be able to :-

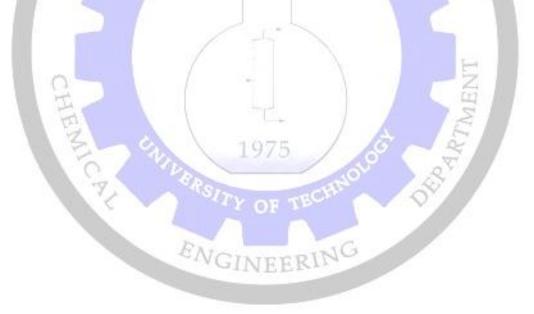
1-Identify and understand the unit operations involved in a process, draw flowcharts, and develop relationships between process variables.

2-Perform simple degree-of-freedom analysis to identify the number of unknowns relating to mass, mass flow rate, composition and energy, and develop the linearly independent mass and energy balances needed to determine unknown quantities.

3-Apply ideal gas rule and equations of state for real gases.

4-describe various forms of energy, work, enthalpy, specific properties. state functions. and volumetric properties of pure liquids.

5-Convert from SI unit to British unit system and vice versa.


6-Understand the dimension concept,Understand of conversion coefficient concept andUse conversion coefficient.

Topics Covered (Syllabus))/ Course Title

No.	Contents	Duration
1	General Knowledge of Chemical Engineering Definition of chemical engineering, Chemical process industries (CPI), Generalized chemicalprocess,Flow sheet and representationof a chemical process (PFD) The difference betweenthe chemist and the chemical engineer.	4 hr
2	Mathematical, Physical and Chemical Principles Dimensions, units, symbols and conversion factors, Precision and significant figures., Density and specific gravity, Temperature, Pressure, The mole unit, Composition and concentration. Basis of calculation, Principles and expressions of stoichiometry.	16 hr
3	Gases and Vapors Ideal gas law, Ideal gas mixtures, Real gas relationships, Real gas mixtures, Vapor pressure and saturation.	10 hr

Program	Chen	Chemical Processing Engineering				
Course Code	CES.P.123		Credi	ts hr		
Course Title	Chemistry-I					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemistry	2	2	0	4	3

Course Description

Fundamentals of atoms, molecules, Quantitative analysis, Environmental, Transition Metal Chemistry and Spectroscopic Techniques which are mostly used in all other chemical engineering courses

Course Text

1- Skoog, D.A., West D.M., Holler F.J., and Crouch S.R. "Fundamentals of analytical chemistry",8ed edition ,brooks/Cole Cengage Learning. 2004

Other support books :-

- 2- Harrison, R.M," Understanding Our Environment An Introduction to Environmental Chemistry and Pollution",3ed edition, The Royal Society of Chemistry 1999
- 3- Atkins, P., de Paula, J. "Physical Chemistry"8ed edition, W. H. Freeman and Company. 2006

4- Huheey, J. E. "Inorganic Chemistry: Principles of Structure and Reactivity", 4ed edition Prentice Hall. 1997

Course Objectives: at the end of the semester the student should be able to:-

- 1- Students will learn to use the language of chemistry: symbolic representation, nomenclature, and terminology.
- 2- Students will learn to think about chemical reactions and chemical and physical properties at the particulate level and will be able to visualize and depict the structure of matter and its reactions at the microscopic (atomic and molecular) level.
- 3- Students will gain a conceptual understanding of and will be able to perform quantitative problem-solving skills in atomic structure, Stoichiometry, chemical equilibria, and electrochemistry.
- 4- Students will be able to use their knowledge to analyze and construct solutions by instruments
- 5- Students will learn to use theories of bonding in coordination compounds

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Atoms and Molecules: Mechanical picture of atomic structure, Derivation of Schrodinger wave equation, Chemical Bonding- Orbital concepts in bonding, V.B. and M.O. theory, M.O. diagrams, Intermolecular interactions.	3hr
2	Quantitative analysis: Atomic weight, Molecular formula, Chemical equations, Mole concept, Chemical, equilibrium, equilibrium constants, Preparation and properties, Molarity, Normality, ppm, pH, pOH, Buffers, Solubility Ksp, Gravimetric Analysis, Precipitation reaction, Potentiometric Titration, Complex titration.	6hr
3	Electrochemistry: Arrhenius theory of electrolytic dissociation, Transport number, Kohlrausch's law, Solubility product, Redox reaction, Electrochemical and concentration cells	4hr
4	Photochemistry and Spectroscopic Techniques: Photoexcitation of organic molecules, Jablonski diagram, Laws of photochemistry and quantum yield, Some examples of photochemical reactions, Chemistry of vision and other applications of photochemistry. General introduction to UV, IR, NMR and Chromatography	7hr
5	Transition Metal Chemistry: Structure of coordination compounds corresponding to coordination number up to 6, Types of ligands, Isomerism [geometrical, optical, ionization, linkage and coordination], Theories of bonding in coordination compounds- crystal field theory, Valence bond theory, Chelation	6hr
6	Environmental: Introduction, Water, air, soil pollution	4hr

Practical: (Chem. lab.)

No.	Experiment Name
1.	Introduction and chemical safety basic rules
2.	Equipment and how to use it
3.	Preparation of standard solution (primary and secondary)
4.	Direct Titration
5.	Quantitative determination of a carbonate and hydroxide in mixture
6.	Back titration
7.	Titration Curves
8.	Determination of Chloride Ions in Water
9.	Standardization of KMnO ₄ and the determination of ferrous sulfate (Redox reaction)
10.	Determination of Hardness of Water
11.	Paper Chromatography
12.	Qualitative analysis silver group

ENGINEERING

Program	Chen	nical Processing Engineering				
Course Code	CES.P.125		Credits hr			
Course Title	Physics					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Physics	2	-	-	2	2

Course Description

Mechanics, Temperature, Heat, Light (Reflection, Refraction, Wave, Nature of light, Dispersion, Colours)

Course Text

- Handbook of Nanostructured Materials and Nanotechnology, San Diego Academic Press, 2000
- Particle Technology Handbook

Course Objectives : at the end of the semester the student should be able to understanding :-

- 1- Basic physical principle
- 2- How physical problems can be solved
- 3- How the scientific method contributes to physics and how physics related to every body life
- 4- Measured physical quantities in appropriate SI unit
- 5- Work safety in a laboratory and follow the instruction relation between physics and technology

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Mechanics: Motion, Forces, Energy	5hr
2	Temperature: Concept of temperature, Thermometric properties, thermometers	5hr
3	Heat: Quantity, Heat transfer	5hr
4	Waves, Vibration and sound	5hr
5	Light (Reflection, Refraction, Wave, Nature of light, Diffraction and interference, Dispersion, Colours, Electromagnetic spacing.	5hr
6	Modern Physics (electron, thermionic, emission, photo electric emission, X-ray, the nucleus, Structure of nucleus and atom, Radioactivity, Nuclear energy, Ionizing radiation and health hazards.	5hr

Program	Chen	nical Processing Engineering				
Course Code	CES.P.127		Credit	s hr		
Course Title	Engineering drawing					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	None	1	2		3	2

Course Description

Introduction inEngineering drawing, engineering drawing applications, engineeringprocess, analysis model to view and study the full and half Sections, conclusion of the third projection, Draw isometric and Oblique.

Course Text

- لرسم الهندسي، تاليف (عبد الرسول الخفاف) الطبعة الثانية، ١٩٩٣ .
- 2. R.P Hoelscher and C.H Springer "Engineering Drawing and Geometry ".2nd edition

Course Objectives: at the end of the semester the student should be able to :-

1. The students can be use Tools Drawing in draw and analyze geometric shapes

2.Enable students to draw devices, equipment & PFD in chemical engineering.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction	3hr
2	Planning of Drawing paper	3hr
3	Types of line	3hr
4	Engineering operation	3hr
5	Projection Drawing	3hr
6	First angle projection	3hr
7	Third angle projection	3hr
8	Full section	3hr
9	Half section	3hr
10	The finding of third view	3hr
11	Application Example	3hr
12	Pictorial Drawing (Isometric and Oblique)	3hr
13	Application Example	3hr
14	Dimensions	3hr
15	Examples of chemicalengineering drawing and exercises.	3hr

Program	Ch	emical P	rocess 1	Enginee	ring	
Course Code	CES.P.113		Credits hr			
Course Title	Computer					
	Programming(I)					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	None	1	2		3	2

Course Description

This course provides an overview of the operating system Windows 10 and the program of Microsoft Office 2010 and the Visual Basic and includes the operation of Visual Basic and describe the elements of the design environment and user interface design and the difference between the project and the program and introduce students to the philosophy of programming using visual Basic and a programming process events Event-Driven Programming and programming objects Object Oriented Programming and gives the student an introduction to object-oriented programming and introduce students to the fundamental differences between the concept of the programming language BASIC visual and languages BASIC traditional and explain the steps to design and program planning.

Course Text

1-" Visual Basic: Crash Course - The Ultimate Beginner's Course to Learning Visual Basic Programming ", 3rd Edition, A. Tannenbaum, Prentice-Hall, 1996.

2-"Beginning Visual Basic " by Bryan Newsome Wrox, USL Press, | December 2003 | ISBN-10: 1119092116 |

3- "Course Notes for Learn Visual Basic 6.0", 4th Edition, F. Halsall, Addison-Wesley, 2000.

Course Objectives : at the end of the semester the student should be able to :-

- 1. start Microsoft Office applications and work with the Microsoft Office interface Create documents in Microsoft Word. Create workbooks in Microsoft Excel.Create presentations in Microsoft PowerPoint
- 2. Define and modify the the properties and methods associated with an object
- 3. Load, modify, and save changes made to forms and projects in the Visual Basic environment
- 4. Define and implement form objects including data arrays, control arrays, text boxes, message boxes, dialog boxes, labels, controls, menus, frames, picture boxes, pull-down menus, and combo boxes

Topics Covered (Syllabus)/ Computer Programming(I)

No.	Contents	Duration
	Windows 10 and Microsoft Office:	
1	the operating system Windows 10 and MicrosoftOffice word, Microsoft excel, Microsoft power point.	3hr
2	Introduction to Visual Basic Programming : Menu bar, Tools bar, Project explorer, Tool box, Properties windows, Form, Code, Controls, Command Buttons, Label, Textbox, Pointers, Picture box, frame, Naming Controls, Properties for controls: Height, Width, Left, Top, Font, Forecolor, Backcolor, Name, Caption, Text, and Visible, Events, Saving Visual Basic Project, Examples, Chemical Engineering Applications.	2hr
3	Mathematics : Arithmetic Operations: +, , *, /, mod, ^. (Using Simple Example for each Operation), Logical Operations. AND, OR, NOT. And the Truth Table for each Operation, (Using Simple Example for each Operation), Relational Operation: >, <, >=, <=, <>, =, String Concatenation (&), Operation Precedence. For all arithmetic, logical, relational operators, Print statement and Formatting. Illustrate (colon, comma, and semicolon), Examples: Chemical Engineering Applications	1hr
4	Built inFunctions: Builtin math functions, Abs(x), Int(x), Rnd(x), sgn(x), sqr(x), str(x), val(x), round(x,n),CInt(x),Fix(x),String Functions, InputBox, MsgBox, Examples: Chemical Engineering Applications.	1hr
5	Selection Structure: Single Selection: If/Then structure, Double Selection: If/Then/Else structure, Nested If/Then/Else structure, Select Case Multiple Selection Structure, Examples: Chemical Engineering Applications.	2hr
	Reputation Structure:	
6	For Next Loop, While Wend, Do While Loop, Do Loop Until, Exit Do, Exit For Examples: Chemical Engineering Applications.	1hrs

7	Variables: Data Types: Boolean, Integer, Long, Single, Double, String, Valid Naming of Variables, Initial Value for each Type of the Variables (Initial Value for each Data Type), Size of each Variable Type in Bytes, How to Declare Variables. (Dim statement), Using: Dim variable name As Data type, Using Suffix: Integer, Long, Single, Double, String, Constant Variable. Examples: Chemical Engineering Applications.	2hrs
8	Arrays: Introduction: Defining Arrays, Array Declaration Statement, Assigning Values for Arrays (i.e.filling array's element value either by loop or by direct assignment statement), Re Dim Statement, Using Loops with Arrays. (i.e. writing an application on array using loops),Two Dimensional Arrays, Operations on Arrays, Fill Array Elements with Random Numbers using and Function, Sorting, Searching. (i.e. Linear search), Swapping Two Elements. Examples: Chemical Engineering Applications.	2hr
9	Graphics in Visual Basic: Graphics control, Picture box, Image box, Coordinate system, Pixel, Graphics methods (Line,Circle, pset) Examples: Chemical Engineering Applications.	1hrs

ENGINEERING

Program	Chemical Processing Engineering						
Course Code	CES.P.112	Credits hr					
Course Title	Technical English "II"					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Basic principles in English language (grammars and vocabularies)	2	-	-	2	2	

Course Description

Define a specialknowledge and basic concepts in English language, review of phonetics and spellingwith words and sounds that need attention in understanding the meaning and pronunciation, the fundamental principles of grammars utilized in English language such as the use of the prefixes (un, im, in, and dis), the use of since & for, the definite and indefinite articles. As well as simple, continuous and perfect tenses (present, past, and future), the punctuation, active voice and passive voice, direct and indirect speech, finite and non-finite verbs, analyses and kinds of sentences. Also, accurate description of the nature of vocabularies and idioms used by the chemical engineers and that the student needs in his/her academic and/or in his/her professional career by means of applying two reading passages focus mainly on studying the chemical engineer work in the factories as well as equipment, tools and materials used.

Course Text

- 1- The language of chemical engineering in English, Roy V. Hughson (1979), Regents publishing company, Inc.
- 2- New headway plus (English Course), Liz & John Soars (2014), Oxford University press. Other support books :-
 - 1- Life Lines workbook (Pre-intermediate and Intermediate level), Tom Hutchinson (2007), Oxford University press.
 - 2- English in a simplified way, Tahir Al- Bayati (1991), Baghdad.

Course Objectives: at the end of the semester the student should be able to :-

The objective of this course focuses on:

1- Study and conception of the advance grammars in the English language that usually employed in academic writing and also explain the use of grammars correctlyin speaking and/or listening the vocabulary (phonetics and spelling) via increasing the ability to rapid recognize the words that have two different meanings depending on their presence in the context of speech
2- Accurate description of the nature of vocabulary and idioms used by the chemical engineers in dealing with their respective fields in addition to the vocabulary of daily dealing. Also, focus on the use of reading passages such as process design and plant operation, which are related to student competence and his/her profession as an engineer in the chemical companies.
3- Enhancement of student's ability by applying modern information in English language about the abare starigtion of the average is an engineer in the chemical companies.

the characteristics of the chemical engineer job and then try to the simulation that in writing the scientific report, expression, and formulate of simple sentences and complex ones without the

difficulty.

4- Finally, promote the qualifications of students in the field of English language by training on the use and the progress of their language in order to allow them to easily use it in his/her future academic study in chemical engineering.

No.	Contents	Duration
1	Academic Comprehension: (Reading passages related to chemical engineering): The third reading passage (<i>Process design</i>) (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion)	8 hrs
2	Academic Comprehension: (Reading passages related to chemical engineering): The fourth reading passage (<i>Plant operation</i>). (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion).	8 hrs
3	English Grammar: Phonetics & Spelling (consonant sounds & vowel sounds), Words and sounds that need attention in understanding the meaning and pronunciation, as well as the use of the prefixes (un, im, in, and dis), The use of since & for, as well as the definite and indefinite articles, Punctuation (such as the use of the capital letter, the question mark, and the commaetc), Simple tenses (present, past, and future), Continuous and perfect tenses (present, past, and future), Active voice and passive voice, Direct and indirect speech, Finite and non-finite verbs, Analyses of sentences, and kinds of sentences (either according to form or to number of statements).	14 hrs

Program	Chemical Processing Engineering					
Course Code	CES.P.122		Credit	s hr		
Course Title	Mathematics II					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics I	2	-	1	3	2

Course Description

Definite integral and applications, Polar coordinates, Vector analysis, Determinant and matrices

Course Text

- 1- Thomas Calculus, by George B. Thomas, Jr, Elevnth Edition Media Upgrade 2008" Other support books :-
 - 2- Mathematical methods for science students, Second Edition, by G. Stephenson,
 - 3- Advanced Engineering Mathematics, Fifth Edition, by C. Raywylie, Louis C. Barrett
 - 4- Mathematical Methods in chemical Engineering, Second Edition, by V. G. Jenson and G.V. Jeffreys

Course Objectives : at the end of the semester the student should be able to :-

- 1. To understand these concepts of applications and how to evaluate volumes, surface area, and to understand analytic geometry.
- 2. Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.
- 3. Develop a deep understanding of issues related to the basic principles of polar coordinates, vector analysis, determinants, and how to solve problems in chemical engineering


ENGINEERING

Topics Covered (Syllabus)/ Mathematics II

	Definite integration and Applications:	
1	Double integrals, reverse order of integration, length of curves, surface area, volumes	10hr
2	Polar Coordinates: Definition, Cartesian versus polar coordinates, graphing in polar coordinate.	4hr
3	Vector Analysis: Definitions, properties, vector in space, scalar and cross product of vector, product of three vectors.	8hr
4	Determinates and Matrices : Definition, determinate evaluation, solution of system of linear equation by matrix; (Inverse of matrix, Gauss elimination), Rank of matrix, Eigen value and Eigen vectors.	8hr

Program	Chem	ical Proc	essing	Engine	ering	
Course Code	CES.P.132		Credits	s hr		
Course Title	Chemical					
	Engineering					Units
	Principles II			-		Cints
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	1-Basics Maths 2-Chemistry Basics 3.Chemical Engineering Principles I	2	-	1	3	2

Course Description

The objective of this course is to present an introduction to chemical engineering calculations, establish mathematical methodologies for the computation of material balances and to present an overview of industrial chemical processes. It is prerequisite for several junior-level courses in the curriculum, including courses in process fluid dynamics, heat transfer and phase equilibrium.

The course reviews the fundamentals of chemistry and physics as they pertain to chemical problems and applies mathematics to the development of time-dependent equations to describe materials flow through a process. Examples of the processes studied include stoichiometry in combustion and other reactions, materials flow with recycle streams.

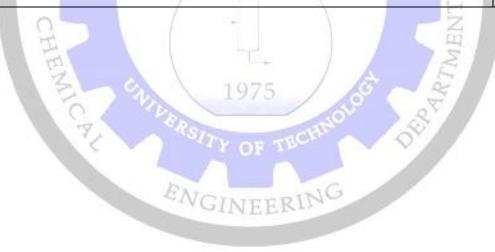
Course Text

 Himmelblau, D.M. and J.B.Riggs," Basic principles and calculations in chemical engineering",8^{ed}, Prentice-Hall Inc., New Jersey,2013.
 Sikdar, D.C., Chemical process calculations, PHI Learning private ltd., New Delhi, 2013.

TY OF T

Course Objectives: at the end of the semester the student should be able to :-

1-Create representative process flow diagrams and use them to organize systems of equations.


- 2-Formulate material balances to solve for compositions and flow rates of process streams.
- 3-Incorporate single and multiple reactions into unit operations within chemical processes.
- 4-Understanding of the degrees of freedom analysis and its significance.

5-Ability to make material balances on unit operations and processes.

No.	Contents	Duration hr/weeks
1	Concepts of material balance.	2 hr
2	Systematic steps of solving material balance problems.	2 hr
3	Material balances without chemical reactions.	4 hr
4	Material balances with chemical reactions.	6 hr
5	Material balances on combustion processes.	6 hr
6	Material balances involving recycle.	6 hr
7	Bypass and purge streams.	4 hr

Program	Chemical Processing Engineering					
Course Code	CES.P.124		Credit	s hr		
Course Title	Chemistry II					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemistry	2	2	0	4	3

Course Description

An Introduction to Organic Compounds, preparation, reaction including carbohydrate, polymers and dyes

Course Text

1- Ghatak,k.l," Textbook of organic chemistry and problem analysis",PHL Learning.2014.

Other support books :-

- 2- Morrison, Thornton R.; Boyd, Neilson, R. "Organic Chemistry". 6th edition, J. Chem. Educ. 1992
- 3- Bruice, P.Y., J.M "Organic chemistry", 7th edition, Books a la Carte Edition, 2014

Course Objectives: at the end of the semester the student should be able to :-

- 1- Students will learn the basic concepts of organic chemistry
- 2- understanding the concepts of organic reactions for analysis of unit processes
- 3- Students will learn the polymeric chemistry
- 4- Students will learn the basic concepts of dyes
- 5- Students will learn the basic concepts of carbohydrates

	Contents	Duration
No.	Contents	Duration
1	An Introduction to Organic Compounds: Nomenclature, Physical Properties, and Representation of Structure	6hr
2	Preparation and Reactions: Alkanes, Alkenes, Dienes, Alkynes, aromatic hydrocarbon	6hr
3	Preparation and Reactions: alkanes derivative (RX, ROH, RCOOH, RCOH, RCOR,etc.Organometalic	9hr
4	Biomolecules : Carbohydrates, Amino acid, Vitamins	2hr
5	Chemistry of polymeric materials: Polymerization, methods of polymerization - bulk, solution, suspension and emulsion polymerization. Glass transition temperature (Tg), Conducting polymers	4hr

 6
 Dyes:
 3hr

 Classification , nomenclature, synthesis
 3hr

Practical: (Chem. lab.)

No.	Experiment Name
1.	Boiling point determination
2.	Melting point determination
3.	Simple Distillation
4.	Preparation of aspirin
5.	Preparation of ester
6.	Identification of functional groups-I
7.	Identification of functional groups-II
8.	Saponification reaction
9.	Dyes& Colorants
10.	Polymerization of vinyl monomer

TE ENGINEERING

Program	Chemical ProcessingEngineering					
Course Code	CES.P.126					
	Engineering	Credits hr				
Course Title	Mechanic and					
Course Thie	Strength of				Units	
	Materials					
Term	2 nd Semester	Theoretical Practical Tutorial Total				
Prerequisite(s)	Physics	2	-	1	3	2

Course Description

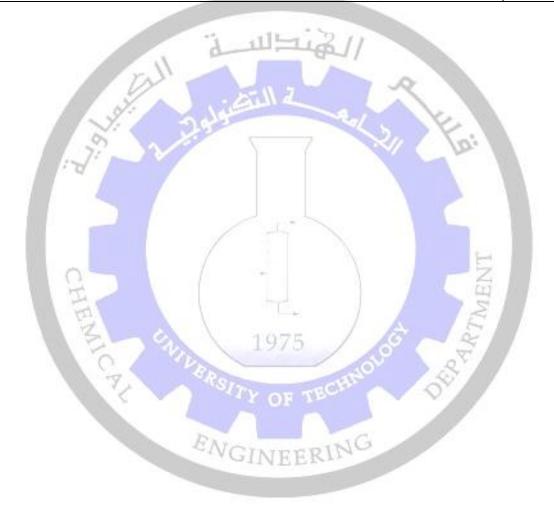
Principles of statics, Resultant of a force system, Equilibrium of a force system, Moment of a force, Friction, Centroid and center of gravity, Moment of inertia, Analysis of internal force, Strain, Stress-strain diagram, Hook's law, Shearing deformation, Poisson's ratio, Volumetric strain, Thin-walled cylinders, Thermal stress, Shear and bending moment in beam.

Course Text

1- Engineering Mechanic-Statics and Dynamics volume 1; Higdon, A. and Stiles, W.B., 3^{ed} Edition, Prentice-Hall, India, (1968).

2- Strength of Materials; Singer, F.L. and Pytel, A., 3^{ed} Edition, Harper and Row, London, (1980).

Course Objectives : at the end of the semester the student should be able to :-


- 1. Designed to study the effects of external forces on a group of solid objects.
- 2. Resistance of materials and their applications in chemical engineering.

No.	Contents	Duration
1	Friction: OF ME Theory of Friction, friction on an inclined plane	3 hr
2	Centroid and Center of Gravity	3 hr
3	Moment of Inertia (Second moment of the axis): Polar moment of inertia, Transfer formula for moment of inertia	3 hr
4	Introduction Force in Rigid Bodies: Definitions of Stress and Strain, Stress-Strain Diagrams	2 hr
5	Proportional Limits: Elastic limit, Stiffness elasticity, Plasticity, Hardness and working stress.	4 hr

6	Hook 's Law	3 hr
7	Poisson Ratio, Composite Stresses: Volumetric Stress, Bulk Modulus, Thin Walled Cylinders	4 hr
8	Thermal Stress	4 hr
9	Shear and Bending Moments in Beam	4 hr

Program	Chemical ProcessingEngineering					
Course Code	CES.P.114	Credits hr				
Course Title	AutoCAD					Units
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Computer Programming I	1	2		3	2

Course Description

introduction, AutoCAD program components and how to use it, knowing AutoCAD commands like point, lines, Rectangle, Polygon, Poly line, Arc with their option to draw 2D engineering drawing, learning Hatching, text, mtext, Dimension creation and editing, Modify command and Layers for 2D engineering drawing.

3D drawing methods: Surfaces, Solids and Composite solid.

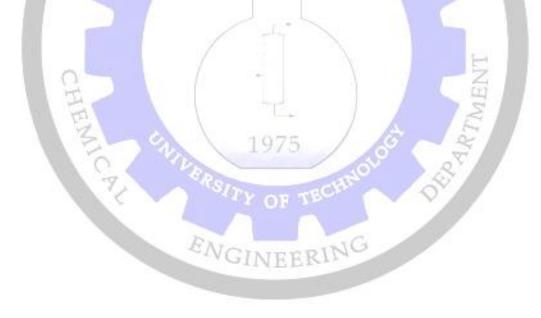
Render, background, lights for drawing.

Course Text

1-Terry T. Wohler, applying AutoCAD 2002 fundamentals, Glencoe /McGraw-Hill
2-James A. Leach, AutoCAD 2002 Companion Essentials of AutoCAD plus Solid modeling ,2003, McGraw-Hill, Boston
3- Terry T. Wohler, applying AutoCAD a step by step approach for AutoCAD release 13, 1996, Glencoe McGraw-Hill
4- James A. Leach, AutoCAD 14 Companion Essentials of AutoCAD plus Solid modeling ,1999,WCB / McGraw-Hill, Boston
Other support books :-

David Byrnes and Mark Middlebrook, AutoCAD® 2007 For Dummies, Wiley Publishing, Inc.

Course Objectives : at the end of the semester the student should be able to :-


- 1- The students can use AutoCAD program and produce 2D and 3D chemical engineering drawings.
- 2- Enable students to draw designed equipment in AutoCAD program.

No.	Contents		
1	 Introduction, Drawing program screen components, Setting drawing limits, Units, Grid and snap, Zoom, Orthogonal, Osnap, UCS. 2D drafting: Cartesian system coordinate, AutoCAD drawing command: Point, Line: line, multi-line, construction line, drawing line by using: absolute coordinate, polar coordinate, relative coordinate, Example 	3hr	
2	Continuous line drawing: Rectangle, Polygon, Poly line with their options, Example	3hr	
3	Curves drawing: Arc, Circle, point –SP line, Ellipse with their options,	3hr	

	Example.	
4	Hatching, text command: text, mtext, Example	3hr
5	Dimension creation and editing, Example	3hr
6	Region, block, insert block, Example	3hr
	Modify command:	3hr
7	1-coy tool: copy, mirror, offset, array. 2- Erase tool: erase, trim, break .3- move tool: move, rotate .4- Change tool: stretch, Lengthen, Extend, Scale, Chamfer, and Fillet .5-Explode, Example	
8	Layers: Create a new layer ,rename layer, active layer, run and extinguishing layers ,Freezing layers, Lock and open layers, the color ,Font type ,Line width, Example	3hr
9	3D drawing methods: Surfaces drawing: box, Wedge, Pyramid, Dome, Sphere, Cone, Torus, Dish, Example	3hr
10	3D drawing methods: Solids: box, Cylinder, Sphere, Cone, Wedge, Torus, Example	3hr
11	Composite solid: Union, Subtraction, Intersection, Example	3hr
12	render, background, lights, Example	3hr
13	Examples of chemicalengineering drawing and exercises.	3hr
14	Examples of chemicalengineering drawing and exercises.	3hr
15	Examples of chemicalengineering drawing and exercises.	3hr

Program	Chemical Processing Engineering					
Course Code	CES.P.128		Credits hr			
Course Title	Electrical Technology					Units
Term	2 nd Semester	Theoretical	Practica 1	Tutorial	Total	
Prerequisite(s)	Physics	1	-	1	2	1

Course Description

The course cover the basic electric engineering with details and examples in direct current circuits, network calculations, standards and conventions, Ohms law, Resistance and resistivity electromagnetism ,generator ,alternating current,, transformer ,motors and instrumentation ,

Course Text

- John Bird," Electrical Circuit Theory and Technology",2nd edition, Elsevier Science, 2003
- 2- John Bird," Electrical and Electronic Principle and Technology", 2nd edition, 2003
- 3- Giorgio Rizzoni, "Fundamentals of electrical engineering", McGraw-Hill, 2009
- 4- Alan L. Sheldrake, "Handbook of Electrical Engineering", John Wiley & Sons Ltd., 2003

Course Objectives : at the end of the semester the student should be able to :--

- 1- Understanding of the fundamentals principle of electrical technology.
- 2- Student should be know the basic electric principle, basic D.C. and A.C. circuit, D.C. and A.C. motors, transformer and should be able to work safety in laboratory as in field and follow the instruction relation between electrical and technology and chemical engineering.

Y OF T

No.	Contents	Duration
1	Introduction To Dc Circuit: Material use in electric component, ohms law, temperature Coefficient, Review of Kirchhoff's Laws Series Parallel circuit, equivalent resistance, star / delta Conversion, Node And Mesh Analysis	4hr
2	Dc And Ac Generator And Motor: Principle of DC generator and motor, Transformer, Introduction motor(Single phase), Magnetic and electromagnetism, Natural magnetic field, magnetic flux, Feil	2hr
3	Electrochemical,	5hr

4	Ac Circuit: Concepts of AC circuit, rms value Average value, from and peak factors, real	2hr
	and Reactive power – power factor.	
5	Polyphases Circuit : Introduction to three phase circuits, Introduction to three phase system, Phase and line parameter – relations, Power measurement, Voltmeter and ammeter method	2hr

Program	Chen	Chemical Processing Engineering				
Course Code	CES.P.115	Credits hr				
Course Title	Human rights					Units
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	none	1	-	-	1	1

Course Description

The study of the human rights concept and history and its relationship to religions and the extent of his relationship with globalization and contemporary currents.

Course Text

1-Human rights, development, contents Dr.Riyad Aziz Hadi

٢-مبادئ و قواعد عامة في حقوق الأنسان د. صلاح حسن مطرود
 ٣- حقوق الأنسان بين الأسلامي و العالمي د. محمد علي الشجيري
 ٤- حقوق الأنسان و الديمقر اطية د. ماهر صالح الجبورى

مشكلة الحرية د. زكريا أبراهيم

Course Objectives : at the end of the semester the student should be able to :-

- 1-Rooting human rights values in the local culture.
- 2-leading to the development of the concept.
- 3-principles of human rights in general.

No.	Contents	Duration
1	Psychological construction and its relationship with human right	1hr
2	Contemporary Arabs currents, its position on human right	1hr
3	Secular : the early stage of its development , disadvantages, her features	1hr
4	How can you balance between civil right and social	1hr
5	Capitalist and socialist society with human rights	1hr
6	Close society and an opened society	1hr
7	Theory of the social contract	1hr
8	Thomas Hughes ,Jan-jack Rousseau ,Volter ,AuxtComte,Max	1hr
0	WeberMontesquieu	
9	Relationship of right to democracy	1hr
10	Relationship of right to urbanization	1hr
11	Relationship of right with globalization	1hr
12	Human rights between rejection and acceptance	1hr
13	How can rooting the values of human rights in Arab culture and in	1hr
13	the great cultures	
14	The relationship between the political culture and ideological	1hr
15	Ideological religion	1hr

20

Program	Chemical Processing Engineering					
Course Code	CES.P.221		Credits hr			
Course Title	Engineering MathematicsI					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics I, Mathematics II	2	-	1	3	2

Course Description

This course describes the evaluation of double, triple integrals, area and volume.Provide knowledge and skills in writing a periodic function in its Fourier series form and on their applications. Develop skills for applying this course in the future on various chemical engineering applications.

Course Text

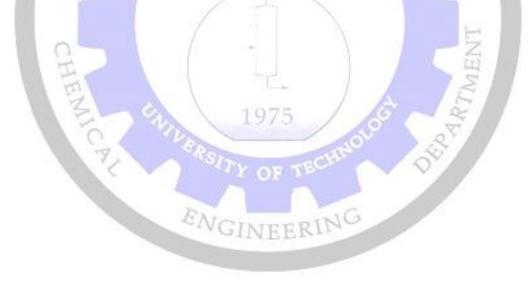
- 1- Text book:
 - 1. Higher Engineering Mathematics by Dr.B.S.Grewal, Khanna Publishers, 40th Edition, 2007.

2- **Reference book**:

1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edition, 2007.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Able to evaluate double, triple integrals and the area, volume by double & triple integrals respectively.
- 2- 2. Understand the concept of Fourier-series representation of periodic functions and their applications.


ENGINEERING

Topics Covered (Syllabus)/ Engineering MathematicsI

No.	Contents	Duration
1	Multiple Integrals: Double Integral, Area, Volume, Double Integral in polar coordinates, Triple Integral in rectangular coordinates, physical application of double and triple integration.	12hr
2	Function and definite Integrals: The error function, the gamma function, the beta function, factorial function.	6hr
3	Infinite Sequences and Series: Sequences, Convergence, Geometric series, nth partial sum, tests of convergence, alternating series, power and Taylor's series.	6hr
4	Fourier series: Periodic functions, Fourier series, Even and odd functions, Half range expansion.	6hr

Program	Chemical Processing Engineering					
Course Code	CES.P.231	Credits hr				
Course Title	Energy Balance					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemical Engineering principle I & II	2	-	1	3	2

Course Description

The aims of the course provide a deep knowledge, wide scope and improved understanding of the mechanisms in heat balance for closed and open system and for steady and unsteady state. The students should gain knowledge to apply the energy balance in engineering problems.

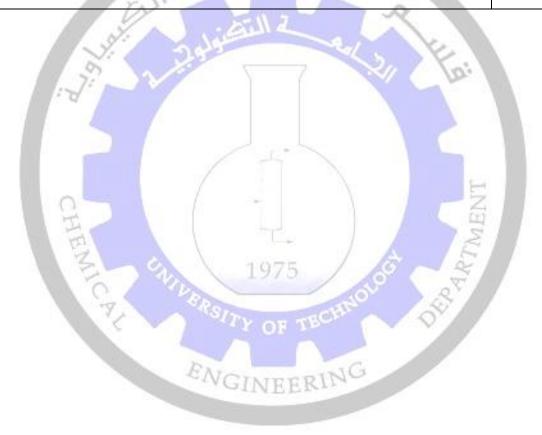
Course Text

1. D.M.Himmelblau and J.B.Riggs ,Basic Principles and Calculations in Chemical Engineering ,7th Edition , 2004 .

Other support books :-

2. R.M.Felder and R.W.Rousseau, Elementary Principles of Chemical Processes ,3rd Edition ,2005.

Course Objectives : at the end of the semester the student should be able to :-


- 1. The terminology associated with energy balances, concepts, and units.
- 2. Introduction to energy balances for processes without reaction .
- 3. Calculation of enthalpy changes .
- 4. Energy balances : how to account for chemical reaction .

No.	Contents	Duration
1	Energy : Terminology , Concept , and units: The terminology associated with energy balances , Types of energy : Work , Heat , Kinetic energy , Potential energy , Internal energy , Enthalpy .	4hr
2	Introduction to Energy Balances for Processes without Reaction: The concept of the conservation of energy, Energy balances for closed, unsteady-state systems, Energy balances for closed, steady-state systems, Energy balances for open, unsteady- state systems, Energy balances for open, steady-state systems.	6hr
3	Calculation of Enthalpy Changes: Phase transitions, Equation to estimate heat of vaporization, Heat	6hr

	capacity equations, Tables and charts to retrieve enthalpy values.	
	Application of Energy Balances in the Absence of Chemical Reaction:	
4	Simplifications of the general energy balance , The strategy for solving energy balance problems , Applications of the energy balance to closed systems , Applications of the energy balance to open systems.	8hr
5	Energy Balances : How to Account for Chemical Reaction: The standard heat of formation , The heat of reaction , Merging the heat of formation with the sensible heat or a compound in making an energy balance , The heat of combustion .	6hr

Program	Chemical ProcessingEngineering							
Course Code	CES.P.233	Credits hr						
Course Title	Fluid Flow I	U						
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	0		
Prerequisite(s)	Principles of Chem. Eng. & Math	2	2	1	5	3		

Course Description

Define fluid properties, stresses in fluids at rest and in motion and types of fluid flows, application of Newton law of viscosity and dimensional analysis methods...

Derive and define the governing equations of fluid flow: continuity, energy and momentum equations from principles of mass, energy and momentum conservation and define the terms of Bernoulli's equation, include major and minor losses and required energy for flow...

Define the types of fluid pumping devices and its characteristics and how to select the appropriate type and size for fluid pumping...

Define the types on Non-Newtonian and two-phase fluids flow and their pressures drop calculations...

Course Text

- 1- Coulson, J.M., Richardson, J.F., Backhurst, J.R. andHarker, J.H., "Chemical Engineering" Volume(1) 6thEd., Butterworth-Heinemann, 1999
- 2- Holland, F.A. and Bragg, R., "Fluid Flow for Chemical Engineers", 2nd Ed., Edward Arnold, 1995.

Other support books :-

- 3- DARBY. R., Dekker M. "Chemical Engineering Fluid Mechanics", 2ndEd.Marcell Dekker, 2001
- 4- Wilkes J. O., "Fluid Mechanics for Chemical Engineers", 2nd Ed. Prentice Hall PTR, 1999.
- 5- De Nevers, N. "Fluid Mechanics for Chemical Engineers", 2ndEd.McGraw-Hill 1991.
- 6- McCabe, W. L., Smith, J. and Harriot, P., "Unit Operations of Chemical Engineering", 6th Ed., McGraw Hill, International Edition, 2001.
- 7- Christi J. Geankoplis "Transport Processes and Unit Operations" 3rd Ed. Printice Hall International Editions, 1993.

Course Objectives : at the end of the semester the student should be able to :-1- Demonstrate knowledge of incompressible fluid flows, two phase flow, fluid statics, kinematics of flows and essential basic hydrodynamics. 2-Define and solve problems in fluid dynamics in various engineering applications. Provide the ability to describe energy variation and its application in flow and pressure measurement and frictional energy losses calculations. 3-Provide the ability to estimate the required energy for fluid pumping (selection the size and type of appropriate pumping for liquid and gas) and to design the liquid mixing equipment. 4-Predict necessary fluid parameters of full scale projects by performing simple model experiments. 5-Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently. **Topics Covered (Syllabus)**Fluid Flow I **Duration** No. **Contents INTRODUCTION:** Definition of a fluid, fluid mechanics; Physical properties of fluids: Density, specific gravity, viscosity, kinematic viscosity, surface tension 1 4 hrs and capillarity, bulk modulus of elasticity, Pressure and shear stress; Types of Fluids: Newtonian, non-Newtonian fluids ideal and real fluids, Newton's law of viscosity. **Dimensional Analysis:** Units and dimensions; Fundamental dimensions; Dimensional 2 4 hrs homogeneity; Dimensionless number Methods of dimensional analysis, 1- Rayleigh's method (power series) 2- Buckingham's П- method / Theorem ENGINEERING Fluid Statics : Basic consideration of fluid statics; Pressure head of liquid; Pressure force 3 4 hrs on surfaces; Buoyancy; Measurement of pressure: (Piezometer, Manometers, types of Manometers, Mechanical Gauges) Fluid Dynamics, Newtonian's Incompressible Fluid: 8 hrs 4 Fluid kinematics: Types of fluid flow (steady and unsteady flows, uniform and non-uniform flows, one, two, and three dimensional flows, Rotational

and irrotational flows, laminar and turbulent, compressible and

E

	incompressible flows), velocity distribution in laminar and turbulent flow Boundary layer, Continuity equation, Momentum equation, Bernoulli's equation, Euler's equation of motion, modified Bernoulli's equation, pipe size selection; Two-Phase Flow, Horizontal and vertical flow regime, calculation of pressure drop of two-phase flow by Lockhart and Martinelli method.	
5	Pumping of Liquids: Total heads, NPSH, Horse Power and cost consumption, Pumping Efficiencies Characteristics curves Types of the pumps, Selection of Pumps. Centrifugal pump relations, homologous centrifugal pump, centrifugal pumps in series and in parallel.	6 hrs
6	Non-Newtonian Fluids in Pipes: Definition, types of non-Newtonian fluids, flow characteristics, apparent viscosity, shear rate and description of time-independed fluid, calculation of friction and pressure drop for general time independent in laminar and turbulent flow	4 hrs

Practical Fluid Flow I

No.	Experiment Name.
1	Calibration of Bourdon Tube Pressure Gauge
2	Reynolds Experiment
3	Energy Loss in Pipes
4	Centrifugal Pump Characteristics
5	Bernoulli's Theorem Demonstration
6	Friction Losses in Piping Systems
7	Gear Pump
8	Flow Visualization

Program	Chemical Processing Engineering							
Course Code	CES.P.235	Credits hr						
Course Title	Physical ChemistryI		Units					
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	1-chemical engineering principles 2-chemistry	2	2	-	4	3		

Course Description

Physical chemistry is the application of the methods of physical to chemical problems. It includes the qualitative and quantitative study. Both experimental and theoretical of the general principles determining the behavior of matter.

Course Text

J. Laidler, physical chemistry, Bosten; Houghton M, ffl.n company, 1999.
 G. Mortimer, physical chemistry, San Francisco; Altarcourt science and technology company, 2000.

Course Objectives : at the end of the semester the student should be able to :-

- 1- 1. Be able to solve problems involving ideal mixture and dilute solutions.
- 2- 2. Understand the principles govering phase diagrams and be able to interpret phase diagrams for various kinds of systems.
- 3- 3. Be able to solve problems involving surface tension.
- 4- 4. Be able to solve several simple rate laws and to solve a variety of problems related to these solutions.
- 5- 5. Be able to apply experimental techniques to the determination of rate law and rate constant.

ENGINEERING

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Phase Equilibria: Equilibrium between phases, one component systems, binary systems involving vapor, liquid vapor equilibria of two component system, liquid vapor equilibrium in system not obeying Raoults law, temperature composition diagram (boiling point curves), distillation, azeotropes, solubility of gases in liquids.	12 hr
2	Chemical Kinetics 1: Rate of consumption and formation, rate of reaction, empirical rate equation, order of reaction, reactions having no order, rate constants and rate coefficients, analysis of kinetic results.	6 hr
3	Surface chemistry : Adsorption, adsorption isotherms, surface tension and capillary rise, pressure difference across curved surface tension, liquid- films on surfaces, solid- liquid interfaces.	12hr

Practical Physical Chemistry I

No.	Experiment Name.
1	Refractive index.
2	Viscosity.
3	Saponfication of acetate ethyl. 1975
4	Three component system(water, ethanol and ethyl acetate)
5	Molecular weight determination by victor meyers method.
6	Calorimeter Constant.
7	Heat of solution
8	Surface tension.
9	Surface chemistry. Adsorption by solid from solution.
10	Spectrophotometer analysis of k ₂ Cr ₂ O ₇ .

Program	Chemical Processing Engineering						
Course Code	CES.P.211	Credits hr					
Course Title	Computer Programming						
	II					Units	
Term	1 st Semester	Theoretica 1	Practical	Tutoria 1	Total		
Prerequisite(s)	 Basic Principles of chemical engineering I. Mathematics I. Computer programming I 	1	2	1	4	2	

Course Description

To introduce chemical engineering students to modern calculating tool used in the practice of engineering by being able to construct plots, fit data, and use built-in functions in MATLAB.

Course Text

- 1- RudraPratap: Getting started with MATLAB 7, Oxford Press (Indian edition),2006.
- 2- Desmond J. Higham and Nicolas J. Higham: Matlab Guide, SIAM, 2000.

Other support books :-

- 1- Duane Hanselman and Bruce Littlefield: Mastering Matlab-6: A Comprehensive Tutorial and Reference, Prentice Hall, 2001.
- 2- Schilling R. J., Harries S.L., Applied Numerical Methods for Engineers using MATLAB & C, Thomson Books, 2002.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Develop the confidence necessary to successfully solve Mathematical problems with a computer.
- 2- Formulate and write structured code in MATLAB.
- 3- Understand the foundation behind the basic numerical methods for Matrix manipulations.

No.	Covered (Synabus)/ Course Title Contents	Duration
1	Starting With Matlab: MATLAB windows, Menus and the toolbar, Working in the command window, Arithmetic operations with scalars, Display formats, Elementary math built-in functions, Useful commands for managing variables, Script files and the Editor Debugger, Matlab Help System	2hr
2	Symbolic Math : Symbolic objects, and symbolic expressions, Changing the form of an existing symbolic expression, Solving algebraic equations, Differentiation, Integration, Solving an ordinary differential equation.	3 hr
3	Creating Arrays: Creating a one-dimensional array (vector), Creating a two-dimensional array (matrix), The transpose operator, Array addressing, Using a colon: in addressing arrays, Adding elements to existing variables, Deleting elements, Built-in functions for handling arrays, Strings and strings as variables.	2 hr
4	Mathematics With Array: Addition and subtraction, Array multiplication, Array division, Element- by-element operations, Using arrays in MATLAB built-in math functions, Built-in functions for analyzing arrays, Generation of random numbers, Solving Algebraic Equations.	3 hr
5	Polynomials, Curve Fitting, And Interpolation : Polynomials, Curve fitting, Interpolation, Extrapolation.	2 hr
6	Programming In Matlab: Relational and logical operators, Conditional statements, The switch case statement, Loops, Program Design and Development.	3 hr

Program	Chemical Processing Engineering					
Course Code	CES.P.223		Credit	s hr		
Course Title	Material Eng. (I)					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Strength of material+ General chemistry	2	الهنا	1	3	2

Course Description

Introduction to classification of materials and the atomic structure of it, Study the mechanical, thermal and electrical properties of materials and Crystal structure and imperfection in solid materials.

Course Text

- 1-Donaled R. Askeland, The science and engineering of materials, international student edition, 2006.
- 2-William D. Callister, Jr., Materials science and engineering, Fifth edition, 2000.
- 3-Lawrence H. Vanvlack , Elements of materials science and engineering, Fifth edition, 1987.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Describe and solve problems on atomic arrangement and geometry of imperfections.
- 2- Describe and solve problems on mechanical, thermal and electrical properties of materials.

ENGINEERIN

Topics Covered (Syllabus)/Course Title

No.	Contents	Duration
1	Classification of Materials: Classification of materials, classification of materials based on structure, advanced materials	4hr
2	Mechanical Properties of Materials: Stress-strain behavior, ductility, brittleness, toughness, modulus of resilience, poison's ratio, hardness, effect of temperature.	6hr
3	Atomic structure: The structure of atom, atomic bonding, bonding energy and inter-atomic spacing	6hr
4	Atomic order in solids : Types of atomic or ionic arrangements, crystal structure, lattice, unit cells, metallic crystal structure, crystal systems, crystal direction and crystal planes, diffraction techniques for crystal structure analysis	8hr
5	Thermal and electrical properties of materials : Heat capacity, thermal expansion, thermal conductivity, thermal stresses, Glass transition temperature, Creep resistance, electrical conductivity, electron mobility, electrical resistivity of metals	6hr
5	Glass transition temperature, Creep resistance, electrical conductivity,	6h

ENGINEERING

Program	Chemical Processing Engineering							
Course Code	CES.P.237	Credits hr						
Course Title	Fuel Technology							
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	Units		
Prerequisite(s)	chemistry	2	2	0	4	3		

Course Description

Introduction to fuels technology (solid, liquid, and gases). Procedure and characterization in terms of physic-chemical properties.

Course Text

- Modern petroleum Technology, vol. 1, upstream, ed. By Richard A. Dave, 1P, 6th ed., Jhonwiley and sons. Ltd.
- 2- Modern Petroleum Technology, vol.2, Downstream, ed. By Alan G. Lucas, 1P, 6thed, ., Jhonwiley and sons. Ltd.
- 3- Fuels combustion and furnaces, Jhon Griswold, Mc-Graw Hill Book company.
- 4- Petroleum Refinery Engineering, Nelson, 4th ed. Mc-Graw, Hill Book Company.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Introduces basic knowledge about solid, liquid and gases fuels, their origin, classification.
- 2- Knowledge of preparation, procedure and characterization in terms of physic-chemical properties
- 3- Knowledge in liquid fuel section. Petroleum is the liquid fuel which is elaborated in terms of distillation and secondary processing. Different important gaseous fuels are included in gaseous fuel section.

ENGINEERING

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction: History of fuels, history of solid fuel, history of liquid fuels and gases fuels, fundamental definition, properties of liquid and gaseous fuels, various measurement.	4hr
2	Coal : classification,Composition and basis, coal preparation and washing, combustion of coal and coke and making, coal tar distillation coal liquefaction, coal gasification.	4hr
3	Crude Petroleum: Exploration of crude Petroleum, Evaluation of crude, distillation cracking, thermal cracking catalytic cracking, reforming of naphtha, hydrotreatment, dewaxingdeasphalting, refinery equipment.	10hr
4	Natural gas and LPG: Producer gas, water gas, other fuel gases.	4hr
5	Combustion air Calculation: Calculation of calorific value of fuels, flame properties, combustion burners, combustion furnaces .	8hr

Practical Fuel Technology

No.	Experiment Name.
1	ASTM distillation exp.
2	Density and specific gravity exp
3	Viscosity& viscosity index exp.
4	Salt content in crude oil
5	Gum and gum stability
6	Flash & fire point
7	Ash content for petroleum products
8	Conrad Son Carbon residue of petroleum

Program	Chemical Processing Engineering					
Course Code	CES.P.213	Credits hr				
Course Title	Democracy					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	none	1	-	-	1	1

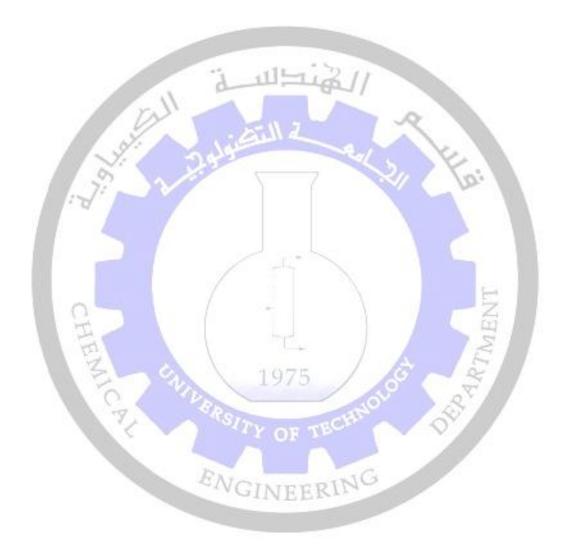
Course Description

The study of the Democracy concept and history and its relationship to religions and relations with Development, also the advantages and the disadvantages of democracy

Course Text

1-Human rights, development, contents D	
N. 285	٢-مبادئ و قواعد عامة في حقوق الأنسان د. صلاح حسن مطرود
5	٣- حقوق الأنسان بين الأسلامي و العالمي د. محمد علي الشجيري
	٤ ـ حقوق الأنسان و الديمقر اطية د. ماهر صالح الجبوري
	 مشكلة الحرية د. زكريا أبراهيم

Course Objectives : at the end of the semester the student should be able to :-


1- To know the democracy and how can adapt our culture with the principles of democracy in general.
2-Lock of student to their own cultural inventories in the concepts of democratization and it has be shining in the emergence of a democratic culture in university community with the intimate and external community .

No.	Contents	Duration
1	Democracy: definition, a brief history, characteristics advantages of democracy and its disadvantages	1hr
2	The most important problem facing the implementation of democracy in arab-muslim world	1hr
3	Relationship awareness in the application of democracy	1hr
4	How can adapt our culture with the principles of democracy	1hr
5	Democracy between changes and external pressures	1hr
6	A pressure group the difference between them and the political parties	1hr
7	The advantages of democracy and the disadvantages	1hr
8	The theory of social determinism in state-building	1hr
9	Relationship between democracy and globalization	1hr
10	Development and democracy	1hr
11	Religion and democracy	1hr
12	The third way between socialism and capitalism	1hr

13	Reasons for the spread of financial and administrative corruption and how to confront it	1hr
14	The reasons for the collapse of democracy	1hr
	The relationship between the intellectual and power	1hr
15	Democracy and modernity	
	Democracy and alienation	

Program	Chemical Processing Engineering					
Course Code	CES.P.222	Credits hr				
Course Title	Engineering MathematicsII					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Engineering Mathematics I	2	-	1	3	2

Course Description

This course describe the providing of knowledge on solving ordinary differential equations and applications of first order ordinary differential equations and chemical engineering applications of the theory portion covered will be emphasized.

Course Text

Text book:

1. Higher Engineering Mathematics by Dr.B.S.Grewal, Khanna Publishers, 40th Edition, 2007.

Reference book:

1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edition, 2007.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Understand methods of solving First order and Higher order ordinary differential equations along with some physical applications.
- 2- 2. Demonstrate the relevance of the mathematical methods learnt to chemical engineering.

ENGINEERING

Topics Covered (Syllabus)/ Engineering MathematicsII

IC AL

No.	Contents	Duration
1	Solution by Series: Infinite series by Taylor theorem, Method of Frobenius (Case I, II, IIIa, and IIIb), Bessels's and Modified Bessel's Equation, Properties of Bessel Functions, Applications in chemical engineering ,Tubular Gas Preheater, Reaction in axisymmetric Spherical and Cylindrical pellets.	15hr
2	Ordinary Differential Equations: Introduction, Linear equation, Bernoulli's equation, Exact differential equations, Equations reducible to exact equations, Orthogonal trajectories, Newton's law of cooling. Linear differential equations with constant coefficients: Definition, Theorem, Operator D, Rules for finding the complementary function, Inverse operator, Rules for finding the particular integral, working procedure to solve the equation.	10hr
3	Application of Ordinary Differential Equations: Representation problems of 1 st and 2 nd ordinary differential equations (linear and nonlinear, homogeneousetc.).	5hr

1975

ENGINEERING

Program	Chemical Processing Engineering					
Course Code	CES.P.232		Credits hr			
Course Title	Material and Energy Balance			Units		
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Energy Balance	2	-	1	3	2

Course Description

The aims of the course provide a deep knowledge, wide scope and improved understanding the heat balance that include the effects of chemical reaction as well as unsteady state material and energy balances. The students should gain knowledge to apply the material and energy balance in engineering problems.

Course Text

1. D.M.Himmelblau and J.B.Riggs Basic Principles and Calculations in Chemical Engineering, 7th Edition, 2004.

Other support books :-

2. R.M.Felder and R.W.Rousseau ,Elementary Principles of Chemical Processes ,3rd Edition .2005.

Course Objectives : at the end of the semester the student should be able to :-

- 1. Energy balances that include the effects of chemical reaction.
- 2. Ideal process, efficiency, and the mechanical energy balance.
- 3. Heat of solution and mixing.
- 4. Humidity (psychrometric) charts and their use .
- 5. Unsteady state material and energy balances .

No.	Contents	Duration
	Energy Balances that Include the Effects of Chemical Reaction:	
1	Applications of energy balances in processes that include reactions, Calculation of an adiabatic reaction temperature, General energy balance in a process in which more than one reaction occurs, Energy balance to a process composed of multiple units.	8hr
	Ideal Processes , Efficiency , and the Mechanical Energy Balances :	
2	Ideal reversible processes, Calculation of the work done during evaporation of a liquid, Calculation of the work in a batch process, efficiency, the mechanical energy balances, Comparison of the reversible work for a batch process with that of a flow process operating under the same conditions, the mechanical energy balance to the pumping of water.	4hr
	Heat of Solution and Mixing:	
3	Heat of solution, Heat of dissolution, Heat of mixing, Introducing the effects of mixing into the energy balance.	4hr
	Humidity (Psychometric) Charts and their Use :	
4	The humid heat , The humid volume , The dry-bulb temperature , The wet-bulb temperature , The humidity (psychometric) chart , Wet-bulb line , Adiabatic cooling line , Applications of the humidity chart .	6hr
	Unsteady state Material and Energy Balances :	1
_	Unsteady-state material balance without generation,	
5	Material balance on batch distillation, Unsteady-state chemical reaction, Unsteady-state energy balance.	8hr

Program	Chen	hemical Processing Engineering						
Course Code	CES.P.234		Credits hr					
Course Title	Fluid Flow II					Units		
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Fluid Flow I	2	2	1	5	3		

Course Description

Application of Bernoulli's equation and derive the flow rate equations and explain the principles of flow measuring devices in open and closed channels...

- Derive and define the governing equations of compressible fluid flow: continuity, energy and momentum equations from principles of mass, energy and momentum conservation with various gas flow conditions, Mach Number and flow through conversion-diversion nozzle with application for subsonic, sonic, supersonic flow, types of gas pumping devices, Compressors types with ideal and actual gas compression cycle and calculation of compressor work ...
- Define and description for liquid mixing equipment and its design calculations with the energy consumption by this equipment...
- Derive the terminal falling velocity and description drag coefficient for flow through packed columns and pressure drop calculation for fixed and fluidized beds and transport of particles...

Course Text

- 1- Coulson, J.M., Richardson, J.F., Backhurst, J.R. and Harker, J.H., "Chemical Engineering" Volume(1) 6thEd., Butterworth-Heinemann, 1999
- 2- Coulson, J.M., Richardson, J.F., Backhurst, J.R. andHarker, J.H., "Chemical Engineering" Volume (2) 5th Ed., Butterworth-Heinemann, 2002
- 3- Holland, F.A. and Bragg, R., "Fluid Flow for Chemical Engineers", 2nd Ed., Edward Arnold, 1995.

Other support books :-

- er support books :-1- McCabe, W. L., Smith, J. and Harriot, P., "Unit Operations of Chemical Engineering", 6th Ed., McGraw – Hill, International Edition, 2001.
- 2- Christi J. Geankoplis "Transport Processes and Unit Operations" 3rd Ed. Printice Hall International Editions, 1993.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Define the operation principles of the different types flow measurement, solve problems in fluid flow through flow measurement devices with applications for steady and unsteady flow.
- 2- Demonstrate knowledge of compressible fluid flows, with differences of equations using depending on compressible flow conditions, sonic (sub)(super)sonic flow,

conversion*diversion nozzle, types of gas pumping devices.

- 3- Provide the ability to estimate the energy (power) consumption for liquid mixing equipment and to design it by predict necessary fluid parameters of full scale projects by performing simple model experiments.
- 4- Provide the ability to estimate the terminal falling velocity and description drag coefficient for flow through packed columns and pressure drop calculation for fixed and fluidized beds and transport of particles...
- 5- Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently.

Topics Covered (Syllabus)/Fluid Flow II

No.	Contents	Duration
1	Flow Measurement: Pitot tubes, orifice meter, venturi meter, nozzle meter, Rotameters other types of flow meters, flow in open channels and weirs with steady and unsteady applications	6 hrs
2	Flow of Compressible Fluid: General equation, equation of state, sonic velocity in fluids, Mach No. Isothermal, Non-isothermal and Adiabatic flow of an ideal gas in horizontal pipes, Converging-diverging nozzle for gas flow. Types of gas pumping devices (fans, blowers compressors) compressors types and gas compression cycle and calculations of work and efficiency of compressor	10 hrs
3	Liquid Mixing : Stirring and mixing and rotational force, effective forces and dimensionless numbers for rotational fluid flow. Stirred vessels (power consumption, power curve, scaled-up), equipment	6 hrs
4	Flow of Fluid through Granular Bed and Packed Columns: Motion of particles in a fluid, Drag force on a particle, terminal falling velocities, Sedimentation of fine and coarse particles, Pressure drop in granular beds, packed columns: packing types, Pressure drop estimation (Kozeny and Carmen equations), Fluidization Minimum fluidization velocity, Pressure, Pressure drop, Ergun equation, bed expansion and transport of particles.	8 hrs

Practical Fluid Flow II

No.	Experiment Name
1	Discharge through an orifice
2	Open Channel Flow over Weir
3	Flow through a Venturi Meter
4	Fluidization
5	Forced Vortex
6	Flow of Compressible Fluid
7	Impact of Jet
8	Non-Newtonian Fluids Behavior
	CHEMIC 2 UNIT OF TECHNOLOG DEPARTURE 1975 THE STRUCTURE DEPARTURE FNGINEERING

Program	Chemical Processing Engineering							
Course Code	CES.P.236	Credits hr						
Course Title	Physical Chemistry II					Units		
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	1-chemical engineering principles 2-chemistry	2	-	-	2	2		

Course Description

In this semester deals with the various transformation that can be brought about an ideal gases have played a very important part in the development of thermodynamics. It is include properties of solutions of electrolytes and with processes that occur at electrodes. It concerned with galvanic cells, in which a chemical reaction produce an electric potential difference between two electrodes.

Course Text

J. Laidler, physical chemistry, Bosten; Houghton M, ffl.n company, 1999.
 G. Mortimer, physical chemistry, San Francisco; Altarcourt science and technology company, 2000.

Course Objectives : at the end of the semester the student should be able to :-

- 1- 1. Be able to solve problems related to the macroscopic equilibrium properties of gases and liquid.
- 2- 2. Understand how the thermodynamics of non simple system is applied to electrochemical cells.
- 3- 3. Be able to calculate cell voltages for standard conditions and other conditions using standard reduction potentials and the nerst equation.
- 4- 4. Be able to solve problems relating equilibrium constants and Gibbs energy changes to electrochemically measured quantities.

ENGINEERING

No.	Contents	Duration
1	Applications of the equations of ideal gases: The PVT behavior of pure substances, the ideal gas, the constant volume process, the constant pressure process, the adiabatic process, the polytropic process.	10 hr
2	Solutions of electrolytes : Electrical units, Faradays laws of electrolysis, molar conductivity, weak electrolytes, strong electrolytes, activity and ionic strength, determination of activity coefficient from solubility, the Debye-Hackle theory, acid- base catalysis and their dissociation constant.	10 hr
3	Electrochemical cells: Electromotive force (EMF) of a cell, measurements of EMF- the potentiometer, the polarity of electrodes, the cell reactions and reversible cells, free energy and reversible cells, typical of half cells classification EMF, standard electrode potentials, standard free energy and energy of aqueous ions, calculation of EMF of cell, oxidation-reduction reactions, concentrations cells, electrolysis.	10 hr

ENGINEERING

Program	Chemical	l Processing Engineering						
Course Code	CES.P.212		Credits l	hr				
Course Title	Computer Programming III							
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	Units		
Prerequisite(s)	 Basic Principles of chemical engineering I. Mathematics I. Computer programming II 	1	2	1	4	2		

Course Description

To introduce chemical engineering students to modern calculating tool used in the practice of engineering by demonstrating an ability to create small structured programs in a MATLAB programming environment and understanding how user written functions interact with numerical methodsroutines.

Course Text

- 1. RudraPratap: Getting started with MATLAB 7, Oxford Press (Indian edition),2006.
- 2. Desmond J. Higham and Nicolas J. Higham: Matlab Guide, SIAM, 2000.

Other support books :-

- 1. Duane Hanselman and Bruce Littlefield: Mastering Matlab-6: A Comprehensive Tutorial and Reference, Prentice Hall, 2001.
- 2. Schilling R. J., Harries S.L., Applied Numerical Methods for Engineers using MATLAB & C, Thomson Books, 2002.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Solve sets of linear and nonlinear equations using numerical methods as well as in-built MATLAB functions.
- 2- Apply numerical methods and MATLAB functions to differentiate and integrate a function or a set of discrete points.
- 3- 3. Apply explicit and implicit numerical methods and MATLAB functions to integrate single and multiple sets of initial value problems

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Two-Dimensional Plots : The plot command , The f-plot command , Plotting multiple graphs in the same plot , Formatting a plot, Plots with logarithmic axes, Plots with error bars, Plots with special graphics , Histograms, Plotting multiple plots on the same page , Multiple figure windows Graphics.	4 hr
2	Three-Dimensional Plots : Line plots, Mesh and surface plots, Plots with special graphics, The view command.	2hr
3	Using Script Files : The MATLAB workspace and the workspace window, Input to a script file, Output commands, The save and load commands, Importing and exporting data.	1 hr
4	Functions And Function Files: Creating a function file, Structure of a function file, Local and global variables, Saving a function file, Using a user-defined function, Examples of simple user-defined functions, Comparison between script files and function files, Function functions, Sub-functions	4 hr
5	Numerical Analysis: Solving an equation with one variable, Finding a minimum or a maximum of a function, Numerical integration, Ordinary differential equations.	4 hr

ENGINEERING

Program	Chemical Processing Engineering						
Course Code	CES.P.224	Credits hr					
Course Title	Material Eng. (II)					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	general chemistry	2	2	1	5	3	

Course Description

Imperfection in solid. diffusion and atomic movement in solid. Solid solution and phase diagram for different alloys. Ceramic materials and composite materials.

Course Text

1-Donaled R. Askeland, The science and engineering of materials, international student edition, 2006.

- 2-William D. Callister, Jr., Materials science and engineering, Fifth edition, 2000.
- 3-Lawrence H. Vanvlack, Elements of materials science and engineering, Fifth edition, 1987.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Describe the geometry of imperfections
- 2- Calculate the extent of diffusion- driving composition changes based upon composition, time and temperature.
- 3- Predict the equilibrium microstructure of a material given the binary phase diagram, thermal history of the materials.
- 4- Describe the types and properties of ceramic and composite materials.

Topics Covered (Syllabus)/Course Title

No.	Contents	Duration
1	Imperfections in solids: Point defects, line defects, interfacial imperfections, Macroscopic defects	6hr
2	Atomic and ion movements in materials: Stability of atoms and ions, mechanisms for diffusion, rate of diffusion (Fick's first law), factors affecting diffusion, non-steady state diffusion (Fick's second law).	6hr
3	Solid solutions and phase diagrams: Basic concepts, solubility and solid solution, phase and phase diagram, unary phase diagram, binary Iso-morphous system, binary eutectic system.	6hr
4	The Iron-Carbon system: The Iron-Iron carbide phase diagram, development of microstructures in Iron-carbon alloys	6hr

	Ceramic materials :	
5	Crystal structure, mechanical properties of ceramic, classification of ceramic materials on the basis of its application	2hr
6	Composites: Material combination, Reinforced composites, structural composites.	4hr

Practical Material Eng. (II)

IC AL

Exp. No.	Exp. Name.
1	Tension test
2	Hardness Testing
3	Bending Test
4	Creep Test
5	Abrasion Test
6	Impact Test
7	Moisture Measurement in Engineering Materials
8	Determination of Linear Thermal Expansion for a Solid
9	Microstructure Examination of pb-Sn alloys using the metallurgical microscope

TY OF TECH

ENGINEERING

DEPT

Program	Chemical ProcessingEngineering						
Course Code	CES.P.238	Credits hr					
Course Title	Renewable Energy						
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	Units	
Prerequisite(s)		2	0	0	2	2	

Course Description

Theory, Classification of energy resources, Solar thermal energy, Solar, Bioenergy- Biomass and biogas, photovoltaics, Wind energy, Geothermal energy, Energy storage Energy Management system.

Course Text

 S. H. Saeed and D.K. Sharma, Non-Conventional energy resources, 3rd edition, S.K. Kataria& Sons, New Delhi (2013)

Other support books :-

1- J. B. Galvez and S. M. Rodriguez, Solar detoxification, United Nations Educational, Scientific and Cultural Organization (2003)

- 1- The expected outcomes for this course include:
- 2- Learning renewable energy (RE) issues in the context of science, technology, economics, policy and society
- 3- Nurturing the ability to develop RE systems considering sustainable development
- 4- Developing the ability to relate RE to climate change and other global contemporary issues
- 5- Understanding the professional ethics of RE

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Classification of energy resources	1 hr
2	Solar thermal energy: Solar radiation, solar collectors, performance and applications of collectors, solar thermal power plant, solar water disinfection, solar cooling	8hr
3	Solar photovoltaics: Photovoltaic basics, Types of photovoltaic cells, solar photovoltaic (SPV) module, Applications and efficiency of solar photovoltaic systems, Limitations of SPV systems	4 hr
4	Bioenergy- Biomass and biogas: Biomass conversion processes, Factors affecting generation of biogas, various types of biogas plants, Community biogas plants	4 hr
5	Geothermal energy: Resources of geothermal energy, dominated power plants of vapor or liquid, applications of geothermal energy, environmental effects of geothermal energy, advanced concepts of geothermal energy.	6 hr
6	Energy storage : Solar energy storage system, types of solar energy storage systems	3 hr
7	Energy Management system: Types of energy Management system, energy audit, energy planning, energy demand management.	4 hr

Program	Chemical Processing Engineering						
Course Code	CES.P.225	CES.P.225 Credits hr					
Course Title	Eng. Statistics					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Mathematics I, Mathematics II	2	2	1	5	3	

Course Description

Theory, applications, deferent methods calculation, sample descriptive statistics and graphical representation of data.

Course Text

- 1- Murry R. Spiegel, Statistics, Mc Grow-Hill international book company 1st addition.
- 2- Michael Sullivan III, Statistics informed decision using data 3rd addition, pearson education international 2010.

:111

- 3- Jones' instrument technology.
- 4- Butterworth and co. (publishers) 2nd addition 1987.

Course Objectives: at the end of the semester the student should be able to :-

Use all the methods of statistical calculations to solve problems in chemical engineering and others applications.

Topics Covered (Syllabus)/ Eng. Statistics

No.	Contents	Duration
1	Introduction: Statistics, population and sample descriptive and inductive statistics and graphical representation of datas	2hr
2	Frequency distribution table, raw data, arrays, types of frequencies.	2hr
3	Graphical representation of frequency distribution table	2hr
4	Measures of central tendency.	2hr
5	Measures of dispersion	2hr
6	Curve fitting, Least squares method, Straight line forms, polynomial regression, variance and correlation coefficient.	4hr
7	Multiple and partial correlation: regression equation, normal equations for the least square regression, the coefficient for multiple correlation, relationship between multiple and partial correlation.	4hr
8	Probability distribution, continuous and discrete probability distribution, normal distribution.	2hr
9	The binomial distribution, the poisson probability distribution, approximation of standard distributions.	2hr
10	The chi-square test, confidence intervals, degree of significant, test of	4hr

	hypothesis, test for goodness of fit of probability distributions test of independence.	
11	Companing three or more means (one-way analysis of variance (ANOVA), requirements of ANOVA test, ANOVA F-test, decision rule in ANOVA test.	4hr

PracticalEng. Statistics

No.	Contents
1	The concept of statistical analysis, the important statistics to life, about the most
-	important statistical programmes
2	Install Statistical, About statistical analysis software, interfaces and quibbles
3	Working environment and Statistical data entry program
4	Using Statistica in statistical analysis with examples
5	Regression And Correlation (Curve Fitting) with Examples
6	 How to finds With examples 1. Find minimum and maximum and variance. 2. Find standard deviation, mean, mode. 3. Find second max frequency. 4. Find max class mark and its frequency? 5. Find max frequency. 6. Find second class mark and its frequency.
7	Ways to validate the equation imposed with examples
8	Line (45) Method with examples
9	Correlation Coefficient Method with examples
10	Residual Plot Method with examples
11	Multiple Linear Regression liner model with examples
12	Multiple Linear Regression Non liner model with examples

Program	Chemical Processing Engineering						
Course Code	CES.P. <mark>331</mark>	Credits hr					
Course Title	Thermodynamics I					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Material &Energy Balance, Physical Chemistry,Fluid Flow	2	2	1	5	3	

Course Description

The course of chemical engineering thermodynamics I comprises the study of volumetric properties of pure fluids; Entropy and second law analysis of engineering systems; Thermodynamic properties of fluids; Applications of thermodynamics to flow processes.

Course Text

1- J. M. Smith,H.C.Van Ness, Introduction to chemical engineering thermodynamics, 6th edition (International Edition), Mc-Graw Hall, 2008.

Other support books :-

1-K.V.Narayanan, Atext book of chemical engineering thermodynamics, prentice Hall of India, New Delhi, 2011.

2- B.G.Kyle, Chemical and process thermodynamics ,(3rd Edition), prentice Hall Inc.New Jersey, 1984.

3-J. Rayner, Basic engineering thermodynamics inSI units, printed in great Britain,1971

Course Objectives : at the end of the semester the student should be able to :-

6-To familiarize the students with basic concepts of the first and second laws of thermodynamics and their applications in engineering problems.

7-Develop a practical ability to solve energy balance problems, minimum work.

3.Students will demonstrate basic understanding of basics and definitions of thermodynamics and properties of pure substances.

4.Describe the reversible and irreversible processes (macroscopic description of an ideal and real processes).

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Volumetric properties of pure fluids Review on virile equation of state, cubic equation of state, generalized correlations for gases and for liquids.	6 hr
2	The 2nd law of thermodynamicsReview on the 2nd law and Carnot heat engine, entropy balance for open system, calculation of ideal work, lost work.	9 hr
3	Thermodynamic properties of fluids Review on the property relations (Δ H, Δ S, Δ Uand Δ G) residual properties, two phase systems, thermodynamic diagrams and tables, generalized property correlations for gases.	6 hr
4	Applications of thermodynamics to flow processesDuct flow of compressible fluids, pipe flow, nozzles, throttling process, turbines, compression processes compressors, ejectors.	9 hr

Practical Thermodynamics I

No.	Exp. Name.
1	Measurement of the solar irradiation
2	Alternating current solar installation
3	Refrigeration
4	Hydrolysis of methyl acetate
5	Pressure and Temperature relationship for steam
6	Liquid -vapor equilibrium Isotropic Mixtures
7	Boyles' law
8	Regulating and charging battery
9	Measurement of the solar irradiation

Program	Chemical Processing Engineering					
Course Code	CES.P.321	Credits hr				
Course Title	Numerical Analysis					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Computer Programming II, III	2	2	1	5	3

Course Description

This course introduces students to: Error analysis; Finding roots of a non-linear function; Approximation and interpolation; Numerical integration and differentiation; direct and indirect solution of systems of linear equations; Solution of systems of nonlinear equation; solving ordinary differential equations and partial differential equations. All examples within the course concerning with principles of chemical engineering.

Course Text

- 1. "Numerical Methods for Engineers", Steven C. Chapra, Raymond P. Canale, McGraw Hill, 6th edition, 2010.
- 2. "Numerical Methods for Engineers and Scientists", Joe Hoffman, McGraw-Hill Book Company, 1993.
- 3. "Applied Numerical Analysis", Gerald,C.F. and Wheatley, P.O., 6th Edition, Pearson Education, 2006.
- 4. "Numerical Methods for Chemical Engineers with MATLAB Applications", AlkisConstantinides, NavidMostoufi, Prentice Hall, 1999.

Course Objectives: at the end of the semester the student should be able to:-To solve chemical engineering problems with numerical analysis techniques.

Topics Covered (Syllabus)/Numerical Analysis

No.	Contents	Duration
1	Introduction to Numerical Analysis: Numerical Solution, type of errors; relative error, absolute error, percentage error, truncation error, round off error. Floating point.	2hr
2	Root Finding: Roots of polynomials, Bisection method, Secant method, Newton-Raphson method.	4hr
3	Interpolation and Polynomials Approximation: Lagrangian Polynomials, Divided differences, Cubic spline interpolating polynomials, Newton's forward and backward difference formulas.	4hr
4	Numerical Differentiation and Numerical Integration :	6hr

	Forward, backward and central difference approximation. Numerical	
	integration by Trapezoidal and Simpson's 1/3 and 3/8 rules. Double integrals	
	using trapezoidal and Simpson's rules.	
	Solving System of Equations:	
5	Solution of linear system of equations by direct methods (Gaussian	4hr
•	elimination and Gauss-Jordon). Solution of linear system of equations by	-111
	Iterative methods (Jacobi and Gauss-Seidel). Solution of non-linear system of	
	equations by Newton-raphson.	
	Solution of ordinary Differential Equations:	
6	Initial value problems. Solution of first order ordinary differential equations	4hr
6	Initial value problems. Solution of first-order ordinary differential equations using Taylor', Eular, Runge-Kutta and Predictor-corrector methods. Solution	4111
	of simultaneous ordinary differential equations.	
	Solution of Partial Differential Equations:	
	Solution of Full and Differential Equations.	
	Types of Partial Differential Equations: Elliptic (Poisson) equation, Parabolic	
7	(heat) equation, Hyperbolic (wave) equation. Finite difference solution of	6hr
	Partial Differential Equations. Numerical solution of partial differential	λ
	equations using explicit, implicit and Crank-Nicolson methods elliptic	
	(Laplace) equation.	
	(Laplace) equation. icalNumerical Analysis	
No.	(Laplace) equation. icalNumerical Analysis Contents	
No. 1	(Laplace) equation. ticalNumerical Analysis Contents Review of properties of Matlab programming language.	
No. 1 2	(Laplace) equation. ticalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method.	
No. 1 2 3	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method.	
No. 1 2	(Laplace) equation. ticalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation.	
No. 1 2 3	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method.	
No. 1 2 3 4	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule.	
No. 1 2 3 4 5	(Laplace) equation. ticalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas.	
No. 1 2 3 4 5 6 7	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule.	ion and
No. 1 2 3 4 5 6	(Laplace) equation.ticalNumerical AnalysisContentsReview of properties of Matlab programming language.Bisection method and Secant method.Newton-raphson method.Lagrange interpolation.Newton's forward and backward difference formulas.Trapezoidal rule.Simpson's 1/3 and 3/8 rules.	ion and
No. 1 2 3 4 5 6 7 8	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule. Simpson's 1/3 and 3/8 rules. Solution of linear system of equations by direct methods (Gaussian eliminat	
No. 1 2 3 4 5 6 7	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule. Simpson's 1/3 and 3/8 rules. Solution of linear system of equations by direct methods (Gaussian eliminat Gauss-Jordon).	
No. 1 2 3 4 5 6 7 8	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule. Simpson's 1/3 and 3/8 rules. Solution of linear system of equations by direct methods (Gaussian eliminat Gauss-Jordon). Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Gauss-Seidel and Solution of linear system of equations by Iterative methods (Solution of linear system of equations by Iterative methods (Solution of linear system of equations by Iterative methods (Solution of linear system of equations by Iterative methods (Soluti	
No. 1 2 3 4 5 6 7 8 9	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule. Simpson's 1/3 and 3/8 rules. Solution of linear system of equations by direct methods (Gaussian eliminat Gauss-Jordon). Solution of linear system of equations by Iterative methods (Gauss-Seidel an Jacobi).	
No. 1 2 3 4 5 6 7 8 9 10	(Laplace) equation. ical Numerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule. Simpson's 1/3 and 3/8 rules. Solution of linear system of equations by direct methods (Gaussian eliminat Gauss-Jordon). Solution of linear system of equations by Iterative methods (Gauss-Seidel an Jacobi). Solution of differential equation using Euler's method.	nd
No. 1 2 3 4 5 6 7 8 9 10 11	(Laplace) equation. icalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule. Simpson's 1/3 and 3/8 rules. Solution of linear system of equations by direct methods (Gaussian eliminat Gauss-Jordon). Solution of linear system of equations by Iterative methods (Gauss-Seidel an Jacobi). Solution of differential equation using Euler's method. Solution of differential equation using Runge-Kutta method.	nd
No. 1 2 3 4 5 6 7 8 9 10 11 12	(Laplace) equation. ticalNumerical Analysis Contents Review of properties of Matlab programming language. Bisection method and Secant method. Newton-raphson method. Lagrange interpolation. Newton's forward and backward difference formulas. Trapezoidal rule. Simpson's 1/3 and 3/8 rules. Solution of linear system of equations by direct methods (Gaussian eliminat Gauss-Jordon). Solution of linear system of equations by Iterative methods (Gauss-Seidel an Jacobi). Solution of differential equation using Euler's method. Solution of partial differential equations using explicit and implicit methods	nd

Program	Chemical Processes Engineering							
Course Code	CES.P.333		Credi	ts hr				
Course Title	Mass Transfer					Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Chemical engineering principles, thermodynamics, fluid flow	2	2	1	5	3		

111-

Course Description

This course covers diffusion and mass transfer in binary& multi-components, molecular diffusion in fluids, convective mass transfer, mass transfer coefficients, mass transfer correlations, interphase mass transfer, mass transfer theories.

Course Text

- Coulson, J. M & Richardson J. F. (2006). "Chemical engineering, Volume 1", 3rd Edition, Robert Maxwell. M. C.
- 2- Dutta Binary K. (2007), "Principles of Mass Transfer & Separation Process", Bvt. Ltd. Prentice Hall, ISPN 8-1203-2990-2.

Other support books:-

- 1- Treybal Robert E. (1975), "Mass transfer Operation" 2ed Edition, Mc-Graw-Hill Book.
- 2- McCabe, W., Smith, J., Harriott, P. (2004), "Unit Operations of Chemical Engineering", Mc-Graw-Hill Co., 7th Edition, ISBN0072848235.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Understand the basics of diffusion as applicable to mass transfer phenomena.
- 2- Estimate Molar fluxes in convective and inter phase mass transfer.
- 3- Explain the concept of diffusion theories.
- 4- Applying the convective mass transfer correlations to calculate mass transfer rates in many units operation.

Topics Covered (Syllabus)/ Mass transfer

0.	Contents	Duration
1	Introduction : Fundamentals of mass transfer processes, concentrations, velocities, mass & molar fluxes.	2 hrs
2	Diffusion in binary gaseous : Fick's first law of diffusion. Diffusion in gas mixtures, Equimolecular diffusion, diffusion in stationary layer. Correlations to calculate diffusivity, correcting diffusivity	6 hrs
3	Diffusion in multi component mixtures: Multi-component gas phase systems, effective diffusivity. Maxwell's law of diffusion	4 hrs
4	Diffusion in liquids.	2 hrs
5	Diffusion in solids.	2 hrs
6	Diffusion theories : Diffusion across phase boundary, Film theory, two film theory, Mass transfer coefficients (individual & overall) in laminar and turbulent flow.	4 hrs
7	Diffusion resistances: Calculating the resistance to mass transfer in both phases. Calculating intermediate concentrations.	4 hrs
8	Unsteady state mass transfer: Introduction to unsteady state mass transfer, mass transfer accompanied by a chemical reaction.	6 hrs

Practical Mass Transfer

No.	Experiment Name
1	Liquid-Liquid diffusion
2	Absorption
3	Batch Distillation Column
4	Fluid Mechanics of Packed Bed
5	Sieve Analysis
6	Gas Solid Fluidization
	CHEMICAL UNITS 1975 DOG DATE

ENGINEERING

Program	Cher	Chemical Processing Engineering				
Course Code	CES.P.335		Credi	ts hr		
Course Title	Chemical reaction kinetics				Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Physical chemistry	2	-	-	2	2

Course Description

Theory,Kinetic parameters and rate law, multiple reactions, yield and selectivity, stoichiometric considerations and collection and analysis of rate data

Course Text

1-Octave Levenspiel (1999), *CHEMICAL REACTOR ENGINEERING*, 3rd edition, John Wiley & Sons Inc., USA ISBN: 9780471254249.

2-J.M. Smith (1987), *CHEMICAL ENGINEERING KINETICS*, 3rd edition, McGraw-Hill International Editions, Singapore. ISBN: 9780070587106

Other support books :-

1- Ronald W. Missen; Charles A. Mims; Bradley A. Saville (1999), *INTRODUCTION TO CHEMICAL REACTION ENGINEERING AND KINETICS*,1stedition, John Wiley & Sons Inc.,USA.

Course Objectives : at the end of the semester the student should be able to :-

This course aims to establish fundamental knowledge for the students in chemical reaction kinetics. At the end of this course, students should be able to:

(i) interpret and analysechemical reaction kinetics data.

(ii) apply reaction kinetics principles in chemical reaction.

(iii) identify and formulate problems in chemical reaction kinetics and find appropriate solutions.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	 Kinetic parameters and rate law: L1: Definition in terms of reacting compounds and reaction extent; irreversible and reversible reactions, homogeneous catalyticreactions L2: Symbols and relationships between concentration and conversion L3: Introduction to rate laws, stoichiometry. L4: Reaction order and elementary reactions. L5: Reaction rate constants, Arrhenius equation, Van't Hoff equation L6: Temperature and pressure effects on reaction rates. L7: Thermal effects due to heat of reaction. 	10hr
2	Multiple reactions, yield and selectivity: L8: Types of multiple reactions. L9: Definitions of yield and selectivity. L10: Analysis of parallel, series, consecutive reactions. L11: Effect of pressure and temperature on multiple reactions L12: The Denbigh reaction and its special cases	10hr
3	 Stoichiometric considerations : L13: Stoichiometric considerations in batch systems (constant and variable density). L14: Stoichiometric considerations in flow systems (constant and variable density). L15: Examples: batch, semi-batch reactors, flow reactors, and Industrial reactors. 	6hr
4	Collection and Analysis of rate data: L16: Differential and integral methods. L17: Initial rate and half-life methods.	4hr

Program	Chemical ProcessingEngineering					
Course Code	CES.P.337		Credi	ts hr		
Course Title	Heat transfer I					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Fluid flow &Math	2	0	1	3	2

Course Description

To introduce and develop an understanding the modes of heat Transfer (conduction, convection and radiation).Derive and discusses all types of equation in these modes of heat transfer. Analyze heat transfer rate data in different modes. Derive the necessary equations for hydrodynamics and thermal boundary layer. Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Course Text

- 1- J.P.Holman, Heat Transfer, Ninth edition.
- 2- Frank P. Incropera& David P. Dewitt, Fundamentals of Heat and Mass Transfer, Fifth Edition.

Other support books :-

1- Coulson ,J.M and Richardson J.F. "Chemical Engineering , volume 1",3rd edition.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Develop a deep understanding of issues related to the heat and energy balance for different chemical process
- 2- 2. Define and solve problems in heat transfer mechanism in various engineering applications.
- 3- 3. Explain and derive heat equations for the conduction and convection heat transfer.
- 4- 4. Apply the analytical equations and correlations in convection heat transfer problems.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Modes of Heat Transfer: Conduction, Convection and Radiation.	4 hrs
2	Steady State Heat Conduction in One Dimension: General heat conduction equation in different coordinates, Plane wall, Radial systems, heat source systems, Boundary surrounded by fluids, Overall heat transfer coefficient, Conduction convection systems and fins.	10 hrs
3	Unsteady State Heat Transfer: Temperature as a function of time, lumped capacity system, quenching of small bodies and heating of tank.	4 hrs
3	Principles of Convection: Transport equations, Fluid mechanism aspect of convection, laminar boundary layer, The turbulent portion of boundary layer, The laminar sub- layer. Thermal boundary layer, Empirical and practical relations for pipe and tube flow and flow normal to single and tube banks. Reynolds analogy.	12 hrs

Program	Cher	Chemical ProcessingEngineering				
Course Code	CES.P.339		Credits hr			
Course Title	Chemical Process Industries I					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemistry, Material Eng.	2	0	0	2	2

Course Description

The syllabus deals with Industrial Chemistry. Which includes manufacture of sulfuric acid, nitricacid, ammonia, nitrogenous fertilizers, phosphoric acid, phosphate fertilizers, electrolytic industries, and industrial salts.

111-

Course Text

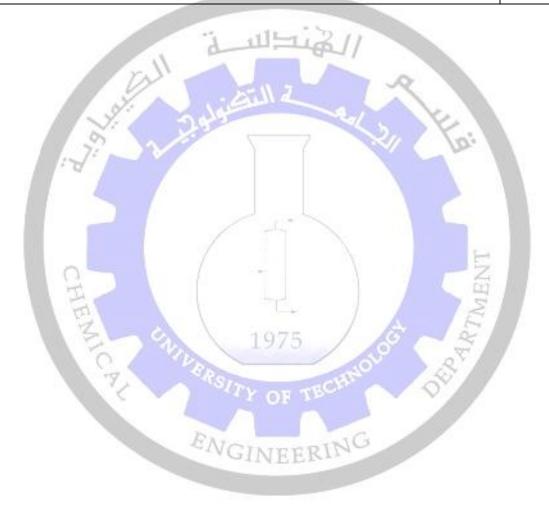
1.Shreves chemical process industries, Austin, G. T., 5thed, McGraw-Hill, 1984 2.N. Naderpour ,Petrochemical production process,1st reprint, sbspublication,New Delhi,2009

1975

3. Hydrocarbon processing ,Petrochemical processes,2005

Course Objectives : at the end of the semester the student should be able to :-

- 1- Chemical process definition and its applications on an industrial scale.
- 2- Introduction to natural or primary raw materials and their potential use.
- 3- Introduction to the use of chemical agents in industry.


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Chemical processing: Process classification, Process types, Operating conditions, Flow charts, Industrial stoichiometry, control system, research and development	2hr
2	Sulfur and Sulfuric acid: Raw materials, Mining and manufacture of sulfur , Manufacture of sulfuric acid , Manufacture of oleum	6hr
3	Ammonia and Nitric acid: Raw materials, manufacture procedure of ammonia, Nitric acid production,	6hr
4	Nitrogenous fertilizers: Types of chemical fertilizers, Manufacture processes of (NH ₄)So ₄ , Manufacture process of NH ₄ NO ₃ , Manufacture process of Urea	4hr

5	Phosphate fertilizers:	
	Raw materials, Manufacture process of super phosphate, Manufacture process of triple super phosphate, Phosphorous, Phosphoric acid manufacture process, Nitrophosphate	4hr
6	Electrolytic industries: Chloro- Alkali industries	4hr
7	Industrial salts	4hr

Program	Chemical ProcessingEngineering					
Course Code	CES.P.3311		Credit	ts hr		
Course Title	Biochemical Engineering					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	None	2	0	0	2	2

Course Description

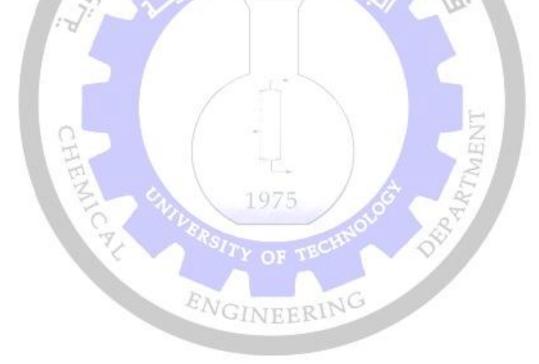
General definitions, Enzymes, Bioreactors (batch and continuous), Models of enzymes kinetics, inhibition of enzyme, Mass transfer in biological reactors, classical growth curve, Fermenters, Heat transfer in biological reactors, wastewater treatment, Aerobic fermentation process.

Course Text

1-Rajiv Dutta, "Fundamentals of Biochemical Engineering", India, 2007

- 2-Nukesh Double, "Biochemical Engineering", India 2007
- 3- James E.Bailey, David F. Oils, "Biochemical Engineering Fundamentals", 2nd, 1986.

1.Introduce and understanding of microorganisms.	Z
2.Introduce the types of biochemical reactors and fermenters.	- H
3. Introduce biochemical wastewater treatment.	A A
4. Introduce biochemical industries.	à


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Definitions:	2hr
-	Principles definitions to know the principles of bioscience	2111
2	Classification of enzymes:	2hr
2	Types of enzymes and the role in bio reactors	2111
3	Michaelies model:	2hr
5	Know how to calculate the reaction rate	2111
4	Briggs model:	2hr
4	Know how to calculate the reaction rate	2111
5	Calculate the parameters:	2hr
3	How calculate the parameters of this models	2111
6	Mods of bioreactors:	2hr
0	Understand the types of bioreactors	2111
7	Batch reactor:	2hr

8 Continuous reactor: Know how to calculate the volume of reactor 2hr 9 Immobilized of enzymes: Know the advantages and disadvantages 2hr 10 Fermenters: General explanation 2hr 11 Types of fermenters: Know the types and choose the best depending the process 2hr 12 The division rate: Know how to calculate the division rate 2hr 13 Heat transfer in bioreactors: Know how to calculate the division rate 2hr		Know how to calculate the reaction time	
10 Immobilized of enzymes: Know the advantages and disadvantages 2hr 10 Fermenters: General explanation 2hr 11 Types of fermenters: Know the types and choose the best depending the process 2hr 12 The division rate: Know how to calculate the division rate 2hr 12 Heat transfer in bioreactors: 2hr	8	Continuous reactor:	2h.r
9 Know the advantages and disadvantages 2hr 10 Fermenters: General explanation 2hr 11 Types of fermenters: Know the types and choose the best depending the process 2hr 12 The division rate: Know how to calculate the division rate 2hr 12 Heat transfer in bioreactors: 2hr		Know how to calculate the volume of reactor	2nr
10 Fermenters: General explanation 2hr 11 Types of fermenters: Know the types and choose the best depending the process 2hr 12 The division rate: Know how to calculate the division rate 2hr 12 Heat transfer in bioreactors: 2hr	0	Immobilized of enzymes:	0hm
10General explanation2hr11Types of fermenters: Know the types and choose the best depending the process2hr12The division rate: Know how to calculate the division rate2hr12Heat transfer in bioreactors:2hr	9	Know the advantages and disadvantages	200
11 Types of fermenters: Know the types and choose the best depending the process 2hr 12 The division rate: Know how to calculate the division rate 2hr 12 Heat transfer in bioreactors: 2hr	10	Fermenters:	Ohn
11 Know the types and choose the best depending the process 2hr 12 The division rate: Know how to calculate the division rate 2hr 13 Heat transfer in bioreactors: 2hr	10	General explanation	200
12 Know the types and choose the best depending the process 12 The division rate: Know how to calculate the division rate 2hr 12 Heat transfer in bioreactors: 2hr	11	Types of fermenters:	2hr
12 Know how to calculate the division rate 2hr 12 Heat transfer in bioreactors: 2hr	11	Know the types and choose the best depending the process	2111
Know how to calculate the division rate 12 Heat transfer in bioreactors:	12	The division rate:	2hr
12 /br	12	Know how to calculate the division rate	2111
	12	Heat transfer in bioreactors:	
Know the basic principles of heat transfer in bioreactor	15	Know the basic principles of heat transfer in bioreactor	2111
14 Wastewater treatment: 2hr	14	Wastewater treatment:	2hr
¹⁴ Know the main biological wastewater treatment	14	Know the main biological wastewater treatment	2111
15 Biological industries: 2hr	15	Biological industries:	2hr
¹⁵ Explain some biological processes	15	Explain some biological processes	2111

Program	Chemical Processing Engineering					
Course Code	CES.P.3313		Credit	s hr		
Course Title	Equipment Design					Units
Term	1st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Basic Principles of chemical ,fluid flow,	2		1	3	2

Course Description

.The course content process planning, piping and pumps network , gas-gad separation ,solid handling, hear and mass transfer equipments

Course Text

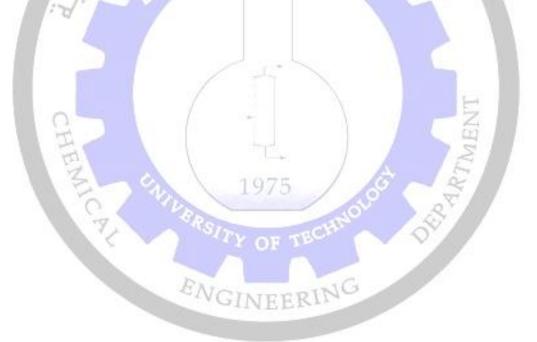
.Sinnott R. and Towler C; 2013 " chemical Engineering Design" 5th edition Butterworth-Heinemann

Coke,A.K ;2007"Ludwig s Applied Process Design of Chemical and petrochemical Plant" vol. 1 4th edition Gulf professional Publisher

Course Objectives : at the end of the semester the student should be able to :-

The ability to apply the design equation and equipments specifications as practical

To prepare students to be able to read and understand chemical engineering plants drawing


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Process planning: Introduction, Nature of design ,the organization of a chemical engineering projects Scheduling .Standards and codes. Flow sheet design, flow sheet types and designation .Block diagram .Process flow sheet .Piping and instrumentation diagram .Utilities, Computer aided drafting ,process simulation programs .Layout and plot plan .Project evaluation and cost estimation	6hr
2	Piping network and Pumps: Valves selection . Piping design standards and codes . Pipe size selection . Mechanical design of piping system. Pump type, pump specifications, and pump data sheet	4hr
3	Vessels and tanks: Types of vessels. Criteria in vessel design ,stress considerations . Materials of construction commonly used in vessels tanks. Design of tall vertical vessels . Pressure vessels Design. Vessels supports and foundations	4hr

4	Solid Handling: Screening Classification with Streams of Air or Water Air Classifiers . Size Reduction. Equipment for Size Reduction Particle Size Enlargement Extrusion Processes	4hr
5	Heat Transfer Equipments: Heat exchanger types and applications. Basic design procedure and theory. Overall heat transfer coefficient. Heat exchanger data sheet. Furnaces convection and radiation zone. Steam boilers	6hr
6	Mass Transfer Equipments: Columns types . Plate Types. Packing types . Pressure drops in columns . Column data sheets	6hr

Program	Chemical Processing Engineering						
Course Code	CES.P.332		Credit	s hr			
Course Title	Thermodynamics II					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Mass Transfer,Unit Operation I ,Equipment Design	2	-	1	3	2	

Course Description

The course discuss the study of Power cycles; Refrigeration and liquefaction process; Theory and application of solution thermodynamics ;Vapor/liquid equilibrium in both: binary and multicomponents; Ideal and non-ideal solutions are discussed using Raoult's and modified Raoult's law; Fugacity and fugacity coefficient definitions; Chemical reaction equilibriumandThermodynamic analysis of processes.

Course Text

1- J. M.Smith,H.C.Van Ness, Introduction to chemical engineering thermodynamics, 6th edition (International Edition), Mc-Graw Hall, 2008.

Other support books :-

1-K.V.Narayanan, Atext book of chemical engineering thermodynamics, prentice Hall of India, New Delhi, 2011.

2- B.G.Kyle, Chemical and process thermodynamics ,(3rd Edition), prentice Hall Inc.New Jersey, 1984.

3-J. Rayner, Basic engineering thermodynamicsinSI units, printed in great Britain, 1971.

Course Objectives : at the end of the semester the student should be able to :-

1-Apply the laws of thermodynamics to power, refrigeration and liquefaction cycle.

2-Establish thermodynamic constraint that apply to VLE, and explain qualitatively the VLE diagram.

3. Apply thermodynamics to VLE of pure components and solutions in terms of fugacity and fugacity coefficients.

4. Apply equilibrium criteria to chemical reactions and evaluate the effect of temperature.

5. Revision for thermodynamic analysis of processes.

No.	Contents	Duration
1	Production of power from heat : The steam power plant, Rankin cycle, the regenerative cycle, internal combustion engines Otto engine, diesel engine, gas turbine engine.	4 hr
2	Refrigeration and liquefaction: The Carnot refrigerator, the vapor compression cycle, the choice of refrigerant, absorption refrigeration, the heat pump, liquefaction processes.	6 hr
3	Vapor\liquid equilibrium; introduction : The nature of equilibrium, the phase rule, Duhem,s theorem, diagrams for vapor liquid equilibrium, simple models for VL equilibrium: Rault,s law, dew point and bubble point calculations, Henrys law, VLE by modified Raults law, VLE from K value correlations, flash calculations.	9 hr
4	Solution thermodynamics: theory Fundamental property relations, the chemical potential and phase equilibrium, ideal gas mixtures, fugacity and fugacity coefficient, the fundamental residual property relations, the ideal solutions.	2 hr
5	Chemical Reaction equilibrium: The reaction coordinate, standard Gibbs energy change and equilibrium constant, effect of temperature on equilibrium constant, evaluation of equilibrium constant, liquid phase reactions, equilibrium conversion for single reactions.	6 hr
6	Thermodynamic analysis of processes: Second law relation for steady state flow processes, calculation of ideal work, thermodynamic analysis of steady state flow processes.	3 hr

Program	Chemical Processing Engineering					
Course Code	CES.P.322		Credits hr			
Course Title	Applied					
	Mathematicsin					
	chemical					Units
	Engineering					
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics I, II	2	-	1	3	2

Course Description

This course introduces students to: Solve ordinary differential equations: apply Laplace transform to solve various systems of ordinary differential equations: Solve different types of partial differential equations. At the end of the course students should be able to apply these methods to tackle all kinds of problems that appear in chemical engineering.

Course Text

- 1. "Mathematical Methods in Chemical Engineering", Jenson. V.J. and Jeffereys, G.V, 2nd Edition, Academic Press New York, 1977.
- 2. "Applied Mathematics and Modeling for Chemical Engineers", Rice R G. and. Do, D. D., John Wiley and Sons, New York, 1995.
- 3. "Applied Mathematical Methods for Chemical Engineers", Loney, Norman W., 2ndedition, CRC Press Taylor & Francis Group, Boca Raton, 2007.

Course Objectives: at the end of the semester the student should be able to: Apply different analytical methods to solve chemical engineering problems.

Topics Covered (Syllabus)/ Applied Mathematics in chemical Engineering

No.	Contents	Duration
1	Ordinary Differential Equations : First-order differential equations, Linear and nonlinear first-order equations, Formation of differential equations, Solutions of linear differential equations, Initial and Boundary value problems, Separable first-order ode's, Exact differential equations, Differential operator, Integrating factors, Solutions of second order linear homogenous equations, Coupled first order equations, Method of reduction of higher order differential equations, Solutions of higher order homogenous linear equations. Chemical engineering applications: Application of the law of	10hr

	conservation of mass, First-order chemical reaction in a batch reactor, Heating a closed kettle, Cooling of a hot object, Dilution of a salt solution in a stirred tank, Consecutive reaction system in a batch reactor, Radial heat transfer through a cylindrical conductor, Reaction in a spherical and cylindrical catalyst, Flow of heat from fin. Simultaneous diffusion and chemical reaction in a tubular reactor, Solvent extraction in N stages.	
2	Laplace transform: Laplace transforms, Laplace transform of the derivatives, Laplace transform of Integral, Laplace Transform of t.f (t) (multiplication by t), Properties of Laplace transform, Laplace transform of special functions (step, pulse, Impulse, ramp and periodic functions), Convolution theorem, Initial value problems (multiplication by s), Final value problems (division of s), First shifting properties, second shifting properties, Inverse of Laplace transform, Inverse Laplace transform of derivatives, Inverse Laplace Transform of Integrals, Partial Fraction, Solution of differential equations, Solution of simultaneous ordinary differential equations, Application of Laplace transform to solve chemical engineering problems.	10hr
3	Partial differential equations:Partial differential equations:Classification of partial differential equations, Formulation of partialdifferential equations, Continuity equation, Unsteady-state componentmass transfer with axial symmetry, Unsteady-state heat conduction withaxial symmetry, Boundary conditions, Solution of partial differentialequation by direct Integration, General and particular solutions,superposition of solutions, Complementary solution, Particular solution,Solution using separation of variables method, Solution using Laplacetransforms method, Solution using combination of variables method.Chemical engineering applications:i. Heat conduction in a semi-infinite slab.ii. Unsteady conduction/diffusion in one dimension.iii. Steady-state heat conduction in two-dimensions.	10hr

Program	Chemical Processes Engineering						
Course Code	CES.P.334		Credi	ts hr			
Course Title	Unit Operations I					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	0.1110	
Prerequisite(s)	Mass transfer	2	0	1	3	2	

Course Description

This course covers two main operations, gas absorption, stripping and distillation for binary and multi component mixtures. Concepts to design mass transfer equipment.

Course Text

- Coulson, J. M & Richardson J. F. (2006). "Chemical engineering", Volume 2, 3rd Edition, Robert Maxwell. M. C.
- 2- Dutta Binary K. (2007), "Principles of Mass Transfer & Separation Process", Bvt. Ltd. Prentice Hall, ISPN 8-1203-2990-2.

Other support books:-

- 1- Treybal Robert E. (1975), "Mass transfer Operation" 2nd Edition, Mc-Graw-Hill Book.
- 2- McCabe, W., Smith, J., Harriott, P. (2004), "Unit Operations of Chemical Engineering", Mc-Graw-Hill Co., 7th Edition, ISBN0072848235.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Understand the basics of gas absorption, stripping and distillation.
- 2- Design absorbers, strippers and distillation columns.
- 3- Find Operating lines, feed line and No. of trays or amounts of packing required.
- 4- Calculate columns efficiency.

No.	Contents	Duration
	Introduction to separation processes:	
1	General separation techniques. The mechanism of absorption and stripping processes. Flow regimes.	4 hrs
	Absorption in packed bed columns:	
2	Constructions, mass transfer coefficients & specific area, capacity, height of columns based on gas film, liquid film, and based on overall conditions, operating line, the transfer units, the importance of gas and liquid flow rates.	4 hrs
	Absorption in Tray towers :	
3	Types of trays, number of trays analytically and graphically. How to calculate the tray and column efficiency.	4 hrs
	Introduction to distillation process:	
4	Partial pressure, Dalton's, Raoult's& Henry's laws. Relative volatility, non ideal systems. Method of diffusion, binary mixtures, batch distillation, flash distillation, steam distillation. Fractionating column.	3 hrs
	Fractionating process:	
5	Number of plates required importance of reflux ratio, location of feed point, multiple feeds and side streams.	3 hrs
	Multi-component Distillation :	
6	Key components. Components distributions, equilibrium data, feed & product compositions, minimum reflux ratio, calculation number of trays required, relation between reflux ratio & number of plates.	4 hrs
_	Plate & packed distillation columns:	
7	General designed methods, column efficiency	4 hrs
	Reynolds Analogy:	
8	Mass transfer with bulk flow, flow over a plane surface, flow in a pipe.	4 hrs

Course Code	CES.P.336	Credits hr				
Course Title	Reactor Design					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	0
Prerequisite(s)	Chemical Reaction Kinetics	2	-	-	2	2

Course Description

Theory, design fundamentals and mass conservation equations for ideal reactors, isothermal reactors for homogeneous reactions, non-isothermal reactors, multiple reactor System.

Course Text

- Octave Levenspiel (1999), CHEMICAL REACTOR ENGINEERING, 3rd edition, John Wiley & Sons Inc., USA ISBN: 9780471254249.
- 2- J.M. Smith (1987), *CHEMICAL ENGINEERING KINETICS*, 3rd edition, McGraw-Hill International Editions, Singapore. ISBN: 9780070587106

Other support books :-

- 2- Ronald W. Missen; Charles A. Mims; Bradley A. Saville (1999), *INTRODUCTION TO CHEMICAL REACTION ENGINEERING AND KINETICS*,1stedition, John Wiley & Sons Inc.,USA.
- 3- . H. S. Fogler, Elements of Chemical Reaction Engineering, 4th Ed (2006), Prentice Hall,NewYorK.

Course Objectives : at the end of the semester the student should be able to :-

This course aims to establish fundamental knowledge for the students in chemical reactor engineering. At the end of this course, students should be able to:

(i) apply reaction kinetics principles in chemical reactor engineering.

(ii) identify and formulate problems in chemical reactor engineering and find appropriate solutions.

(iii) specify and size the most common industrial chemical reactors to achieve production goals for processes involving homogeneous reaction systems.

NGINEEPING

No.	s Covered (Syllabus)/ Course Title Contents	Duration
1	Introduction to reactor design: L1: Interpretation of rate data, scale-up, and design L2: Classification of reactors.	2hr
2	 Design fundamentals and mass conservation equations for ideal reactors: L1: Conservation of mass in reactors. L2: The ideal stirred-tank reactor (Batch and steady-state flow) L3: The ideal tubular flow reactor (PFR) L4: Space time and space velocity 	4hr
3	Isothermal reactors for homogeneous reactions: L5: Design procedure: Batch reactor (constant volume and constant pressure) L6: Design procedure: Continuous stirred-tank reactors (Single and multiple reactions) L7: Design procedure: Tubular-flow reactors L8: Comparison of stirred-tank and tubular-flow reactors. L9: Flow recycle reactors L10: Non-steady flow (semi-batch) reactors	8hr
4	Non-isothermal reactors: L11: Energy conservation equations L12: Batch stirred-tank reactors L13: Continuous stirred-tank reactors	8hr
5	Multiple reactor System: L14: Plug flow reactors in series and/or parallel L15: Equal- size mixed flow reactors in series (first order and second order reactions) L16: Mixed Flow Reactors of different sizes in series. L17: Best arrangement of a set of ideal reactors	8hr

Program	Chemical ProcessingEngineering				
Course Code	CES.P.338	Credits hr	Units		

Course Title	Heat transfer II					
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Heat transfer I	2	2	1	5	3

Course Description

Characterization the design procedures for different heat transfer equipments as heat exchanger. Discuss the heat transfer in boiling and condensation processes .Characterization the design procedures for furnace. Give a new knowledge in renewable energy systems. Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Course Text

- J.P.Holman ,Heat Transfer, Ninth edition.
- Frank P. Incropera& David P. Dewitt, Fundamentals of Heat and Mass Transfer, Fifth Edition.

Other support books :-

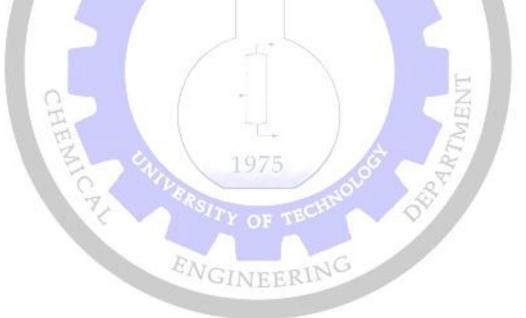
 Coulson, J.M., Richardson, J.F., Backhurst, J.R.andHarker, J.H., "Chemical Engineering" Volume(1) 6thEdition.

ENGINEERING

Course Objectives: at the end of the semester the student should be able to:-

- 1. Design heat exchanger equipments.
- 2. Define and solve problems in boiling and condensation heat transfer.
- 3. Design the furnace and understand the radiation heat transfer.
- 4. Solve problems in heat transfer applications.

Topics Covered (Syllabus)/ Course Title


No.	Contents	Duration
1	Heat Exchangers: Various types and their general characteristics, Overall heat transfer coefficient, fouling factor, Heat exchangers mean temperature differences and Co-current and counter current flow.	10 hrs
2	Shell and Tube Exchanger: Types and various specifications, design calculations by conventional and by effectiveness (NTU) methods and optimum design calculation.	6 hrs
3	Condensation and Boiling Heat Transfer: Condensation of single vapors, Laminar film condensation Design calculations for condenser, Pool and flow boiling, Boiling regime, General aspects, Boiling correlations.	6 hrs
4	Radiation and Furnace design: Radiation properties, shape factor, heat exchange for non black bodies, parallel planes, shields, gas tradition.	4 hrs
5	Renewable Energy: Solar radiation, Solar water heater, Solar air heaters, Heat exchangers for ocean thermal energy, Heat storage and transmits.	4 hrs
	ENGINEERING	

Practical Heat Transfer II

No.	Experiment Name
1	Conductive Heat Transfer in Steady State.
2	Coil Heat Exchanger.
3	Determination of Overall Heat Transfer Coefficient on Air Velocity
4	Performance of Cooling Tower
5	Graphite Heat Exchanger
6	Extended Surface Heat Transfer

Program	Chemical ProcessingEngineering					
Course Code	CES.P.3310	Credits hr				
Course Title	Chemical					
	Process					Units
	Industries II					Omto
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemistry, Material Eng.	2	3	0	5	3

Course Description

The syllabus deals with Industrial Chemistry, which includes manufacture of ceramic, cement, glass, oil and fats, soap and detergents, sugar, and production of liquid biofuels from renewable resources.

Course Text

1.Shreves chemical process industries, Austin, G. T., 5thed, McGraw-Hill, 1984 2.N. Naderpour ,Petrochemical production process,1st reprint, sbspublication,New Delhi,2009

3.Hydrocarbon processing ,Petrochemical processes,2005

Course Objectives : at the end of the semester the student should be able to :-

To provide an understanding of the synthesis, industrial manufacture, flow diagram, properties and uses of important chemical industries such as ceramic, oil and fats, soap and detergents.

No.	Contents	Duration
1	Ceramic industries: Raw materials, Classification of ceramic products, White ware, Refractories	6hr
2	Cement industries: Raw materials, Classification of cement, Manufacture of Portland cement	4hr
3	Glass industries: Raw materials, Glass fabrication, Types of Glass	4hr
4	Oil and fats: Oil and fats sources and properties, Chemical compositions, Manufacture steps of oil	4hr
5	Soap and detergents: Detergent groups, Manufacture of fatty acids, Manufacture of fatty alcohols, Manufacture of detergents, Manufacture of soap	4hr

6	Sugar industries:	
	Cane sugar, Beet sugar	4hr
7	Production of liquid biofuels from renewable resources	4hr

Practical Chemical Process Industries II

No.	Experiment Name
1	Water treatment by ionic exchange
2	Extraction of vegetable oils
3	Production of fatty acid
4	Production of soap
5	Sulfonation of detergent –Alkylates
6	Production of Urea Formaldehyde 975
7	Biodiesel production
8	Chloroform production
9	Ethanol production
10	Ethyl acetate production

Program	Chemical Processing Engineering						
Course Code	CES.P.3312	Credits hr					
Course Title	Particles&						
	Nanotechnology					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Chemistry &Physics	2	-	-	2	2	

Course Description

Particle technology, particle size and properties, size reduction particle size reduction, Nanotechnology, synthesis of nanomaterial, investigation methods and application.

Course Text

1- Hiroaki, Mosuda, "Powder Technology Handbook" 2006

Course Objectives : at the end of the semester the student should be able to :-

1-The student an understanding of the fundamental principle of particle and nanotechnology

2-Particle size measurements methods, particle reduction size, particle distribution, Nanotechnology, nanoparticles, Synthesis methods, nano particles and measurement techniques, application of nanotechnology in different fields.

No.	Contents	Duration
1	Particle Technology Particle, particle shape, measurement of particle size	5hr
2	Size reduction Methods of size reduction, energy required for size reduction, particle size distribution, crystal structure and crystalin structure of materials	5hr
3	Nanotechnology Nanotechnology, nanoscience, nanomaterials	5hr
4	Synthesis of nanomaterial Mechanical, physical, chemical, sol-gel, CVD, Carbon nanotubes properties and production	5hr
5	Nanoparticals investigation methods, XRD, FTIR, SEM, TEM, AFM	5hr
6	Application of Nanotechnology	5hr

Program	Chen	nical Pro	cessing.	Engine	ering	
Course Code	CES.P.3314	Credits hr				
Course Title	Equipment DesignUsing CAD					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Thermodynamics, heat and mass transfer	2	2	1	5	3

Course Description

.The aim of the subject is to engaged students with chemical plants by explain to them the main items of plant design and teach them procedures to design different equipments with computer programs

Course Text

.Sinnott R. and Towler C; 2013 " chemical Engineering Design" 5th edition Butterworth-Heinemann

Coke,A.K ;2007"Ludwig s Applied Process Design of Chemical and petrochemical Plant" vol. 1 4th edition Gulf professional Publisher

Course Objectives : at the end of the semester the student should be able to :-

1-Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

2- The student be able to use computer software packages to perform design activity beside the conventional methods

3- The student should have the necessary skills to design equipments

No.	Contents	Duration
1	Applied Design for Pressure vessels ,pumps and compressors flash drum, gas-liquid separator, liquid-liquid separator, gas movers and compressors manually and with computer aided	12 hr
2	Applied Design for heat equipments (shell And tube heat exchanger, plate heat exchanger, coil type exchanger, condenser, vaporizer, air cooleretc) manually and with computer aided	12 hr
3	Applied Design for mass transfer equipments (distillation column, absorber column, leaching equipment, scrubberetc) manually and with computer aided	6 hr

Practical Equipment designusing CAD

No.	Contents
1	Introduction
2	Equation of state & stream
3	Rotating Equipment (3.1 Compressor, 3.2 Expander, 3.3 pump)
4	Separation Operations (Separator , 3-Phases Separator , 4.3 Tank)
5	Heat Transfer Equipment (Heater & Cooler, Heat Exchanger, LNG, Air Cooler)
6	Column distillation (Column Installation, Column Property View, Column-Specific Operations and Running the Column)
7	Reactors(CSTR, General Reactor, Gibbs, Equilibrium, conversion)
8	Logical Operations (Adjust, Balance, Recycle, Set)
9	process plant involving reaction and separation
10	Examination lab

Program	Chemical Processing Engineering						
Course Code	CES.P.421		Credits l	hr			
Course Title	Project I					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	 Basic Principles of chemical engineering I Basic Principles of chemical engineering II Material & Energy Balance. Thermodynamics I & II 	ווויייין ווייי גוויג	2		3	2	

Course Description

The course includes the design aspects and design considerations for plant of chemical industry.

Course Text

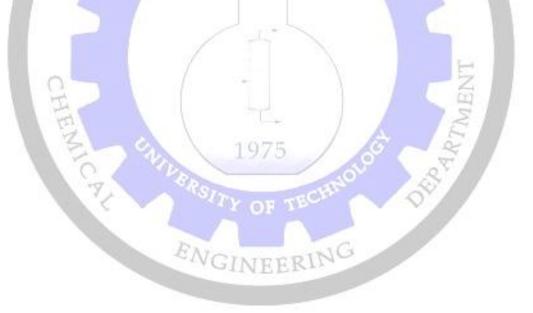
Sinnott R.K. "Chemical Engineering Design", Coulson and Richardson's. Chemical Engineering, Volume 6, Fourth edition, (2005).

Other support books :-

1. Peters M. S., Timmerhaus K.D. and West R.E. Plant Design and Economics for Chemical Engineering, Fifth edition, (2003).

Course Objectives: at the end of the semester the student should be able to:-

To learn the students the basic information's of designing the chemical plants and the economic and engineering aspects


No.	Contents	Duration
1	Introduction to Design: The anatomy of chemical manufacturing process, general overall design considerations, development of design data base, process creation, types of process design.	5 hr
2	Design Information and Data : Source of information of physical properties , predication of physical properties (density, viscosity, thermal conductivity , etc.)	5 hr
3	Material and Energy Balance: Review of material and energy balance, flow sheet symbols, PFD information in flow diagram	5 hr

Project Requirements

No.	Contents	Duration
1	Chapter One: Introduction, Historical Profile, Physical and Chemical Properties, Applications for chemical material production.	4 hr
2	Chapter Two: Production Methods, Comparison between Processes, Selected the optimum Process, Physical properties of raw materials and by products, Production Capacity.	4 hr
3	Chapter Three: Material balance for the plant process.	10 hr
4	Chapter Four: Energy balance for the plant process, Process flow diagram (PFD).	10 hr
5	Poster and Oral Presentation	2 hr

Program	Chemical Process Engineering					
Course Code-	CES.P. 431	Credits hr				
Course title	Unit Operation II					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics II , Engineering Mathematics I , II , Numerical Analysis, Energy Balance, Material &Energy Balance, Fluid FlowI, II , Thermodynamics 1 , II , Mass Transfer, unit operation I , II , Heat treansfear I , II ,	2	2	1	5	3

Course Description

Theory, applications and design of unit operations which are mostly employed in the chemical industry, drying of solid, humidification, dehumidification and cooling tower and liquid evaporation and crystallization.

Course Text

- Coulson ,J.M and Richardson J.F. "Chemical Engineering , Volume 1, 3rd edition ,Robert Maxwell.M.C.
- Coulson J.M, and Richardson J.F. "Chemical Engineering, Volume 2, 3rd edition, Robert Maxwell.M.C.

Other support books :-

- Perry, J.H, "Chemical engineering handbook ", Mc-Graw Hill Bookcom. 1975.
- Binay.K.Dutta "Mass transfer and separation process" 2007.
- Trebal Robert E., "Mass transfer operation"2nd edition, Mc-Graw –Hill Book com.1975.

Course Objectives: at the end of the semester the student should be able to:-

1-To provide an understanding of the general principles of separation processes to allow students to make sensible options given a separation task (Humidification, Dehumidification and Cooling tower, Evaporation, crystallization, and Wet Solid Drying).

2-A comprehensive understanding of the transport processes related to chemical engineering operations, with focus on both theory and applications.

3-Ability to select of appropriate equipment for the separation of materials in process plant.

4-Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Topics Covered (Syllabus)

No.	Contents	Duration
1	Drying of Solids: Introduction Drying of SolidsGeneral Principles. Wet Solid Group.Terminology and Definitions. Humidity Measurement. Humidity Data for Air – Water system. Temperature –Humidity Chart (Psychometric Chart). Uses of Humidity Chart. Rate of Drying. Calculation method of Drying Rate and Time. Drying Rate. Drying Time. Mechanism of Moisture Movement in Wet Solid. Material and Heat Balance for Continuous Dryers. Rate of Drying for continuous Direct Heat Driers. Drying at High Temperature. Drying at Low Temperature. Drying Equipment.	6 hrs
2	Humidification, dehumidification and Cooling towers: Introduction. Humidification Operations. Adiabatic Operations. Non- Adiabatic Operations. Mixing of Humid Streams. Mixing of Two Stream of Humid Gas. Addition of Liquid or Vapor to a Gas. Humidification Processes Theory. Cooling Tower Principles and Operations. Cooling Tower Classification. Design Cooling Tower. Adiabatic Humidification — Cooling. Dehumidification Tower	9 hrs
3	Evaporation: Introduction, Types of Evaporations, Evaporation Equipment, Heat transfer in Evaporation Process, single, double and Multi effect Evaporators, Design of evaporators, Comparison of Forward, backward and Parallel effect evaporators, boiling Point rise.	9 hrs
4	Crystallization : Crystallization fundamentals, cooling crystallizer, Evaporating crystallizer, Batch and continuous crystallization Crystallizer selection.	6 hrs

Practical Unit Operation II

No.	Experiment Name
1	Tray Dryer
2	Plate and Frame Filtration
3	Rotary Drum Filtration
4	Design of Cooling Tower
5	Sedimentation
6	Liquid - Liquid Extraction

Program	Chemical Processing Engineering					
Course Code	CES.P. 433		Credi	ts hr		
Course Title	Process Dynamic					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	1.Heat and Material balance 2.Applied Mathematics	2	-	1	3	2

Course Description

Study of dynamics characteristics of open-loop Chemical Engineering processes to formulate transfer function and analysis response of the system to design and select closed-loop controlscheme.

+TL

Course Text

- D.R. Coughanowr and S. LeBlanc, Process Systems Analysis and Control, McGraw-Hill, 3nd edition, 2008.
- 2. Stephanopoulos G., "Chemical Process Control-An Introduction to Theory and Practice, "Prentice -Hall, New Jersey, 1984.

Other support books :-

1-Luyben W. L., "Process Modeling, Simulation and Control for Chemical Engineers," McGraw-Hill, New York, 2nd Ed., 1990.

2-Process Dynamics: Modeling, Analysis and Simulation, by Wayne Bequette.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Study of dynamic analysis of chemical processes to allow students to identify the system under different operating conditions.
- 2- Understanding of formulate transfer function of the system.
- 3- Testing and selecting of critical process variables.
- 4- Developing of skills, solving open ended problems and to work in teams.

Topics Covered (Syllabus)/Process Dynamic

No.	Contents	Duration
1	Linear Open-Loop Systems: Transfer function, Transient Response,Forcing Functions:Step Response ,Impulse Response Ramp Response Sinusoidal Response.	10hr
2	Applications of First Order Systems: Liquid –level system, heating system, Mass transfer system, Reactors, absorber, pressure vessel, Linearization.	8hr
3	Response of First-Order Systems in Series Non-interacting System, Interacting System.	4hr
4	Higher-Order Systems: Second-Order: Under-damped, Critical and over-damped, Transportation Lag	8hr

Program	Chemical Processing Engineering					
Course Code	CES.P. 435	Credits hr				
Course Title	Petroleum refinery processing	U				Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Cat. Chemistry	2	0	1	3	2

Course Description

An introduction to petroleum feedstocks, refining processes, and how refined products are made. Design of atmospheric and vacuum columns for petroleum fractionation will be explained. Refinery processes will be explained in terms of their objectives, feedstocks, products and catalysts.

Course Text

1. W.L..Nelson" Petroleum Refining Engineering " 4th Edition. McGraw Hill, New York, 1985

2. M.A. Fahim, T.A. Al-Sahhaf, and A.S. Elkilani," Fundamentals of Petroleum Refining", Elsevier, 2010.

3. J.H. Gary and G. E. Handwerk and M.J. Kaiser, "Petroleum Refining Technology and Economics", 5th Ed. CRC Press, 2007.

Course Objectives : at the end of the semester the student should be able to :-

- 1. Become knowledgeable in composition, properties and classification of crude oil or petroleum.
- 2. Become familiar with the overall refinery processes including physical separation operations and chemical conversion processes.
- 3. Become knowledgeable about impurities in crude oil and how to remove them from products.

No.	Covered (Syllabus)/ Course Title Contents	Duration
1	Petroleum Processing Overview : History of Petroleum Production, What is Petroleum, History of Petroleum Processing, Modern Petroleum Processing. Refinery Feed-stocks and Products.	2hr
2	Thermo-physical Properties of Petroleum Fractions and Crude Oils:Specific Gravity, Boiling Point Curves, Breakup of TBP Curve into Pseudo- components, Thermo-physical Properties Calculation.	4hr
3	Heating of Crude oil : Types of pipe still heaters , calculations of radiant absorption rates	4hr
4	Crude Distillation : Desalting Crude Oils, Atmospheric distillation tower: types of refluxes. Energy balance in a topping tower and calculations involve estimation of top, side, bottom draw tray temperatures	6hr
5	Thermal and Catalytic Cracking : Coking, Visbreaking, Fluid Catalytic Cracking, Hydrotreating and Hydrocracking.	4 hr
6	Catalytic Reforming: Objectives, process, Reactions, catalysts and effect of process variables.	2hr
7	Isomerization, Alkylation and Polymerization: Objectives, process, Reactions, catalysts and effect of process variables.	2 hr
8	Products blending : Reid Vapor Pressure, Octane Blending.	4 hr
9	Supporting Processes: Hydrogen Production, Gas Processing Unit, Acid Gas Removal, Sulfur Recovery Processes.	2 hr

Program	Chemical Processing Engineering						
Course Code	<mark>CES.P. 43</mark> 7		Credits h	ır			
Course Title	Heterogeneous Reactor and catalyst				Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Physical chemistry ,mass- and heat- transfer, fluid and thermo- dynamics	2	-	1	3	2	

Course Description

Definition, classification of catalysts, properties of heterogeneous catalysts (activity, acidity, selectivity, and porosity), effectiveness of presence the catalysts on kinetic and thermodynamic properties, mechanism of chemical interactions occurring within the catalysts, applications of catalysts in catalytic processes, movement of the reactant molecules around and throughout the body of a catalyst in different types of reactors (fixed-, fluidized-, slurry-, and trickle-bed), intra-particle and diffusivities inside porous catalysts, and modern characterization techniques.

Course Text

1-J. M. Smith (1981), Chemical Engineering Kinetics, 3rd edition, Mc Grow – Hill, Singapore.

2-H. V. Bekkum, E. M. Flanigen, P. A. Jacobs, and J. C. Jansen (2001), Introduction to zeolite science and practice, 2nd edition, Amsterdam: Elsevier.

Other support books :-

1-J.F. Lepage, J. Cosyns&P.Couty, (1987), Applied heterogeneous catalysis. Paris: Editions Technip.

2-R. W. Missen, C. A. Mims, and B. A. Saville (1999), Chemical reaction engineering and kinetics, John Wiley & sons.

3-Daniel Decroocq (1984), Catalytic cracking of heavy petroleum fractions, Paris: Editions Technip.

Course Objectives: at the end of the semester the student should be able to :-

1-The objective of this course focuses on:

in-depth understanding of the catalyst and its impact on either chemical reactionskinetics or thermodynamics.

2-comprehension the principle of diffusion on the internal and external surfaces of the porous catalyst particles with their impact on the nature of reaction products in terms of increasing the quantity and quality and reducing the operating cost.

3-As well as the utilize of the operating equations and design for various kinds of reactors containing the catalyst particles as a key parameter in their work.

4-also to discover the theoretical knowledge about the equipments and characterization techniques used in catalyst and catalysisscience.

5-In addition, identify scientific and engineering information about the performance of a catalyst in enhancing the reaction mechanisms, problem solving, and other related issues.

No.	Contents	Duration
1	Introduction: Definition, classification of catalysts, mechanisms of catalysis, properties of porous catalysts (i.e. mechanical strength, stability, activity, and selectivity), morphology, pore size, solid density and porosity calculations, pore volume distribution, developing the support, promoters and inhibitors, coke formation on the catalyst surface, catalyst deactivation and reactivation.	6 hrs
2	Applications of catalysts in catalytic processes: History of the catalysts in catalytic processes, direct oxidation of methanol to formaldehyde, hydrogenation of acetone in a packed bubble column.	4 hrs
3	Surface area and kinetic parameters determinations: Determination the surface area of catalyst, calculations of pressure drop and void fraction in a solid catalyst within a packed bed, calculations both the reaction rate and the activation energy over a solid catalyst, operating condition (i.e. temperature, pressure, residence time; W/F) and catalyst performance.	4 hrs
4	Diffusion of bulk fluid over a solid catalyst within a packed bed and reactor design Fixed-bed reactors: mass and heat-transfer coefficients (fluid-particle), fluidized-bed reactors: particle-fluid mass and heat transfer, slurry-bed reactors:mass-transfer coefficients: gas bubble to liquid (k_L) , and liquid to catalyst particle (k_c) , trickle-bed reactors: mass-transfer coefficients: gas to liquid $(k_L a_g)$, and liquid to particle $(k_c a_c)$ with calculation of global rate.	10 hrs
5	Intra-particle and diffusivities estimation inside porous catalysts: Diffusion coefficient of Knudsen and Bulk diffusion, Gaseous diffusion in the micro- and macro- cylindrical pores, Diffusion in liquids, Diffusion within porous catalysts (effective diffusivity), pore models (parallel-pore model and random-pore model), surface diffusion, effectiveness factors.	6 hrs

Chemical Processing Engineering							
CES.P. 423	Credits hr.						
Industrial Management							
&Ethics		-	-	-	Units		
1 st Semester	Theoretical	Practical	Tutorial	Total			
Equipment Design Heat transfer Mass transfer	2			2	2		
	CES.P. 423Industrial Management&Ethics1 st SemesterEquipment Design	CES.P. 423Industrial Management &Ethics1st SemesterTheoreticalEquipment Design Heat transfer2	CES.P. 423Credits IIndustrial Management &Ethics1st SemesterTheoreticalEquipment Design Heat transfer22	CES.P. 423Credits IIIIndustrial Management &EthicsCredits III1st SemesterTheoreticalPracticalTutorialEquipment Design Heat transfer2	CES.P. 423Credits hr.Industrial Management &EthicsTheoreticalPracticalTutorial1st SemesterTheoreticalPracticalTutorialTotalEquipment Design Heat transfer22		

Course Description

Theory and applications, of Industrial Engineering Management which are mostly employed in The chemical industryIndustrialEngineeringManagement; ,Industrial organization, Maintenance Work Measurement Techniques, Costing, Quality Control, ISO and Engineering Ethics.

Course Text

T.R. Banga and S.C. Sharma "Industrial Engineering Management" including Production Management, Eleventh Edition:2008.

M.S. Peters, K.D. Timmerhaus and R.E. West "Plant Design and Economics for Chemical Engineers" Fifth Edition: 2003.

Course Objectives: at the end of the semester the student should be able to:-

To helps and learn in the optimum use of plant, equipment, efforts towards productivity improvement, establishing the most efficient and effective utilization of human effort and synchronizing various resources like men, machine and material as well as Engineering Ethics.

10770

No.	Contents	Duration
1	Management: Principle of management, types and classifications, management responsibility, organization responsibility.	4hr
2	Industrial organization: Site, Feasibility study, Development of efficient work method (plant layout, flow of material, material handling), Workstations, Inputs and Outputs, Production planning (types of Productions).	3hr
3	Maintenance: Classification, Cost, Machine replacements, Case studies and examples.	3hr
4	Network Analysis: Principles and applications, Critical path method (CMP), Gant Chart, Pert techniques (examples and case studies).	3hr

5	Work Measurement Techniques:	3hr
	Time and Motion study.	
6	Costing: Framework of management, Cost of production (row material cost, labor cost, machinery cost).	3hr
	Quality Control:	
7	Standardization, Specification, Sampling techniques, Inspection- analysis of results. Quality costs (preventive cost, appraisal cost and failure cost). Application of quality control chart-examples, Reliability.	4hr
8	ISO: Requirements, applications, ISO series, Quality management system (QMS), Total Quality management (TQM), Requirements and applications.	3hr
9	Engineering Ethics: Engineering has a direct and vital impact on the quality of life for all people. Engineering is an important and learned job. Engineers are expected to exhibit the highest standards of honesty and integrity. Accordingly, the services provided by engineers require honesty, impartiality, fairness, and equity, and must be dedicated to the protection of the public health, safety, and welfare. Engineers must perform under a standard of professional behavior that requires adherence to the highest	4hr

ENGINEERING

Program	Chemical ProcessingEngineering					
Course Code	CES.P. 438	Credits hr				
Course Title	Environmental Eng. & Industrial Safety					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Environmental Eng. & Industrial Safety	2		1	3	2

Course Description

Environment; Environmental Engineering: Pollution; Classification of air pollutants, Sources and type of air pollution, Particulate and air born particulate. Air pollution control equipment: types of equipment, its operation and its advantages and disadvantages. Design of settling chamber and cyclones. Source of water, Utilization, and classification. Type of water pollutants and its effect, Wastewater treatment. Oxygen demanding wastewater: Dissolved Oxygen DO, BOD, Oxygen sage curve and the related equations.

Industrial safety

Course Text

- C.S.Rao, "Environmental Pollution Control Engineering", 2nd Edition, New Age International(P) Limited, Published, 2006, Reprint 2007.
- 2- M. Grawford, "Air Pollution Control Theory", McGraw-Hill, New York, 1976.
- 3- S.C.Bhatia, "Environmental Pollution and Control in Chemical Process Industries" 2nd Edition, 2009, KHANNA PUBLISHERS, New Delhi.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Understand the concept of the environment and environmental pollution.
- 2- Provide solutions to environmental problems.
- 3- Concerned with local and worldwide environmental issues.
- 4- Design devices that are used in the control of air pollution.
- 5- Environmental engineers conduct hazardous-waste management studies in which they evaluate the significance of the hazard, offer analysis on treatment and containment.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction: Definition: Environment, Environmental engineering, Pollution and Pollutants.	2hr
2	Water and Waste Water Treatment: Source of water, Utilization of water. Types of water pollutants and their effects. Classification of wastewater. Wastewater treatment process.	10hr
3	Air Pollution Control: Classification of air pollution. Source of air pollutants. Air pollutants and their effects. Case study treatment of gaseous effluent in typical industry.	8hr
4	Solid and Hazardous Wastes Law: Solid Wastes Characterization, Nonhazardous and Hazardous solid waste, Solid wastes treatment.	4hr
5	Industrial Safety: Hazards: Toxicity, Flammability, Explosions, Sources of ignition, Ionizing radiation, Pressure, Temperature deviations and Noise. Dow fire and explosion index. Fire and protection, Biological effects. Designing for safety, Personal protective equipment.	6hr

ENGINEERING

Program	Chemical	Chemical Processing Engineering							
Course Code	<mark>CES.P. 4</mark> 22								
Course Title	Project II		Units						
Term	2 nd Semester	Theoretic al	Practical	Tutoria 1	Total	Units			
Prerequisite(s)	 Mass Transfer Unit OperationI and II Heat Transfer I and II Equipment Design Catalysis Eng. AndReactor Design 	1	2		3	2			

Course Description

The course includes the design aspects and design considerations for plant of chemical industry.

:115

Course Text

Sinnott R.K. "Chemical Engineering Design", Coulson and Richardson's. Chemical Engineering, Volume 6, Fourth edition, (2005).

Other support books :-

2. Peters M. S., Timmerhaus K.D. and West R.E. Plant Design and Economics for Chemical Engineering, Fifth edition, (2003).

Course Objectives: at the end of the semester the student should be able to:-

To learn the students the basic information's of designing the chemical plants and the economic and engineering aspects

No.	Contents	Duration
1	Choice of Plant Location and Layout Standard	3 hr
2	Piping and Instrumentation:	4hr
4	Pipes, valves, Pumps, Mechanical design and control	4111
3	Cost and Project Evaluation GINEER	3hr
4	Safety and Loss Prevention	2 hr
5	Design with Computer Aided	3 hr

Project Requirements

No.	Contents	Duration
1	Chapter Five: Design main equipment by design equation with mechanical design, cost evaluation, control and computeraided using Hysyssoftware	14hr
2	Design supported equipment with mechanical design, cost evaluation and control.	6 hr
3	Chapter Six: Environmental effect for raw materials, products and by products	6hr
4	Poster and Oral Presentation	4hr
	CHEMIC R. 1975 1975 REVIEW OF TECHNOLOGY DIPLOT	

Program	Chemical Process Engineering					
Course Code-	CES.P. 432		Credi	ts hr		
Course title	Unit Operation III					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics II , Engineering Mathematics I , II, Numerical Analysis, Energy Balance, Material &Energy Balance, Fluid FlowI, II, Thermodynamics I, II, Mass Transfer, unit operation I, II, Heat treansfearI, II,	2	.0	1	3	2

Course Description

A comprehensive understanding of the transport processes related to chemical engineering operations with focus on theory, design and applications of Solid–liquid filtration, Sedimentation, liquid - liquid extraction, Leaching and Washing.

Course Text

- 1- Coulson ,J.M and Richardson J.F. "Chemical Engineering", Volume 1, 3rd edition, Robert Maxwell.M.C.
- 2- Coulson, J.M and Richardson J.F. "Chemical Engineering", Volume 2, 3rd edition, Robert Maxwell.M.C.

Other support books :-

- 1- De Sinha and Parameswar De "Mass Transfer: Principles and Operations", Parameswar De, New Delhi, 2012
- 2- Binay.K.Dutta "Mass transfer and separation process" 2007.
- 3- Trebal Robert E., "Mass transfer operation"2nd edition, Mc-Graw –Hill Book com.1975.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Basic information, concepts and terminology of the general principles of separation processes of Solid –liquid filtration, Sedimentation, liquid liquid extraction, Leaching and Washing.
- 2- Demonstrating a broad and integrated knowledge and a deep understanding of issues related to separation processes in a chemical process and important role it plays in the success of the process both economically and environmentally.
- 3- Ability to select of appropriate equipment for the separation of materials in process plant.
- 4- An ability to apply effective, creative and innovative solutions, both independently and cooperatively, to current and future problems in separation processes and transport phenomena.

Topics Covered (Syllabus)

No.	Contents	Duration
1	Filtration: Type of Filters, Filtration theory, Plate and frame filter press, leaf filter, filtration at Constant ΔP , Filtration at Constant rate, washing Time, centrifugal filtration	9 hrs
2	Sedimentation: Introduction, Settling and Sedimentation in particle fluid separation, Sedimentation and thickening design, equipment for settling and Sedimentation.	6 hrs
3	Liquid - Liquid Extraction: Definition, Extraction process, Equilateral Triangular coordinates (Ternary Diagram), system of three liquid _ one pair partially soluble, choice of solvent, Equipment in extraction cross _ current extraction, multi stage Cross Current extracting cross current for insoluble Liquid , Continuous Counter current extraction , Continuous Counter Current in Soluble , Liquid , Minimum Solvent .	12 hrs
4	Leaching : General principles, Equipment for leaching, Mass transfer in leaching, continuous operation, Equilibrium-stage model for leaching and washing.	3 hrs

1975

ENGINEERING

T

DEPT

Program	Chemical Processing Engineering					
Course Code	CES.P. 434	Credits hr				
Course Title	Process Control and					
	Instruments				-	Units
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Process Dynamic	2	2	1	5	3

Course Description

Analysis of closed-loop Chemical Engineering processes system to design and select closed-loop controlscheme that will operate the plant with stable conditions.

Course Text

1. D.R. Coughanowr and S. LeBlanc, Process Systems Analysis and Control, McGraw-Hill, 3nd edition, 2008.

2. Stephanopoulos G., "Chemical Process Control-An Introduction to Theory and Practice, "Prentice -Hall, New Jersey, 1984.

Other support books :-

1. Luyben W. L., "Process Modeling, Simulation and Control for Chemical Engineers," McGraw-Hill, New York, 2nd Ed., 1990.

2. Process Dynamics: Modeling, Analysis and Simulation, by Wayne Bequette.

Course Objectives : at the end of the semester the student should be able to :-

- 1. To enhancement the ability of students for the analysis of closed-loop system and response of controlled system under different operating conditions.
- 2. Construction of transfer function of the closed system for different schemes.
- 3. Provide practice of tuning of controller parameters and limiting of stable operating conditions.
- 4. Motivation and encourage the students for solving open ended problems.

Topics Covered (Syllabus)/ Process Control and Instrumentation

No.	Contents	Duration
1	Instrumentation Sensors: pressure, temperature, level, flow and concentration. Control valve. Dynamics characteristics of Instruments.	6hr
2	Linear Closed-Loop Systems The Control System, Controllers and Final Control Elements, Block Diagram of Controlled System, Overall Closed-Loop Transfer Functions.	4hr
3	Characteristics of the Closed Loop System Transient Response of Simple Control Systems, Stability	7hr
4	Frequency Response Methods Introduction to Frequency Response Bode Diagrams, Control System Design by Frequency Response, Ziegler-Nichols Controller Settings.	7hr
5	Computer Control of Chemical process Analog Computer, Digital Computer, Computer Control Loops.	3hr
6	Control of Complex Processes Distillation Column, Absorber, Chemical Reactor.	3hr

Practical Process Control and Instrumentation

No.	Experiment Name
1	Feedback Control
2	Dynamic Behavior of Second order under Damped System (Orifice)
3	Flow rate Control
4	Level Control in the Tank
5	Pressure Control
6	Dynamic Behavior of Second order over Damped System (Stirred Tanks)
7	Dynamic Behavior of Second order over Damped System (Stirred Tanks Heater)
8	Temperature Control
9	PH Control
10	Control of Water Treatment Unit

Program	Chemical ProcessingEngineering					
Course Code	<mark>CES.P. 43</mark> 6	Credits hr				
Course Title	Petrochemical Industries					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Organic chemistry,unit operation	2		1	3	2

Course Description

Basic PCs(1stPCsgeneration)raw materials,processes and uses,Intermediate:of most basic PCs(2nd generation),Final products:involvepolymers.In addition to PC complexes

Sul III

Course Text

1.Hydrocarbon processing: petrochemical processing,2005.

Other support books :-

1-Shreve's Chemical Process Industries, 5th edition, 1988.

2-List, H.L. "Petrochemical Technology, 1986

3-Jamaly, J.S. "Petrochemical processes, 1984: Arabic.

Course Objectives : at the end of the semester the student should be able to :-

- 1. To introduce and develop an understanding of raw materials of petrochemicals . petrochemical.
- 2.To introduce petrochemical generation first :Basic petrochemicals,second: Intermediates and third:finalproducts:polymers
- 3. Give the learner the skills necessary to accomdate considered what has been studied.

4-Provide the student with confidence and study the skills to enable them to progress.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction: Raw material, characterization	2hr
2	Basic Petrochemical Materials : a-low Olefins: Ethylene production by steam Cracking processes b- butylenes: conversion process for production of olefins, Isobutylene production. c-Diolefin:, Butadiene Separation.d- Higher Olefins: production methods.e Linear: Alkyl benzene Complex (LAB), f-Aromatics: Sources, Separation of benzene Toluene Xylene.g- Syntheses gas:H ₂ production: Steam reforming, Partial Oxidation	11hr
3	Intermediate Petrochemicals: Methanol, , Acetic acid, Vinyl chloride M, Ethylene Oxide Ethanolamine, , Ethylene glycol , Acrylonitrile, Adipic Acid, Methyl Tetra butyl ether, Ethyl benzene, Styrene, Phenol, Nitrobenzene, Cyclohexane, Benzoic acid, Terephthalic acid.	9hr
4	Polymers: LDPE, HDPE, PP, PVC,PP Synthetic Fibers	6hr
5	Petrochemical Complexes : Ethylene ,Propylene ,Benzen , C4 ,BTX	2hr
	The state of the s	

ENGINEERING

Program	Chemical Processing Engineering					
Course Code	CES.P. 4 <mark>24</mark>	Credits hr				
Course Title	Optimization					Units
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Eng.Mathematics1,2 ,Unit Operation.	2	-	1	3	2

Course Description

The subject is to be given in one semester. studying the formulation of objective the theory of optimization of single variable using analytical and numerical methods. Determination in the solution of multi variables problems .studying and solving the linear programming problems(LP).

Course Text

1) Optimization, Greirg D.M. Longmangroup limited London.

2) Optimization, converse A.O ,Holt, Reinhart, and Winston.

Other support books :-

1) Numerical methods for unconstrained optimization, Murrayw. Academic press.

2) Constrained optimization by direct search Swann, W.H. Gill and Murray.

Course Objectives : at the end of the semester the student should be able to :-

- 1. To formulate many problems arising in widely different situations.
- 2. Ability for finding optimum. Minimum, or maximum in unconstrained or constrained single or multi variables functions..
- 3. Deals with the special case of linear programming (functions and constraints are linear).
- 4. Provide practice to deal with industrial optimization problems.

Topics Covered (Syllabus)/ Optimization

No.	Contents	Duration
1	Introduction to optimization.	2hr
2	 Recognizing an optimization problems and their solution. Formulation of optimization problems. Unconstrained and constrained problems. 	6hr
3	 Optimization methods for single variable problems. Analytical methods; constrained and unconstrained. Graphical method. Numerical methods. a- Unconstrained functions; fixed step method, DSC method, Newton method. b- Constrained functions; sequential search, Dichotomous search; Fibonacci search, Golden ratio search. 	12hr

HEMICAL

University of Technology Department of Chemical Engineering

Determining the solution to multivariable optimization problems. a- Unconstrained minimization and maximization strategy. Solving linear and non linear equations using matrices. Optimality conditions for unconstrained problems. _ Lagrangian criteria. _ Simplex method direction step length calculation. b- Solution of constrained multivariable problems. Analytical solution. **10hr** 4 Lagrangian duality. Linearization of nonlinear optimization problems. Simplex method. Pivot table formulation. c- Linear programming (LP) formulation. Solving linear system. Basic solution of an (LP) problems. Graphical interpretation.

ENGINEERING

Program	Chemical Processing Engineering					
Course Code	CES.P. 4 <mark>39</mark>					
Course Title	Corrosion Engineering		Credits Ir Theoretical Practical Tutorial Total			
Term	2 nd Semester	Theoretical				
Prerequisite(s)	Material Engineering	2	-	-	2	2

Course Description

Introduction, Classification of Corrosion, Kinetics of aqueous corrosion, Thermodynamics, Determining Passivity, Reference Electrode, Corrosion prevention, Protection methods.

111.

Course Text

- 1- Zaki Ahmed, "Principle of Corrosion Engineering and Corrosion Control",1ST Edition, ,IChem^E,ELSEVIER, 2006.
- 2- Denny A. Jones, "Principle and Prevention of Corrosion", 2nd Edition, Prentice Hall, 1996.
- 3- Herbert H. UHLIG, " Corrosion and Corrosion Control" John WILEY, 2008.
- 4- Fontana, M.G and Greene, N.D, "Corrosion Engineering", 3rd Edition, McGraw-HILL, 1986.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Understanding the concept of corrosion. The form of corrosion, How the material destroyed by corrosion.
- 2- Determine the corrosion rates and electrochemical behavior of the metals and the thermodynamics of corrosion reactions.
- 3- Applying the corrosion prevention technology.
- 4- Selection of materials involved in applying the corrosion prevention technology.

No.	Contents	Duration
1	Introduction : Definitions, Corrosive environment, Consequences of corrosion, Cost of corrosion, Why metals corrode, Basic concepts on corrosion, Anodic and Cathodic reactions, Types of cells.	2 hr
2	Classification of corrosion: Wet corrosion, Dry corrosion, Forms of corrosion	4 hr
3	Kinetics of aqueous corrosion: Faraday's laws of electrolysis and its application in determining the	4 hr

corrosion rate, reversibility and exchange current density, polarization, Activation polarization, Concentration polarization, Resistance Polarization,	
Activation polarization. Concentration polarization. Resistance Polarization.	
Combined polarization.	
Thermodynamics and its application on corrosion:	
	4 hr
0	
1- Immersion test	4 hr
2- Electrochemical technique	4 111
a) Tafel extrapolation	
b) Linear polarization	
Passivity:	
	3 k
Active passive metal and conditions for passivity, Kinetics of passivity table	2 hr
passivity, Unstable Passivity	
Reference electrodes:	
Hydrogen electrode, Ag/AgCl electrode, Zn/ZnCl ₂ electrode, Pb/PbCl ₂	2 hr
electrode	
Corrosion prevention in Oil Industry:	
Materials selection, Alteration of Environment, Design, Coating, Anodic	2 hr
	2hr
Equilibrium Diagram Advantage and Disadvantage of Pourbaix Diagram	
Cathodic Protection:	
1975	
Sacrificial anode corrosion protection. Impressed current anode corrosion	4 hr
	7
Design parameters in canouic protection, suby current corrosion	
	Thermodynamics and its application on corrosion: Free energy, Cell potential, Reversible electrode potential, Nernst equation Determining the corrosion rate Corrosion rate measurement units, methods determining corrosion rate: 1- Immersion test 2- Electrochemical technique a) Tafel extrapolation b) Linear polarization Passivity: Active passive metal and conditions for passivity, Kinetics of passivity table passivity, Unstable Passivity Reference electrodes: Hydrogen electrode, Ag/AgCl electrode, Zn/ZnCl2 electrode, Pb/PbCl2

Program	Oil and Gas Refinery Engineering							
Course Code	CES.R.111	Credits hr						
Course Title	Technical English "I"		Units					
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Basic principles in English language (grammars and vocabularies)	2	-	-	2	2		

Course Description

Define a specialknowledge and basic concepts in English language, review of (words, terms and phrases commonly utilized) with practical everyday language that students need, the fundamental principles of grammars used in English language such as question and answer, the negative, the tail questions, the singular and plural, the numbers, nouns, pronouns, the verb (to be, to have, and to do), adjectives, regular and irregular verbs, using so & neither, and adverbs, degrees of comparison, conjunctions and interjections, kinds of letter (S) with general exercises. Also, accurate description of the nature of vocabularies and idioms used by the chemical engineers and that the student needs in his/her academic and/or in his/her professional career by means of applying two reading passages focus mainly on studying the chemical engineer work in the factories as well as equipment, tools and materials used.

Course Text

- 1- The language of chemical engineering in English, Roy V. Hughson (1979), Regents publishing company, Inc.
- 2- New headway plus (English Course), Liz & John Soars (2014), Oxford University press. Other support books :-
 - 1- Life Lines workbook (Pre-intermediate and Intermediate level), Tom Hutchinson (2007), Oxford University press.
 - 2- English in a simplified way, Tahir Al- Bayati (1991), Baghdad.

Course Objectives: at the end of the semester the student should be able to :-

The objective of this course focuses on:

1-in-depth understanding and comprehension of the essential grammars in the English language that usually used in writing and/or speaking with choosing the correct way of speaking and/or listening the vocabulary (phonetics and spelling) by the use of common phrases and words.

2-Also, focus on the use of technical English(reading passages) as a heart of chemical engineer work, such as what chemical engineers do, research and development.

3- The development of the student's ability to apply and arrange knowledge in English language and thus become able to employ them appropriately in his/her daily dealing without the complexity.

4- As well, encourage students to develop their capabilities in the field of English language through participation by the training on the use and improve their language.

No.	Contents	Duration
1	Academic Comprehension: (Reading passages related to chemical engineering): The first reading passage (<i>What chemical engineers do</i>) (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion)	8 hrs
2	Academic Comprehension: (Reading passages related to chemical engineering): The second reading passage (<i>Research and development</i>). (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion).	8 hrs
3	English Grammar: A general introduction to the English language and its importance as a means of communication between different peoples around the world,Review of the words, terms and phrases commonly used,Review of the simple grammars in English language, such as question and answer, the negative, the tail questions, the singular and plural, the numbers, telling the date, and telling the time, Nouns, pronouns, the verb to be, the verb to have, the verb to do, Adjectives and regular and irregular verbs, Reading and writing grammars that include short forms and words with two different meanings, The use of so & neither, and adverbs, Degrees of comparison,Conjunctions and interjections with general exercises, Kinds of letter (S) with general exercises.	14 hrs

Program	Oil a	Oil and Gas Refinery Engineering						
Course Code	CES.R.121	Credits hr						
Course Title	Mathematics I					Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Mathematic of secondary school	2	-	1	3	2		

Course Description

Introduction to functions, limits, Special functions, Derivatives, Chain rule, and their applications. Introduction to integral calculus, Methods of integration.

Course Text

1- Thomas Calculus, by George B.Thomas, Jr, Elevnth Edition Media Upgrade 2008"

Other support books :-

1- Mathematical methods for science students, Second Edition, by G. Stephenson .

2- Advanced Engineering Mathematics, Fifth Edition, by C.Raywylie, LouisC.Barrett .

Mathematical Methods in chemical Engineering, Second Edition, by V.G.Jenson and G.V. Jeffreys.

Course Objectives : at the end of the semester the student should be able to :-

1. To develop an understanding with the concepts of calculus and analytic geometry and the applications of these concepts to the solution of engineering problems.

2.Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

3. Develop a deep understanding of issues related to the basic principles of calculus, and how to solve problems in chemical engineering

Topics Covered (Syllabus)/ Mathematics I

No.	Contents	Duration
1	Preliminaries: Absolute value, coordinates of the plane, slope of lines, angle of inclination, functions, graph of the functions, domain and range, identifying functions, sum, differences, products and quotients, composite functions, shifting a graph of a function, scaling and reflecting a graph of a function.	6hr
2	Limits and Continuity: Properties, limits involving infinity, continuity	4hr
3	Transcendental functions: Logarithmic and exponential functions, trigonometric functions, inverse trigonometric functions, hyperbolic functions, inverse hyperbolic trigonometric functions.	4hr
4	Derivatives: Definition, chain rule, derivative of inverse trigonometric functions, of hyperbolic functions, of inverse hyperbolic functions, derivative of exponential and logarithmic functions, L, hopitals rule, partial derivative, function of two or more variables.	6hr
5	Integration: Indefinite integration, integration of inverse trigonometric functions, integration of hyperbolic functions, integration of inverse hyperbolic functions, integration methods; (substitution, by part, trigonometric substitution, partial fraction).	10hr

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.131	Credits hr					
Course Title	Chemical Engineering Principles I					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	1-Basics Maths 2-Chemistry Basics	2		1	3	2	

Course Description

To teach students fundamental knowledge of chemical engineering and application of this knowledge in the solving of material balances of chemical processes.

The course will cover concepts ranging from basics such as units and dimensions, stoichiometry to the simultaneous application of material and energy balances with and without occurrence of chemical reaction.

Behavior of ideal gases including the procedures for estimation of vapor pressure and heats of vaporization will be extensively covered.

Course Text

1- Himmelblau, D.M. and J.B.Riggs," Basic principles and calculations in chemical engineering",8^{ed}, Prentice-Hall Inc., New Jersey,2013.

2- Sikdar, D.C., Chemical process calculations, PHI Learning private ltd., New Delhi, 2013.

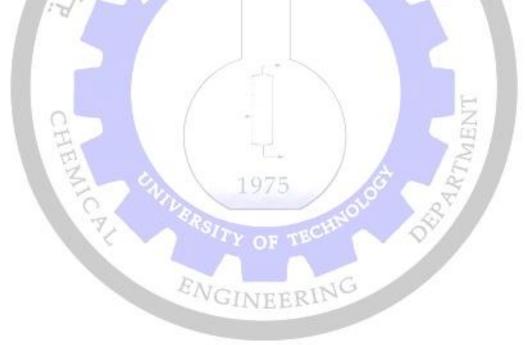
Course Objectives: at the end of the semester the student should be able to :-

1-Identify and understand the unit operations involved in a process, draw flowcharts, and develop relationships between process variables.

2-Perform simple degree-of-freedom analysis to identify the number of unknowns relating to mass, mass flow rate, composition and energy, and develop the linearly independent mass and energy balances needed to determine unknown quantities.

3-Apply ideal gas rule and equations of state for real gases.

4-describe various forms of energy, work, enthalpy, specific properties. state functions. and volumetric properties of pure liquids.


5-Convert from SI unit to British unit system and vice versa.

6-Understand the dimension concept, Understand of conversion coefficient concept and Use conversion coefficient.

No.	Contents	Duration
1	General Knowledge of Chemical Engineering:Definition of chemical engineering, Chemical process industries (CPI), Generalized chemicalprocess,Flow sheet and representation f a chemical process (PFD) The difference between the chemist and the chemical engineer.	4 hr
2	Mathematical , Physical and Chemical Principles:Dimensions, units, symbols and conversion factors , Precision and significant figures., Density and specific gravity, Temperature, Pressure, The mole unit , Composition and concentration. Basis of calculation, Principles and expressions of stoichiometry.	16 hr
3	Gases and Vapors: Ideal gas law, Ideal gas mixtures, Real gas relationships, Real gas mixtures, Vapor pressure and saturation.	10 hr

Program	Oil an	Oil and Gas Refinery Engineering						
Course Code	CES.R.123	Credits hr						
Course Title	Chemistry					Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Chemistry	2	2	0	4	3		

Course Description

Fundamentals of atoms, molecules, Quantitative analysis, Environmental, Transition Metal Chemistry and Spectroscopic Techniques which are mostly used in all other chemical engineering courses

Course Text

1- Skoog, D.A., West D.M., Holler F.J., and Crouch S.R. "Fundamentals of analytical chemistry",8ed edition ,brooks/Cole Cengage Learning. 2004

Other support books :-

- 1- Harrison, R.M," Understanding Our Environment An Introduction to Environmental Chemistry and Pollution",3ed edition, The Royal Society of Chemistry 1999
- Atkins, P., de Paula, J."Physical Chemistry"8ed edition, W. H. Freeman and Company. 2006
- 3- Huheey, J. E. "Inorganic Chemistry: Principles of Structure and Reactivity", 4ed edition ,Prentice Hall. 1997

Course Objectives: at the end of the semester the student should be able to:-

- 1- Students will learn to use the language of chemistry: symbolic representation, nomenclature, and terminology.
- 2- Students will learn to think about chemical reactions and chemical and physical properties at the particulate level and will be able to visualize and depict the structure of matter and its reactions at the microscopic (atomic and molecular) level.
- 3- Students will gain a conceptual understanding of and will be able to perform quantitative problem-solving skills in atomic structure, Stoichiometry, chemical equilibria, and electrochemistry.
- 4- Students will be able to use their knowledge to analyze and construct solutions by instruments
- 5- Students will learn to use theories of bonding in coordination compounds

No.	Contents	Duration
1	Atoms and Molecules: Mechanical picture of atomic structure, Derivation of Schrodinger wave equation, Chemical Bonding- Orbital concepts in bonding, V.B. and M.O. theory, M.O. diagrams, Intermolecular interactions.	3hr
2	Quantitative analysis : Atomic weight , Molecular formula, Chemical equations, Mole concept, Chemical, equilibrium, equilibrium constants, Preparation and properties, Molarity, Normality, ppm, pH, pOH, Buffers, Solubility Ksp, Gravimetric Analysis, Precipitation reaction, Potentiometric Titration, Complex titration.	6hr
3	Electrochemistry: Arrhenius theory of electrolytic dissociation, Transport number, Kohlrausch's law, Solubility product, Redox reaction, Electrochemical and concentration cells	4hr
4	Photochemistry and Spectroscopic Techniques: Photoexcitation of organic molecules, Jablonski diagram, Laws of photochemistry and quantum yield, Some examples of photochemical reactions, Chemistry of vision and other applications of photochemistry. General introduction to UV, IR, NMR and Chromatography	7hr
5	Transition Metal Chemistry: Structure of coordination compounds corresponding to coordination number up to 6, Types of ligands, Isomerism [geometrical, optical, ionization, linkage and coordination], Theories of bonding in coordination compounds- crystal field theory, Valence bond theory, Chelation	6hr
6	Environmental : Introduction, Water, air, soil pollution	4hr

Practical: (Chem. lab.)

No.	Experiment Name
1	Introduction and chemical safety basic rules
2	Equipment and how to use it
3	Preparation of standard solution (primary and secondary)
4	Direct Titration
5	Quantitative determination of a carbonate and hydroxide in mixture
6	Back titration
7	Titration Curves
8	Determination of Chloride Ions in Water
9	Standardization of KMnO ₄ and the determination of ferrous sulfate (Redox reaction)
10	Determination of Hardness of Water
11	Paper Chromatography 5
12	Qualitative analysis silver group
	The state 1975 OF TECHNOLOG OF

Program	Oil a	Oil and Gas Refinery Engineering						
Course Code	CES.R.125		Credi	ts hr				
Course Title	Physics					Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Physics	2	-	-	2	2		

Course Description

Mechanics, Temperature, Heat, Light (Reflection, Refraction, Wave, Nature of light, Dispersion, Colours)

Course Text

- Handbook of Nanostructured Materials and Nanotechnology, San Diego Academic Press, 2000
- Particle Technology Handbook

Course Objectives : at the end of the semester the student should be able to understanding :-

- 1- Basic physical principle
- 2- How physical problems can be solved
- 3- How the scientific method contributes to physics and how physics related to every body life
- 4- Measured physical quantities in appropriate SI unit
- 5- Work safety in a laboratory and follow the instruction relation between physics and technology

No.	Contents	Duration
1	Mechanics Motion, Forces, Energy	5hr
2	Temperature Concept of temperature, Thermometric properties, thermometers	5hr
3	Heat Quantity, Heat transfer	5hr
4	Waves, Vibration and sound	5hr
5	Light (Reflection, Refraction, Wave, Nature of light, Diffraction and interference, Dispersion, Colours, Electromagnetic spacing.	5hr
6	Modern Physics (electron, thermionic, emission, photo electric emission, X-ray, the nucleus, Structure of nucleus and atom, Radioactivity, Nuclear energy, Ionizing radiation and health hazards.	5hr

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.127		Credi	ts hr			
Course Title	Engineering drawing					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	None	1	2		3	2	

Course Description

Introduction inEngineering drawing, engineering drawing applications, engineering process, analysis model to view and study the full and half Sections, conclusion of the third projection ,Draw isometric and Oblique.

Course Text

- لرسم الهندسي، تاليف (عبد الرسول الخفاف) الطبعة الثانية، ١٩٩٣
- 2. R.P Hoelscher and C.H Springer "Engineering Drawing and Geometry ".2nd edition

Course Objectives: at the end of the semester the student should be able to :-

1. The students can be use Tools Drawing in draw and analyze geometric shapes

2.Enable students to draw devices, equipment & PFD in chemical engineering.

No.	Contents	Duration
1	Introduction	3hr
2	Planning of Drawing paper	3hr
3	Types of line	3hr
4	Engineering operation	3hr
5	Projection Drawing	3hr
6	First angle projection	3hr
7	Third angle projection	3hr
8	Full section	3hr
9	Half section	3hr
10	The finding of third view	3hr
11	Application Example	3hr
12	Pictorial Drawing (Isometric and Oblique)	3hr
13	Application Example	3hr
14	Dimensions	3hr
15	Examples of chemicalengineering drawing and exercises.	3hr

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.113	Credits hr					
Course Title	Computer						
	Programming(I)	Un					
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	None	1	2		3	2	

Course Description

This course provides an overview of the operating system Windows 10 and the program of Microsoft Office 2010 and the Visual Basic and includes the operation of Visual Basic and describe the elements of the design environment and user interface design and the difference between the project and the program and introduce students to the philosophy of programming using visual Basic and a programming process events Event-Driven Programming and programming objects Object Oriented Programming and gives the student an introduction to object-oriented programming and introduce students to the fundamental differences between the concept of the programming language BASIC visual and languages BASIC traditional and explain the steps to design and program planning.

Course Text

1-" Visual Basic: Crash Course - The Ultimate Beginner's Course to Learning Visual Basic Programming ", 3rd Edition, A. Tannenbaum, Prentice-Hall, 1996.
2-"Beginning Visual Basic " by Bryan Newsome Wrox, USL Press, | December 2003 | ISBN-

10: 1119092116

3- "Course Notes for Learn Visual Basic 6.0", 4th Edition, F. Halsall, Addison-Wesley, 2000.

Course Objectives : at the end of the semester the student should be able to :-

- 1. start Microsoft Office applications and work with the Microsoft Office interface Create documents in Microsoft Word. Create workbooks in Microsoft Excel.Create presentations in Microsoft PowerPoint
- 2. Define and modify the the properties and methods associated with an object
- 3. Load, modify, and save changes made to forms and projects in the Visual Basic environment
- 4. Define and implement form objects including data arrays, control arrays, text boxes, message boxes, dialog boxes, labels, controls, menus, frames, picture boxes, pull-down menus, and combo boxes

Topics Covered (Syllabus)/ Computer Programming(I)

No.	Contents	Duration
	Windows 10 and Microsoft Office:	
1	the operating system Windows 10 and MicrosoftOffice word, Microsoft excel, Microsoft power point.	3hr
2	Introduction to Visual Basic Programming: Menu bar, Tools bar, Project explorer, Tool box, Properties windows, Form, Code, Controls, Command Buttons, Label, Textbox, Pointers, Picture box, frame, Naming Controls, Properties for controls: Height, Width, Left, Top, Font, Forecolor, Backcolor, Name, Caption, Text, and Visible, Events, Saving Visual Basic Project, Examples, Chemical Engineering Applications.	2hr
3	Mathematics: Arithmetic Operations: +, , *, /, mod, ^. (Using Simple Example for each Operation), Logical Operations. AND, OR, NOT. And the Truth Table for each Operation, (Using Simple Example for each Operation), Relational Operation: >, <, >=, <=, <>, =, String Concatenation (&), Operation Precedence. For all arithmetic, logical, relational operators, Print statement and Formatting. Illustrate (colon, comma, and semicolon), Examples: Chemical Engineering Applications	1hr
4	Built inFunctions:Built in math functions, Abs(x), Int(x), Rnd(x), sgn(x), sqr(x), str(x), val(x), round(x,n),CInt(x),Fix(x),String Functions, InputBox, MsgBox, Examples: Chemical Engineering Applications.	1hr
5	Selection Structure: Single Selection: If/Then structure, Double Selection: If/Then/Else structure, Nested If/Then/Else structure, Select Case Multiple Selection Structure, Examples: Chemical Engineering Applications.	2hr
6	Reputation Structure : For Next Loop, While Wend, Do While Loop, Do Loop Until, Exit Do, Exit For Examples: Chemical Engineering Applications.	1hrs

7	Variables: Data Types: Boolean, Integer, Long, Single, Double, String, Valid Naming of Variables, Initial Value for each Type of the Variables (Initial Value for each Data Type), Size of each Variable Type in Bytes, How to Declare Variables. (Dim statement), Using: Dim variable name As Data type, Using Suffix: Integer, Long, Single, Double, String, Constant Variable. Examples: Chemical Engineering Applications.	2hrs
8	Arrays: Introduction: Defining Arrays, Array Declaration Statement, Assigning Values for Arrays (i.e.filling array's element value either by loop or by direct assignment statement), Re Dim Statement, Using Loops with Arrays. (i.e. writing an application on array using loops), Two Dimensional Arrays, Operations on Arrays, Fill Array Elements with Random Numbers using and Function, Sorting, Searching. (i.e. Linear search), Swapping Two Elements. Examples: Chemical Engineering Applications.	2hr
9	Graphics in Visual Basic: Graphics control, Picture box, Image box, Coordinate system, Pixel, Graphics methods (Line,Circle, pset) Examples: Chemical Engineering Applications.	lhrs
	1975	

ENGINEERING

Laboratories

No.	Contents
	Windows 10 and Microsoft Office:
1	The operating system Windows 10 and MicrosoftOffice word, Microsoft excel, Microsoft power point.
	Introduction to Visual Basic Programming:
2	Menu bar, Tools bar, Project explorer, Tool box, Properties windows, Form, Code, Controls, Command Buttons, Label, Textbox, Pointers, Picture box, frame, Naming Controls, Properties for controls: Height, Width, Left, Top, Font, Forecolor, Backcolor, Name, Caption, Text, and Visible, Events, Saving Visual Basic Project, Examples, Chemical Engineering Applications.
3	Mathematics: Arithmetic Operations: +, , *, /, mod, ^. (Using Simple Example for each Operation), Logical Operations. AND, OR, NOT. And the Truth Table for each Operation, (Using Simple Example for each Operation), Relational Operation: >, <, >=, <=, <>, =, String Concatenation (&), Operation Precedence. For all arithmetic, logical, relational operators, Print statement and Formatting. Illustrate (colon, comma, and semicolon), Examples: Chemical Engineering Applications
4	Built in Functions : Builtin math functions, Abs(x), Int(x), Rnd(x), sgn(x), sqr(x), str(x), val(x), round(x,n),CInt(x),Fix(x),String Functions, InputBox, MsgBox, Examples: Chemical Engineering Applications.
5	Selection Structure: Single Selection: If/Then structure, Double Selection: If/Then/Else structure, Nested If/Then/Else structure, Select Case Multiple Selection Structure, Examples: Chemical Engineering Applications.
	Reputation Structure:
6	For Next Loop, While Wend, Do While Loop, Do Loop Until, Exit Do, Exit For Examples: Chemical Engineering Applications.

OBOR

X7 • 11
Variables: Data Types: Boolean, Integer, Long, Single, Double, String, Valid Naming of Variables, Initial Value for each Type of the Variables (Initial Value for each Data Type), Size of each Variable Type in Bytes, How to Declare Variables. (Dim statement), Using: Dim variable name As Data type, Using Suffix: Integer, Long, Single, Double,String,ConstantVariable. Examples: Chemical Engineering Applications.
 Arrays: Introduction: Defining Arrays, Array Declaration Statement, Assigning Values for Arrays (i.e.filling array's element value either by loop or by direct assignment statement), Re Dim Statement, Using Loops with Arrays. (i.e. writing an application on array using loops), Two Dimensional Arrays, Operations on Arrays, Fill Array Elements with Random Numbers using and Function, Sorting, Searching. (i.e. Linear search), Swapping TwoElements. Examples: Chemical Engineering Applications.
Graphics in Visual Basic: Graphics control, Picture box, Image box, Coordinate system, Pixel, Graphics methods (Line,Circle, pset) Examples: Chemical Engineering Applications.

1975

ENGINEERING

CAL

Program	Oil and Gas Refinery Engineering							
Course Code	CES.R.112	Credits hr						
Course Title	Technical English "II"					Units		
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Basic principles in English language (grammars and vocabularies)	2	-	-	2	2		

Course Description

Define a specialknowledge and basic concepts in English language, review of phonetics and spellingwith words and sounds that need attention in understanding the meaning and pronunciation, the fundamental principles of grammars utilized in English language such as the use of the prefixes (un, im, in, and dis), the use of since & for, the definite and indefinite articles. As well as simple, continuous and perfect tenses (present, past, and future), the punctuation, active voice and passive voice, direct and indirect speech, finite and non-finite verbs, analyses and kinds of sentences. Also, accurate description of the nature of vocabularies and idioms used by the chemical engineers and that the student needs in his/her academic and/or in his/her professional career by means of applying two reading passages focus mainly on studying the chemical engineer work in the factories as well as equipment, tools and materials used.

Course Text

- 1- The language of chemical engineering in English, Roy V. Hughson (1979), Regents publishing company, Inc.
- 2- New headway plus (English Course), Liz & John Soars (2014), Oxford University press. Other support books :-
 - 1- Life Lines workbook (Pre-intermediate and Intermediate level), Tom Hutchinson (2007), Oxford University press.
 - 2- English in a simplified way, Tahir Al- Bayati (1991), Baghdad.

Course Objectives: at the end of the semester the student should be able to :-

The objective of this course focuses on:

1- Study and conception of the advance grammars in the English language that usually employed in academic writing and also explain the use of grammars correctly in speaking and/or listening the vocabulary (phonetics and spelling) via increasing the ability to rapid recognize the words that have two different meanings depending on their presence in the context of speech

2- Accurate description of the nature of vocabulary and idioms used by the chemical engineers in dealing with their respective fields in addition to the vocabulary of daily dealing. Also, focus on the use of reading passages such as process design and plant operation, which are related to student competence and his/her profession as an engineer in the chemical companies.

3-Enhancement of student's ability by applying modern information in English language about the characteristics of the chemical engineer job and then try to the simulation that in writing the scientific report, expression, and formulate of simple sentences and complex ones without the

difficulty.

4- Finally, promote the qualifications of students in the field of English language by training on the use and the progress of their language in order to allow them to easily use it in his/her future academic study in chemical engineering.

1.1.1

No.	Contents	Duration
1	Academic Comprehension: (Reading passages related to chemical engineering): The third reading passage (<u>Process design</u>) (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion)	8 hrs
2	Academic Comprehension: (Reading passages related to chemical engineering): The fourth reading passage (<i>Plant operation</i>). (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion).	8 hrs
3	English Grammar: Phonetics & Spelling (consonant sounds & vowel sounds), Words and sounds that need attention in understanding the meaning and pronunciation, as well as the use of the prefixes (un, im, in, and dis),The use of since & for, as well as the definite and indefinite articles,Punctuation (such as the use of the capital letter, the question mark, and the commaetc), Simple tenses (present, past, and future), Continuous and perfect tenses (present, past, and future), Active voice and passive voice,Direct and indirect speech, Finite and non-finite verbs, Analyses of sentences, and kinds of sentences (either according to form or to number of statements).	14 hrs

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.122		Credi	ts hr			
Course Title	Mathematics II					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Mathematics I	2	-	1	3	2	

Course Description

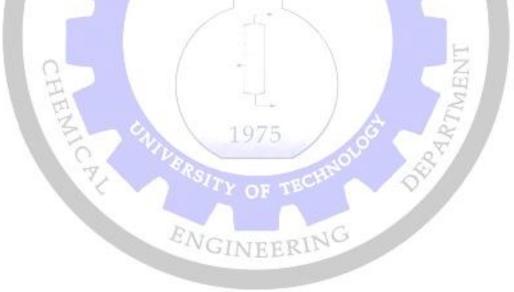
Definite integral and applications, Polar coordinates, Vector analysis, Determinant and matrices

Course Text

1- Thomas Calculus, by George B. Thomas, Jr, Elevnth Edition Media Upgrade 2008"

Other support books :-

- 1- Mathematical methods for science students, Second Edition, by G. Stephenson,
- 2- Advanced Engineering Mathematics, Fifth Edition, by C. Raywylie, Louis C. Barrett
- 3- Mathematical Methods in chemical Engineering, Second Edition, by V. G. Jenson and G.V. Jeffreys


Course Objectives : at the end of the semester the student should be able to :-

- 1- To understand these concepts of applications and how to evaluate volumes, surface area , and to understand analytic geometry.
- 2- Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.
- 3- Develop a deep understanding of issues related to the basic principles of polar coordinates, vector analysis, determinants, and how to solve problems in chemical engineering

Тор	ics Covered (Syllabus)/ Mathematics II	
1	Definite integration and Applications: Double integrals, reverse order of integration, length of curves, surface area, volumes	10hr
2	Polar Coordinates: Definition, Cartesian versus polar coordinates, graphing in polar coordinate.	4hr
3	Vector Analysis: Definitions, properties, vector in space, scalar and cross product of vector, product of three vectors.	8hr
4	Determinates and Matrices : Definition, determinate evaluation, solution of system of linear equation by matrix; (Inverse of matrix, Gauss elimination), Rank of matrix, Eigen value and Eigen vectors.	8hr

Program	Oil a	Oil and Gas Refinery Engineering					
Course Code	CES.R.132	Credits hr					
Course Title	Chemical Engineering Principles II					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	1-Basics Maths 2-Chemistry Basics 3.Chemical Engineering Principles I	2 1111=1	الي	1	3	2	

Course Description

The objective of this course is to present an introduction to chemical engineering calculations, establish mathematical methodologies for the computation of material balances and to present an overview of industrial chemical processes. It is prerequisite for several junior-level courses in the curriculum, including courses in process fluid dynamics, heat transfer and phase equilibrium.

The course reviews the fundamentals of chemistry and physics as they pertain to chemical problems and applies mathematics to the development of time-dependent equations to describe materials flow through a process. Examples of the processes studied include stoichiometry in combustion and other reactions, materials flow with recycle streams.

Course Text

1- Himmelblau, D.M. and J.B.Riggs," Basic principles and calculations in chemical engineering",8^{ed}, Prentice-Hall Inc., New Jersey,2013.

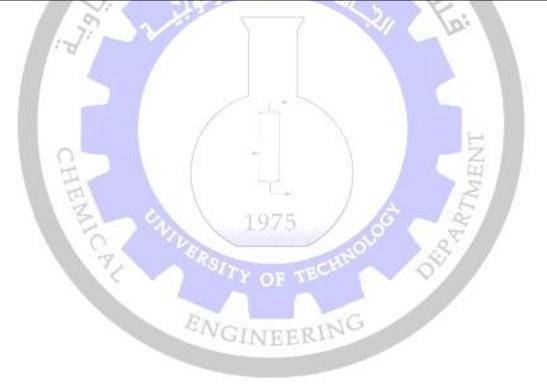
2- Sikdar, D.C., Chemical process calculations, PHI Learning private ltd., New Delhi, 2013.

Course Objectives: at the end of the semester the student should be able to :-

1-Create representative process flow diagrams and use them to organize systems of equations.

2-Formulate material balances to solve for compositions and flow rates of process streams.

3-Incorporate single and multiple reactions into unit operations within chemical processes.


4-Understanding of the degrees of freedom analysis and its significance.

5-Ability to make material balances on unit operations and processes.

No.	Contents	Duration
1	Concepts of material balance.	2 hr
2	Systematic steps of solving material balance problems.	2 hr
3	Material balances without chemical reactions.	4 hr
4	Material balances with chemical reactions.	6 hr
5	Material balances on combustion processes.	6 hr
6	Material balances involving recycle.	6 hr
7	Bypass and purge streams.	4 hr

Program	Oil an	d Gas R	efinery	Engine	ering	
Course Code	CES.R.124		Credi	ts hr		
Course Title	Chemistry of					
	Petroleum					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemistry	2	2	0	4	3

Course Description

An Introduction to Organic Compounds, preparation, reaction including petroleum and heterocyclic compound

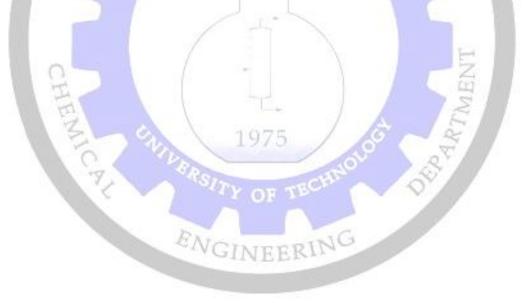
Course Text

1- Ghatak,k.l," textbook of organic chemistry and problem analysis",PHL Learning.2014. **Other support books :-**

- Morrison, Thornton R.; Boyd, Neilson, R. "Organic Chemistry" 6th edition, J. Chem. Educ. 1992
- 2- Bruice, P.Y. ,J.M "organic chemistry", 7th edition ,. Books a la Carte Edition, 2014

Course Objectives: at the end of the semester the student should be able to :-

- 1- Students will learn the basic concepts of organic chemistry
- 2- understanding the concepts of organic reactions for analysis of unit processes
- 3- Students will learn the Petroleum chemistry and refining


No.	Contents	Duration
1	An Introduction to Organic Compounds:Nomenclature, PhysicalProperties, and Representation of Structure	6hr
2	Preparation and Reactions : Alkanes, Alkenes, Dienes, Alkynes, aromatic hydrocarbon	6hr
3	Preparation and Reactions : alkanes derivative (RX, ROH, RCOOH, RCOH, RCOR,etc. Organometalic	9hr
4	Mechanisms of organic reactions: (elimination, substation, addition)	2hr
5	Petroleum : Origin of petroleum, Composition, Refining, Kerosene, Naphtha	4hr
6	Heterocyclic compounds : Isolation and reactions of furan, pyrrole, pyridine	3hr
	Terpenes	

Practical: (Chem. lab.)

No.	Experiment Name
1	Boiling point determination
2	Melting point determination
3	Simple Distillation
4	Preparation of aspirin
5	Preparation of ester
6	Identification of functional groups-I
7	Identification of functional groups-II
8	Saponification reaction
9	Preparation of phenolphthalein
10	Synthesis of adipic acid
11	Synthesis of furan

Program	Oil a	nd Gas k	Refinery	, Engin	eering	
Course Code	CES.R.126					
Course Title	Engineering Mechanic and Strength of Materials		Credi	ts hr		Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Physics	2	_	1	3	2

Course Description

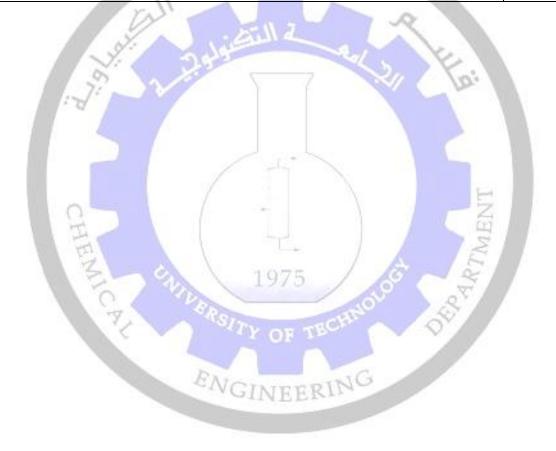
Principles of statics, Resultant of a force system, Equilibrium of a force system, Moment of a force, Friction, Centroid and center of gravity, Moment of inertia, Analysis of internal force, Strain, Stress-strain diagram, Hook's law, Shearing deformation, Poisson's ratio, Volumetric strain, Thin-walled cylinders, Thermal stress, Shear and bending moment in beam.

Course Text

1- Engineering Mechanic-Statics and Dynamics volume 1; Higdon, A. and Stiles, W.B., 3^{ed} Edition, Prentice-Hall, India, (1968).

2- Strength of Materials; Singer, F.L. and Pytel, A., 3^{ed} Edition, Harper and Row, London, (1980).

Course Objectives : at the end of the semester the student should be able to :-


Designed to study the effects of external forces on a group of solid objects, Resistance of materials and their applications in chemical engineering.

	s Covereu (Syllabus)/ Course The	
No.	Contents	Duration
1	Friction: Theory of Friction, friction on an inclined plane	3 hr
2	Centroid and Center of Gravity:	3 hr
3	Moment of Inertia (Second moment of the axis): Polar moment of inertia, Transfer formula for moment of inertia	3 hr
4	Introduction Force in Rigid Bodies: Definitions of Stress and Strain, Stress-Strain Diagrams	2 hr
5	Proportional Limits: Elastic limit, Stiffness elasticity, Plasticity, Hardness and working stress.	4 hr

6	Hook 's Law	3 hr
	Poisson Ratio, Composite Stresses:	
7	Volumetric Stress, Bulk Modulus, Thin Walled Cylinders	4 hr
8	Thermal Stress	4 hr
9	Shear and Bending Moments in Beam	4 hr

Program	Oil an	d Gas R	efinery	Engine	ering	
Course Code	CES.R.114		Credi	ts hr		
Course Title	AutoCAD					Units
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Computer Programming I	1	2		3	2

Course Description

introduction, AutoCAD program components and how to use it, knowing AutoCAD commands like point, lines, Rectangle, Polygon, Poly line, Arc with their option to draw 2D engineering drawing, learning Hatching, text, mtext, Dimension creation and editing, Modify command and Layers for 2D engineering drawing.

3D drawing methods: Surfaces, Solids and Composite solid.

Render, background, lights for drawing.

Course Text

1-Terry T. Wohler, applying AutoCAD 2002 fundamentals, Glencoe /McGraw-Hill
2-James A. Leach, AutoCAD 2002 Companion Essentials of AutoCAD plus Solid modeling ,2003, McGraw-Hill, Boston
3- Terry T. Wohler, applying AutoCAD a step by step approach for AutoCAD release 13, 1996, Glencoe McGraw-Hill
4- James A. Leach, AutoCAD 14 Companion Essentials of AutoCAD plus Solid modeling ,1999,WCB / McGraw-Hill, Boston
Other support books :-David Byrnes and Mark Middlebrook, AutoCAD® 2007 For Dummies, Wiley Publishing, Inc.

Course Objectives : at the end of the semester the student should be able to :-

1- The students can use AutoCAD program and produce 2D and 3D chemical engineering drawings.

ENGINEERING

2- Enable students to draw designed equipment in AutoCAD program.

No.	Contents	Duration
1	Introduction, Drawing program screen components, Setting drawing limits, Units, Grid and snap, Zoom, Orthogonal, Osnap, UCS. 2D drafting: Cartesian system coordinate, AutoCAD drawing command: Point, Line: line, multi-line, construction line, drawing line by using: absolute coordinate, polar coordinate, relative coordinate, Example	3hr
2	Continuous line drawing: Rectangle, Polygon, Poly line with their options, Example	3hr

3	Curves drawing: Arc, Circle, point –SP line, Ellipse with their options, Example.	3hr
4	Hatching, text command: text, mtext, Example	3hr
5	Dimension creation and editing, Example	3hr
6	Region, block, insert block, Example	3hr
-	Modify command:	3hr
7	1-coy tool: copy, mirror, offset, array. 2- Erase tool: erase, trim, break .3- move tool: move, rotate .4- Change tool: stretch, Lengthen, Extend, Scale, Chamfer, and Fillet .5-Explode, Example	
8	Layers: Create a new layer ,rename layer, active layer, run and extinguishing layers ,Freezing layers, Lock and open layers, the color ,Font type ,Line width, Example	3hr
9	3D drawing methods: Surfaces drawing: box, Wedge, Pyramid, Dome, Sphere, Cone, Torus, Dish, Example	3hr
10	3D drawing methods: Solids: box, Cylinder, Sphere, Cone, Wedge, Torus, Example	3hr
11	Composite solid: Union, Subtraction, Intersection, Example	3hr
12	render, background, lights, Example	3hr
13	Examples of chemical engineering drawing and exercises.	3hr
14	Examples of chemical engineering drawing and exercises.	3hr
	Examples of chemical engineering drawing and exercises.	3hr

Practical Topics Covered (Syllabus)

No.	Experiment Name
1	introduction to AutoCAD program, drawing rectangular using lines in absolute coordinate, polar coordinate, relative coordinate
2	Continuous line drawing: drawingrectangular,Polygonwith their options
3	Curves drawing:Arc, Circle, point –SP line, Ellipse with using their options
4	Hatching, text :sectionDrawingofgeometryshapeand applied Hatching, text command
5	Dimensions: Drawing a simple chemical flow chart and add Dimension.
6	drawing 2D drawing and applying Region, block, insert block
7	Modify command: Drawing simple 2D shape and applying Modify commands such as copy, mirror, offset, array, trim, move, rotate, stretch, Lengthen, Extend, Scale, Chamfer, and Fillet.
8	Layers:Drawing a simple 2D chemical engineering drawing and applied layers.
9	3D drawing methods: Surfaces, Drawingbox, Wedge, Pyramid, Dome, Sphere, Cone, Torus, Dish3D
10	3D drawing methods: Surfaces,DrawingSolids shapes: box, Cylinder, Sphere, Cone, Wedge, Torus,
11	Composite solid: Drawing Solids shapes and applying Union, Subtraction, Intersection.
12	Drawing simple chemical engineering drawing and applying render, background, lights.
13	Drawing process flow diagram of chemical engineering unit
14	Drawing chemical engineering Applications
15	Drawing chemical engineering Applications

Prog	ram	Oil a	and Gas R	efinerv	Engine	ering	
Cour	rse Code	CES.R.128		Credits			
	rse Title	Electrical		Cicuito	, 111		
Cour		Technology					Units
Tern	n	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prere	equisite(s)	Physics	1	-	1	2	1
Cour	se Descript	tion	I				
	· · · · ·	er the basic electric	engineering w	with details	and examp	ples in dire	ect current
		calculations, standa			-	L	
elect	romagnetisr	n ,generator ,alternat	ing current,, tra	nsformer ,n	notors and i	instrumenta	tion,
	se Text		d III =	Light /			
1- Jo	hn Bird," E	lectrical Circuit Theo	ory and Technol	logy",2 nd ec	lition, Elsev	vier Science	e, 2003
2- J	ohn Bird," I	Electrical and Electro	onic Principle an	nd Technolo	$ogy", 2^{nd} ed$	lition, 2003	
	-	coni, "Fundamentals					
		drake, "Handbook of					l,, 2003
		ves : at the end of th				1	
		ing of the fundament					
4-		ould be know the bas	sic electric prin	ainla hagia	DC and	A C circuit	
			-	÷			
		notors, transformer a	and should be a	able to wor	k safety in	laboratory	as in
	field and	follow the instructi	and should be a	able to wor	k safety in	laboratory	as in
T :	field and the chemical er	follow the instructingineering.	and should be a on relation be	able to wor	k safety in	laboratory	as in
	field and the chemical er	follow the instructi	and should be a on relation be Title	able to wor	k safety in	laboratory	as in y and
Topi No.	field and the chemical er	follow the instructi ngineering. (Syllabus)/ Course	and should be a on relation be	able to wor	k safety in	laboratory	as in
	field and the chemical er	follow the instructingineering.	and should be a on relation be Title	able to wor	k safety in	laboratory	as in y and
No.	field and chemical er cs Covered Introduct	follow the instructing ineering. (Syllabus)/ Course ion To Dc Circuit:	and should be a on relation be Title Contents	able to wor	k safety in etrical and	laboratory	y as in y and Duration
	field and schemical er cs Covered Introduction Material us	follow the instructing ineering. (Syllabus)/ Course ion To Dc Circuit: se in electric compor	and should be a on relation be Title Contents	able to wor tween elec	k safety in etrical and	laboratory technolog	as in y and
No.	field and chemical er cs Covered Introducta Material us of Kirchho	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric compor- off's Laws Series Para	and should be a on relation be Title Contents nent, ohms law, allel circuit, equ	able to wor tween elec	k safety in etrical and	laboratory technolog	y as in y and Duration
No.	field and chemical er cs Covered Introduction Material un of Kirchho Conversion	follow the instructing ineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comportion off's Laws Series Para n, Node And Mesh A	and should be a on relation be Title Contents hent, ohms law, allel circuit, equ	able to wor tween elec	k safety in etrical and	laboratory technolog	y as in y and Duration
No.	field and chemical er cs Covered Introduction Material un of Kirchho Conversion	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric compor- off's Laws Series Para	and should be a on relation be Title Contents hent, ohms law, allel circuit, equ	able to wor tween elec	k safety in etrical and	laboratory technolog	y as in y and Duration
<u>No.</u>	field and chemical er cs Covered Introduction Material us of Kirchho Conversion Dc And A	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric component off's Laws Series Para n, Node And Mesh A c Generator And M	and should be a on relation be Title Contents hent, ohms law, allel circuit, equ analysis lotor:	temperature	k safety in etrical and e Coefficien stance, star	nt, Review / delta	as in y and Duration 4hr
No.	field and chemical er cs Covered Introduction Material un of Kirchho Conversion Dc And A Principle of	follow the instructing ineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comport off's Laws Series Para n, Node And Mesh A c Generator And M	and should be a on relation be Title Contents hent, ohms law, allel circuit, equ analysis lotor: motor, Transfor	able to wor tween elec- temperature ivalent resi	k safety in ctrical and e Coefficien stance, star	a laboratory technolog	y as in y and Duration
<u>No.</u>	field and the chemical end of the chemical end	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric component off's Laws Series Para n, Node And Mesh A c Generator And M	and should be a on relation be Title Contents hent, ohms law, allel circuit, equ analysis lotor: motor, Transfor	able to wor tween elec- temperature ivalent resi	k safety in ctrical and e Coefficien stance, star	a laboratory technolog	as in y and Duration 4hr
<u>No.</u>	field and chemical er cs Covered Introduction Material us of Kirchho Conversion Dc And A Principle of phase), Ma Feil	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comport off's Laws Series Para n, Node And Mesh A c Generator And M of DC generator and m agnetic and electroma	and should be a on relation be Title Contents hent, ohms law, allel circuit, equ analysis lotor: motor, Transfor	able to wor tween elec- temperature ivalent resi	k safety in ctrical and e Coefficien stance, star	a laboratory technolog	as in y and Duration 4hr 2hr
No. 1 2	field and chemical er cs Covered Introduction Material un of Kirchho Conversion Dc And A Principle of phase), Ma Feil Electroche	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comport off's Laws Series Para n, Node And Mesh A c Generator And M of DC generator and m agnetic and electromatic emical,	and should be a on relation be Title Contents hent, ohms law, allel circuit, equ analysis lotor: motor, Transfor	able to wor tween elec- temperature ivalent resi	k safety in ctrical and e Coefficien stance, star	a laboratory technolog	as in y and Duration 4hr
No. 1 2	field and the chemical end of the chemical end	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comport off's Laws Series Para n, Node And Mesh A c Generator And M of DC generator and n agnetic and electromatic mical, t:	and should be a on relation be Title Contents hent, ohms law, allel circuit, equinallysis lotor: motor, Transfor agnetism, Natur	temperature ivalent resi	k safety in etrical and e Coefficien stance, star uction moto field, mag	nt, Review / delta	as in y and Duration 4hr 2hr
No. 1 2 3	field and the chemical error cs Covered Introduction International I	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comport off's Laws Series Para n, Node And Mesh A c Generator And M of DC generator and m agnetic and electroma mical, t: of AC circuit, rms va	and should be a on relation be Title Contents hent, ohms law, allel circuit, equinallysis lotor: motor, Transfor agnetism, Natur	temperature ivalent resi	k safety in etrical and e Coefficien stance, star uction moto field, mag	nt, Review / delta	y as in y and Duration 4hr 2hr 5hr
No. 1 2 3	field and chemical er cs Covered Introduction Material un of Kirchho Conversion Dc And A Principle of phase), Ma Feil Electroche Ac Circuit Concepts of and Reaction	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comport off's Laws Series Para n, Node And Mesh A c Generator And M of DC generator and n agnetic and electromatic mical, t:	and should be a on relation be Title Contents hent, ohms law, allel circuit, equinallysis lotor: motor, Transfor agnetism, Natur	temperature ivalent resi	k safety in etrical and e Coefficien stance, star uction moto field, mag	nt, Review / delta	y as in y and Duration 4hr 2hr 5hr
No. 1 2 3 4	field and chemical er cs Covered Introduction Material us of Kirchho Conversion Dc And A Principle of phase), Ma Feil Electroche Ac Circuit Concepts of and Reaction	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comport off's Laws Series Para n, Node And Mesh A c Generator And M of DC generator and n agnetic and electromatic emical, t: of AC circuit, rms va ve power – power fa	and should be a on relation be Title Contents hent, ohms law, allel circuit, equinallysis lotor: motor, Transfor agnetism, Natur lue Average val	temperature ivalent resi mer, Introd al magnetic	k safety in etrical and e Coefficien stance, star uction moto e field, mag	a laboratory technolog	y as in y and Duration 4hr 2hr 5hr 2hr
No. 1 2 3	field and chemical er cs Covered Introduction Material us of Kirchho Conversion Dc And A Principle of phase), Ma Feil Electroche Ac Circuit Concepts of and Reaction Polyphase	follow the instructing ingineering. (Syllabus)/ Course ion To Dc Circuit: se in electric comport off's Laws Series Para n, Node And Mesh A c Generator And M of DC generator and n agnetic and electroma mical, t: of AC circuit, rms va ve power – power fa ses Circuit :	and should be a on relation be Title Contents hent, ohms law, allel circuit, equinally totor: motor, Transfor agnetism, Natur lue Average val ctor.	temperature ivalent resi mer, Introd al magnetic	k safety in etrical and e Coefficien stance, star uction moto e field, mag nd peak fact	a laboratory technolog	y as in y and Duration 4hr 2hr 5hr

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.115		Credi	ts hr		
Course Title	Human rights					Units
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	none	1	-	-	1	1

Course Description

The study of the human rights concept and history and its relationship to religions and the extent of his relationship with globalization and contemporary currents.

Course Text

1-Human rights, development, contents Dr.Riyad Aziz Hadi

٢-مبادئ و قواعد عامة في حقوق الأنسان د. صلاح حسن مطرود
 ٣- حقوق الأنسان بين الأسلامي و العالمي د. محمد علي الشجيري
 ٤- حقوق الأنسان و الديمقر اطية د. ماهر صالح الجبورى
 ٥- مشكلة الحرية د. زكريا أبر اهيم

Course Objectives : at the end of the semester the student should be able to :-

- 1-Rooting human rights values in the local culture.
- 2-leading to the development of the concept.
- 3-principles of human rights in general.

No.	Contents	Duration
1	Psychological construction and its relationship with human right	1hr
2	Contemporary Arabs currents ,its position on human right	1hr
3	Secular : the early stage of its development , disadvantages, her features	1hr
4	How can you balance between civil right and social	1hr
5	Capitalist and socialist society with human rights	1hr
6	Close society and an opened society	1hr
7	Theory of the social contract	1hr
8	Thomas Hughes ,Jan-jack Rousseau ,Volter ,AuxtComte,Max Weber	1hr
0	Montesquieu	
9	Relationship of right to democracy	1hr
10	Relationship of right to urbanization	1hr
11	Relationship of right with globalization	1hr
12	Human rights between rejection and acceptance	1hr
13	How can rooting the values of human rights in Arab culture and in the	1hr
13	great cultures	
14	The relationship between the political culture and ideological	1hr
15	Ideological religion	1hr

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.221	Credits hr				
Course Title	Engineering MathematicsI					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics I, Mathematics II	2	-	1	3	2

Course Description

This course describes the evaluation of double, triple integrals, area and volume.Provide knowledge and skills in writing a periodic function in its Fourier series form and on their applications. Develop skills for applying this course in the future on various chemical engineering applications.

Course Text

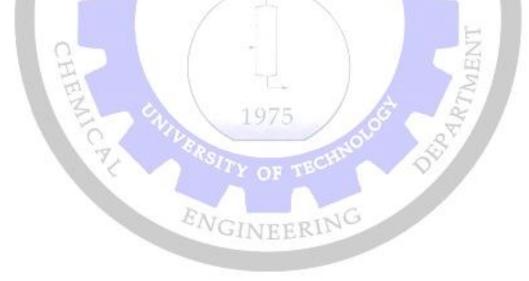
Text book:

1. Higher Engineering Mathematics by Dr.B.S.Grewal, Khanna Publishers, 40th Edition, 2007.

Reference book:

1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edition, 2007.

Course Objectives: at the end of the semester the student should be able to:-


- 1- Able to evaluate double, triple integrals and the area, volume by double & triple integrals respectively.
- 2- 2. Understand the concept of Fourier-series representation of periodic functions and their applications.

Topics Covered (Syllabus)/ Engineering MathematicsI

No.	Contents	Duration
1	Multiple Integrals: Double Integral, Area, Volume, Double Integral in polar coordinates, Triple Integral in rectangular coordinates, physical application of double and triple integration.	12hr
2	Function and definite Integrals: The error function, the gamma function, the beta function, factorial function.	6hr
3	Infinite Sequences and Series: Sequences, Convergence, Geometric series, nth partial sum, tests of convergence, alternating series, power and Taylor's series.	6hr
4	Fourier series: Periodic functions, Fourier series, Even and odd functions, Half range expansion.	6hr

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.231		Credits	hr		
Course Title	Energy Balance				Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemical Engineering principle I & II	2	-	1	3	2

Course Description

The aims of the course provide a deep knowledge, wide scope and improved understanding of the mechanisms in heat balance for closed and open system and for steady and unsteady state. The students should gain knowledge to apply the energy balance in engineering problems.

Course Text

1. D.M.Himmelblau and J.B.Riggs ,Basic Principles and Calculations in Chemical Engineering ,7th Edition , 2004 .

Other support books :-

2. R.M.Felder and R.W.Rousseau, Elementary Principles of Chemical Processes ,3rd Edition ,2005.

1975

Course Objectives : at the end of the semester the student should be able to :-


- 1. The terminology associated with energy balances, concepts, and units.
- 2. Introduction to energy balances for processes without reaction .
- 3. Calculation of enthalpy changes .
- 4. Energy balances : how to account for chemical reaction .

No.	Contents	Duration
1	Energy : Terminology , Concept , and units: The terminology associated with energy balances , Types of energy : Work , Heat , Kinetic energy , Potential energy , Internal energy , Enthalpy .	4hr
2	Introduction to Energy Balances for Processes without Reaction: The concept of the conservation of energy , Energy balances for closed , unsteady-state systems , Energy balances for closed , steady-state systems , Energy balances for open , unsteady-state systems , Energy balances for open, steady-state systems .	6hr
3	Calculation of Enthalpy Changes:	6hr

	Phase transitions, Equation to estimate heat of vaporization, Heat capacity equations, Tables and charts to retrieve enthalpy values.	
4	Application of Energy Balances in the Absence of Chemical Reaction: Simplifications of the general energy balance , The strategy for solving energy balance problems , Applications of the energy balance to closed systems , Applications of the energy balance to open systems.	8hr
5	Energy Balances : How to Account for Chemical Reaction: The standard heat of formation , The heat of reaction , Merging the heat of formation with the sensible heat or a compound in making an energy balance , The heat of combustion .	6hr

Program	Oil a	Oil and Gas Refinery Engineering					
Course Code	CES.R.233	Credits hr					
Course Title	Fluid Flow I	Units				Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	Child	
Prerequisite(s)	Principles of Chem. Eng. & Math	2	2	1	5	3	

Course Description

- Define fluid properties, stresses in fluids at rest and in motion and types of fluid flows, application of Newton law of viscosity and dimensional analysis methods...
- Derive and define the governing equations of fluid flow: continuity, energy and momentum equations from principles of mass, energy and momentum conservation and define the terms of Bernoulli's equation, include major and minor losses and required energy for flow...
- Define the types of fluid pumping devices and its characteristics and how to select the appropriate type and size for fluid pumping...
- Define the types on Non-Newtonian and two-phase fluids flow and their pressures drop calculations...

Course Text

- 1- Coulson, J.M., Richardson, J.F., Backhurst, J.R. and Harker, J.H., "Chemical Engineering" Volume(1) 6thEd., Butterworth-Heinemann, 1999
- 2- Holland, F.A. and Bragg, R., "Fluid Flow for Chemical Engineers", 2nd Ed., Edward Arnold, 1995.

Other support books :-

- 1- DARBY. R., Dekker M. "Chemical Engineering Fluid Mechanics", 2nd Ed.Marcell Dekker, 2001
- 2- Wilkes J. O., "Fluid Mechanics for Chemical Engineers", 2nd Ed. Prentice Hall PTR, 1999.
- 3- De Nevers, N. "Fluid Mechanics for Chemical Engineers", 2nd Ed.McGraw-Hill 1991.
- 4- McCabe, W. L., Smith, J. and Harriot, P., "Unit Operations of Chemical Engineering", 6th Ed., McGraw Hill, International Edition, 2001.
- 5- Christi J. Geankoplis "Transport Processes and Unit Operations" 3rd Ed. Printice Hall International Editions, 1993.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Demonstrate knowledge of incompressible fluid flows, two phase flow, fluid statics, kinematics of flows and essential basic hydrodynamics.
- 2- Define and solve problems in fluid dynamics in various engineering applications. Provide the ability to describe energy variation and its application in flow and pressure measurement and frictional energy losses calculations.
- 3- Provide the ability to estimate the required energy for fluid pumping (selection the size and type of appropriate pumping for liquid and gas) and to design the liquid mixing

equipment.

- 4- Predict necessary fluid parameters of full scale projects by performing simple model experiments.
- 5- Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently.

Topics Covered (Syllabus)/Fluid Flow I

No.	Contents	Duration
1	INTRODUCTION: Definition of a fluid, fluid mechanics; Physical properties of fluids: Density, specific gravity, viscosity, kinematic viscosity, surface tension and capillarity, bulk modulus of elasticity, Pressure and shear stress; Types of Fluids: Newtonian, non-Newtonian fluids ideal and real fluids, Newton's law of viscosity.	4 hrs
2	Dimensional Analysis : Units and dimensions; Fundamental dimensions; Dimensional homogeneity; Dimensionless number Methods of dimensional analysis, 1- Rayleigh's method (power series) 2- Buckingham's П- method / Theorem	4 hrs
3	Fluid Statics : Basic consideration of fluid statics; Pressure head of liquid; Pressure force on surfaces; Buoyancy; Measurement of pressure: (Piezometer, Manometers, types of Manometers, Mechanical Gauges)	4 hrs
4	Fluid Dynamics, Newtonian's Incompressible Fluid: Fluid kinematics: Types of fluid flow (steady and unsteady flows, uniform and non-uniform flows, one, two, and three dimensional flows, Rotational and irrotational flows, laminar and turbulent, compressible and incompressible flows), velocity distribution in laminar and turbulent flow Boundary layer, Continuity equation, Momentum equation, Bernoulli's equation, Euler's equation of motion, modified Bernoulli's equation, pipe size selection; Two-Phase Flow, Horizontal and vertical flow regime, calculation of pressure drop of two-phase flow by Lockhart and Martinelli method.	8 hrs

in.

Pumping of Liquids

5	Total heads, NPSH, Horse Power and cost consumption, Pumping Efficiencies Characteristics curves Types of the pumps, Selection of Pumps. Centrifugal pump relations, homologous centrifugal pump, centrifugal pumps in series and in parallel.	6 hrs
6	Non-Newtonian Fluids in Pipes Definition, types of non-Newtonian fluids, flow characteristics, apparent viscosity, shear rate and description of time-independed fluid, calculation of friction and pressure drop for general time independent in laminar and turbulent flow	4 hrs

Practical :Fluid Flow I

No.	Experiment Name.
1	Calibration of Bourdon Tube Pressure Gauge
2	Reynolds Experiment
3	Energy Loss in Pipes
4	Centrifugal Pump Characteristics
5	Bernoulli's Theorem Demonstration
6	Friction Losses in Piping Systems OF
7	Gear Pump
8	Flow Visualization

Progr	am	Oil and O	Gas Refin	ery Eng	ineerin	g.	
Cours	se Code	CES.R.235	<i>v</i>	Credits I		0	
Cours	se Title	Physical ChemistryI					Units
Term	L	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prere	quisite(s)	1-chemical engineering principles 2-chemistry	2	2	-	4	3
	se Descrip	tion stry is the application of					
princi Cour 1. J. I 2. G. 2000. Cour 1	iples deterr se Text Laidler, phy Mortimer, se Objecti - 1. Be ab	litative and quantitative st nining the behavior of matt vsical chemistry, Bosten; H physical chemistry, San F ves : at the end of the sen le to solve problems involv rstand the principles gove	ter. loughton M, ff rancisco; Altar nester the stud ring ideal mixtu	l.n company court science lent should ure and dilu	y, 1999. The and tech be able to te solution	nology c :- s.	company,
4 5	 4. Be ab these sol 5. Be at constant 	ble to apply experimental	rate laws and t techniques to	o solve a va			
No.			ontents		N		uration
1	involving vapor equ compositi		1975 mponent system pria of two con ying Raoults la	nponent syst w, tempera	em, liquid ture		12 hr
	Chemica	Kinetics 1:	GINEER	11.			
2	equation,	onsumption and formation, order of reaction, reactions icients, analysis of kinetic	s having no ord				6 hr
	Surface of	hemistry :					
3		on, adsorption isotherms, su					12hr

Practical Physical Chemistry I

No.	Experiment Name.
1	Refractive index.
2	Viscosity.
3	Saponfication of acetate ethyl.
4	Three component system(water, ethanol and ethyl acetate)
5	Molecular weight determination by victor meyers method.
6	Calorimeter Constant.
7	Heat of solution
7 8	Heat of solution Surface tension.
<u> </u>	

Program	Oil and Go	d Gas Refinery Engineering					
Course Code	CES.R.211	Credits hr					
Course Title	Computer Programming II		Units				
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	 Basic Principles of chemical engineering I. Mathematics I. Computer programming I 	1	2	1	4	2	

Course Description

To introduce chemical engineering students to modern calculating tool used in the practice of engineering by being able to construct plots, fit data, and use built-in functions in MATLAB.

Course Text

- 1- RudraPratap: Getting started with MATLAB 7, Oxford Press (Indian edition),2006.
- 2- Desmond J. Higham and Nicolas J. Higham: Matlab Guide, SIAM, 2000.

Other support books :-

- 1- Duane Hanselman and Bruce Littlefield: Mastering Matlab-6: A Comprehensive Tutorial and Reference, Prentice Hall, 2001.
- 2- Schilling R. J., Harries S.L., Applied Numerical Methods for Engineers using MATLAB & C, Thomson Books, 2002.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Develop the confidence necessary to successfully solve Mathematical problems with a computer.
- 2- Formulate and write structured code in MATLAB.
- 3- Understand the foundation behind the basic numerical methods for Matrix manipulations.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Starting With Matlab: MATLAB windows, Menus and the toolbar, Working in the command window, Arithmetic operations with scalars, Display formats, Elementary math built-in functions, Useful commands for managing variables, Script files and the Editor Debugger, Matlab Help System	2hr
2	Symbolic Math : Symbolic objects, and symbolic expressions, Changing the form of an existing symbolic expression, Solving algebraic equations, Differentiation, Integration, Solving an ordinary differential equation.	3 hr
3	Creating Arrays: Creating a one-dimensional array (vector), Creating a two-dimensional array (matrix), The transpose operator, Array addressing, Using a colon: in addressing arrays, Adding elements to existing variables, Deleting elements, Built-in functions for handling arrays, Strings and strings as variables.	2 hr
4	Mathematics With Array: Addition and subtraction, Array multiplication, Array division, Element- by-element operations, Using arrays in MATLAB built-in math functions, Built-in functions for analyzing arrays, Generation of random numbers, Solving Algebraic Equations.	3hr
5	Polynomials, Curve Fitting, And Interpolation: Polynomials, Curve fitting, Interpolation, Extrapolation.	2hr
6	Programming In Matlab: Relational and logical operators, Conditional statements, The switch case statement, Loops, Program Design and Development.	3hr

Progr	am	Oil a	nd Gas K	Refinerv	, Engin	eering	
Cours	se Code	CES.R.223		Credi			
	se Title	Material Eng. (I)		01001			Units
Term		1 st Semester	Theoretical	Practical	Tutorial	Total	Onits
Prere	quisite(s)	Strength of material+ General chemistry	2	_	1	3	2
	se Descripti						
		assification of materi					
therm	nal and elect	rical properties of n	naterials and	Crystal str	ucture and	imperfectio	n in solid
mater			111-	1211			
	se Text			9-11			
20 2-Wil 3-Lav	006 . lliam D. Call wrence H. Va	teland, The science a ister, Jr. , Materials survlack , Elements of	cience and en materials scie	gineering, I	Fifth editior gineering, l	n, 2000. Fifth edition	
Cour	se Objective	es : at the end of the	semester the	student sh	ould be ab	le to :-	
2	2. Describe materials.	and solve problems of and solve problems Syllabus)/ Course T	s on mechan				
No.			Contents				Duration
1	Classification of Materials: Classification of materials, classification of materials based on structure, advanced materials					structure,	4hr
2	Mechanical Properties of Materials:					6hr	
3	Atomic str The structu spacing	ucture: are of atom, atomic	bonding, bo	onding ener	rgy and in	ter-atomic	6hr
4	Types of a metallic cr structure, c	erystal systems, crys	tal direction				8hr
5	techniques for crystal structure analysisThermal and electrical properties of materials:Heat capacity, thermal expansion, thermal conductivity, thermal stresses,Glass transition temperature, Creep resistance, electrical conductivity, electronmobility, electrical resistivity of metals						6hr

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.237	Credits hr				
Course Title	Properties of Petroleum fuels	Units				Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	petroleum chemistry	2	2	0	4	3

Course Description

The objective of this course to understand the petroleum(crude oil),its properties ,the physical and chemical properties of crude oil and the five or six basic products ,the purification and the distillation of crude oil to obtain different products and explain in details all the properties of the products

Course Text

- 1. Speight, J.G, Handbook of petroleum product analysis, John Willey & Sons, 2002.
- 2. Speight J.G. and Ozum,B; Petroleum Refinery processes, Macel Dekker, New York, 2002.
- 3. Speight J.G., The chemistery and Technology of petroleum, 3rd Edition. Marcel Dekker, New York 1999.
- 4. Petroleum Fuels Manufacturing hand book; SurinderParkash, McGraw-Hill companies, 2010.

Course Objectives : at the end of the semester the student should be able to :-

- 1- To provide an understanding of the definition of petroleum ,and its classification , its quality during to its properties.
- 2- A comprehensive understanding of the petroleum product which they appear in visible form ,such as gasoline ,diesel , kerosene , and in less visible form over the entire spectrum of industry such as automobile lubricants , greases, carbon black for truck tires.
- 3- Ability to think that a refinery may produce five or six basic products such as LPG, naphtha, kerosene, diesel, and fuel oils, but specialty manufactures may produce a large number of their products from these basic refinery products.

Topics Covered (Syllabus)/ Properties of Petroleum fuels

No.	Contents	Duration
1	Petroleum analysis:	2hr
	Historical perspective, modern perspectives, analysis of petroleum, Sampling of petroleum	
		01
2	Definition of petroleum assay	2hr
3	Petroleum products:	2hr
	Natural gas, refinery gas, Liquid Petroleum gas\Automotive LPG, LPG storage.	
4	LPG manufacture:	2hr
	Extraction plant, Acid gas removal, Fractionation plant, Specification of gases.	E
5	Naphtha:	2hr
	Naphtha production,(crude distillation unit, Naphtha	
	refractionation unit, Naphtha desulfurization)	
6	Naphtha specification: Naphtha uses.	2hr
7	Gasoline:	2hr
		Z
	Introduction, gasoline engine, gasoline properties, gasoline	Li li
	blending, pollution from gasoline combustion, catalytic	No.
	converter.	1
8	Gasoline specification:	2hr
		R
	Benzene, aromatics, olefins, sulfur, RVP, oxygenates,	6 ⁹
	gasoline distillation.	× /
9	Aviation Gasoline:	2hr
	ENCIMPERING	
	Aviation Gasoline specification: antiknock quality,	
	performance number, distillation, RVP, heat of combustion,	
	freezing point additives.	
10	Kerosene:	2hr
	Introduction: Jet fuel, Grade and specification, Jet A-1, Jet A,	
	Jet B, Millitary Jet fuel specification,	
11	Jet fuel quality characteristic:	2hr
	Distillation and he waint with the last of the	
	Distillation, smoke point, aniline gravityproduct, mercaptan	
	sulfur, acidity, hydrogen content, Aviation fuel additives.	

12	Diesel Fuel:	2hr
	Introduction, Diesel engine, specifications, viscosity, sulfur,	
	cold flow properties, Cetane Number, Cetane Index, Diesel	
	Index, Back End Volatility	
13	Diesel Fuel Emission:	2hr
	Diesel particulate matter, cabon dioxide, cabon monoxide,	
	nitrogen oxides, hydrocarbon}, diesel storage stability, diesel	
	fuel additives, diesel blending.	
14	Residue fuel oils:	2hr
	1 11-1-2 U	2
	Uses of residue fuels, Residue fuel oil specifications, marine	
	fuel oils.	
15	Properties of residual fuel oils:	2hr
	Viscosity, sulfur, ash content, ignition quality, water, heat of combustion], residual fuel oil burning.	E.

Practical : Properties of Petroleum fuels

No.	Experiment Name.
1	ASTM distillation exp.
2	Density and specific gravity exp
3	Viscosity& viscosity index exp.
4	Salt content in crude oil
5	Gum and gum stability
6	Flash & fire point
7	Ash content for petroleum products
8	Conrad Son Carbon residue of petroleum

	am	Oil a	nd Gas R	Refinery	Engin	eering	
Cour	se Code	CES.R.213		Credi			
	se Code			Cieui			
Term		Democracy		D 1	T 1	TF = 1	Units
Term	L	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prere	quisite(s)	none	1	-	-	1	1
	se Descripti						
	•	Democracy concept an	•		1	0	
		velopment , also the ad	dvantages and	l the disadv	antages of o	lemocracy	
Cour	se Text						
		المجر	الشجيري	د. محمد علي سالح الجبوري		سان بين الأسّلا سان و الديمقرا. رية د. زكريا أب	٣- حقوق الأن ٤- حقوق الأن
Cour	se Objectivo	es : at the end of the	semester the	student sh	ould be ab	le to :-	
		emocracy and how ca	an adapt our c	ulture with	the princip	les of demo	ocracy
0	eneral.	J					
		nt to their own cultu			-		
		ning in the emergence		ratic cultu	re in unive	rsity comn	nunity
		and external commu		-		1	
-	<u>cs Coverea (</u>	(Syllabus)/ Course T					Derection
No.	Domoore	definition a brief	Contents	octoriction	advantage		Duration
1		y: definition, a brief and its disadvantag		acteristics	auvantage	5 01	1
2			0		8	E III	1hr
4	arah mudi	mportant problem is	acing the imp	olementatio		E	1hr 1hr
	al au-illusi	im world		olementatio		E	
3			acing the imp	- /	on of demo	E	
3 4	Relationsh	im world	acing the imp application o	f democrae	on of demo	E	1hr
	Relationsh How can a Democracy	im world ip awareness in the a dapt our culture wit y between changes a	acing the imp application o h the princip nd external p	f democrae les of dem pressures	on of demo cy ocracy	cracy in	1hr 1hr 1hr 1hr 1hr
4	Relationsh How can a Democracy	im world ip awareness in the a dapt our culture wit	acing the imp application o h the princip nd external p	f democrae les of dem pressures	on of demo cy ocracy	cracy in	1hr 1hr 1hr 1hr
4 5 6 7	Relationsh How can a Democrac A pressure The advan	im world ip awareness in the a dapt our culture wit y between changes an group the differenc tages of democracy a	acing the imp application o h the princip nd external p e between the and the disad	f democrae les of demo ressures em and the lvantages	on of demo cy ocracy	cracy in	1hr 1hr 1hr 1hr 1hr
4 5 6 7 8	Relationsh How can a Democrac A pressure The advan The theory	im world ip awareness in the a dapt our culture wit y between changes an group the differenc tages of democracy a y of social determinis	acing the imp application o h the princip nd external p e between the and the disad sm in state-bu	f democrae les of demo ressures em and the lvantages iilding	on of demo cy ocracy	cracy in	1hr1hr1hr1hr1hr1hr1hr1hr1hr
4 5 6 7 8 9	Relationsh How can a Democrac A pressure The advan The theory Relationsh	im world ip awareness in the a dapt our culture wit y between changes an group the differenc tages of democracy a of social determinis ip between democra	acing the imp application o h the princip nd external p e between the and the disad sm in state-bu	f democrae les of demo ressures em and the lvantages iilding	on of demo cy ocracy	cracy in	1hr
4 5 6 7 8 9 10	Relationsh How can a Democrac A pressure The advan The theory Relationsh Developme	im world ip awareness in the a dapt our culture wit y between changes an group the differenc tages of democracy a of social determinis ip between democra ent and democracy	acing the imp application o h the princip nd external p e between the and the disad sm in state-bu	f democrae les of demo ressures em and the lvantages iilding	on of demo cy ocracy	cracy in	1hr
4 5 6 7 8 9	Relationsh How can a Democrac A pressure The advan The theory Relationsh Developme Religion an	im world ip awareness in the a dapt our culture wit y between changes an group the difference tages of democracy a of social determinis ip between democracy ent and democracy	acing the imp application o h the princip nd external p e between the and the disad sm in state-bu cy and globa	f democration les of demo pressures em and the lyantages nilding lization	on of demo cy ocracy	cracy in	1hr
4 5 6 7 8 9 10	Relationsh How can a Democrac A pressure The advan The theory Relationsh Developme Religion an The third	im world ip awareness in the a dapt our culture wit y between changes an group the differenc tages of democracy a of social determinis ip between democra ent and democracy ad democracy way between socialis	acing the imp application o h the princip nd external p e between the and the disad sm in state-bu cy and globa m and capita	f democrae les of demo ressures em and the vantages ilding lization	on of demo cy ocracy e political p	cracy in parties	1hr
4 5 6 7 8 9 10 11 12	Relationsh How can a Democrac A pressure The advan The theory Relationsh Developme Religion an The third Reasons fo	im world ip awareness in the a dapt our culture wit y between changes an group the differenc tages of democracy a y of social determinis ip between democra ent and democracy nd democracy way between socialis or the spread of finan	acing the imp application o h the princip nd external p e between the and the disad sm in state-bu cy and globa m and capita	f democrae les of demo ressures em and the vantages ilding lization	on of demo cy ocracy e political p	cracy in parties	1hr
4 5 6 7 8 9 10 11 12 13	Relationsh How can a Democracy A pressure The advan The theory Relationsh Developme Religion an The third y Reasons fo how to con	im world ip awareness in the a dapt our culture wit y between changes an group the difference tages of democracy a of social determinis ip between democra ent and democracy ad democracy way between socialis or the spread of finan front it	acing the imp application o h the princip nd external p e between the and the disad sm in state-bu cy and globa m and capita ncial and adn	f democrae les of demo ressures em and the vantages ilding lization	on of demo cy ocracy e political p	cracy in parties	1hr
4 5 6 7 8 9 10 11 12	Relationsh How can a Democracy A pressure The advan The theory Relationsh Developme Religion an The third Reasons fo how to com	im world ip awareness in the a dapt our culture wit y between changes an group the difference tages of democracy a of social determinis ip between democra ent and democracy may between socialis or the spread of finan front it as for the collapse of	acing the imp application o h the princip nd external p e between the and the disad is in state-bu cy and globa <u>m and capita</u> ncial and adn democracy	f democrae les of demo oressures em and the vantages ilding lization	on of demo cy ocracy e political p	cracy in parties	1hr 1
4 5 6 7 8 9 10 11 12 13 14	Relationsh How can a Democracy A pressure The advan The theory Relationsh Developme Religion an The third Reasons fo how to com The reason The relation	im world ip awareness in the a dapt our culture wit y between changes an group the difference tages of democracy a of social determinis ip between democra ent and democracy ad democracy way between socialis r the spread of finan front it as for the collapse of onship between the in	acing the imp application o h the princip nd external p e between the and the disad is in state-bu cy and globa <u>m and capita</u> ncial and adn democracy	f democrae les of demo oressures em and the vantages ilding lization	on of demo cy ocracy e political p	cracy in parties	1hr
4 5 6 7 8 9 10 11 12 13	Relationsh How can a Democracy A pressure The advan The theory Relationsh Developme Religion an The third y Reasons for how to com The relation Democracy	im world ip awareness in the a dapt our culture wit y between changes an group the difference tages of democracy a of social determinis ip between democra ent and democracy may between socialis or the spread of finan front it as for the collapse of	acing the imp application o h the princip nd external p e between the and the disad is in state-bu cy and globa <u>m and capita</u> ncial and adn democracy	f democrae les of demo oressures em and the vantages ilding lization	on of demo cy ocracy e political p	cracy in parties	1hr 1

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.222	CES.R.222 Credits hr					
Course Title	Engineering MathematicsII					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Engineering MathematicsI	2	-	1	3	2	

Course Description

This course describe the providing of knowledge on solving ordinary differential equations and applications of first order ordinary differential equations and chemical engineering applications of the theory portion covered will be emphasized.

Course Text

Text book:

1. Higher Engineering Mathematics by Dr.B.S.Grewal, Khanna Publishers, 40th Edition, 2007.

Reference book:

1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edition, 2007.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Understand methods of solving First order and Higher order ordinary differential equations along with some physical applications.
- 2- 2. Demonstrate the relevance of the mathematical methods learnt to chemical engineering.

Topics Covered (Syllabus)/ Engineering MathematicsII

No.	Contents	Duration
1	Solution by Series: Infinite series by Taylor theorem, Method of Frobenius (Case I, II, IIIa, and IIIb), Bessels's and Modified Bessel's Equation, Properties of Bessel Functions, Applications in chemical engineering ,Tubular Gas Preheater, Reaction in axisymmetric Spherical and Cylindrical pellets.	15hr
2	Ordinary Differential Equations: Introduction, Linear equation, Bernoulli's equation, Exact differential equations, Equations reducible to exact equations, Orthogonal trajectories, Newton's law of cooling. Linear differential equations with constant coefficients: Definition, Theorem, Operator D, Rules for finding the complementary function, Inverse operator, Rules for finding the particular integral, working procedure to solve the equation.	10hr
3	Application of Ordinary Differential Equations: Representation problems of 1 st and 2 nd ordinary differential equations (linear and nonlinear, homogeneousetc.).	5hr

Program	Oil and Gas Refinery Engineering.						
Course Code	CES.R.232	CES.R.232 Credits hr					
Course Title	Material and Energy Balance					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Energy Balance	2	-	1	3	2	

Course Description

The aims of the course provide a deep knowledge, wide scope and improved understanding the heat balance that include the effects of chemical reaction as well as unsteady state material and energy balances. The students should gain knowledge to apply the material and energy balance in engineering problems.

Course Text

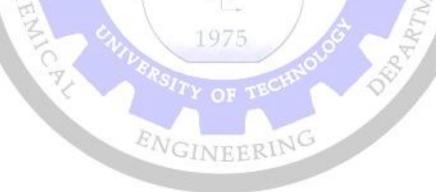
1. D.M.Himmelblau and J.B.Riggs ,Basic Principles and Calculations in Chemical Engineering ,7th Edition , 2004 .

Other support books :-

2. R.M.Felder and R.W.Rousseau ,Elementary Principles of Chemical Processes ,3rd Edition ,2005 .

Course Objectives : at the end of the semester the student should be able to :-

- 1- 1. Energy balances that include the effects of chemical reaction .
- 2- 2. Ideal process, efficiency, and the mechanical energy balance.
- 3- 3. Heat of solution and mixing.
- 4- 4. Humidity (psychrometric) charts and their use .
- 5- 5. Unsteady state material and energy balances .


Topics Covered (Syllabus)/Course Title

No.	Contents	Duration
	Energy Balances that Include the Effects of Chemical Reaction:	
1	Applications of energy balances in processes that include reactions, Calculation of an adiabatic reaction temperature, General energy balance in a process in which more than one reaction occurs, Energy balance to a process composed of multiple units.	8hr

	Ideal Draggers Efficiency and the Machanical Energy Delay and	
2	Ideal Processes, Efficiency, and the Mechanical Energy Balances : Ideal reversible processes, Calculation of the work done during evaporation of a liquid, Calculation of the work in a batch process, efficiency, the mechanical energy balances, Comparison of the reversible work for a batch process with that of a flow process operating under the same conditions, the mechanical energy balance to the pumping of water .	4hr
3	Heat of Solution and Mixing: Heat of solution, Heat of dissolution, Heat of mixing, Introducing the effects of mixing into the energy balance.	4hr
4	Humidity (Psychometric) Charts and their Use: The humid heat , The humid volume , The dry-bulb temperature , The wet-bulb temperature , The humidity (psychometric) chart , Wet-bulb line , Adiabatic cooling line , Applications of the humidity chart .	6hr
5	Unsteady state Material and Energy Balances : Unsteady-state material balance without generation , Material balance on batch distillation , Unsteady-state chemical reaction , Unsteady-state energy balance .	8hr

Program	Oil and Gas Refinery Engineering.						
Course Code	CES.R.234	S.R.234 Credits hr					
Course Title	Fluid Flow II					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Fluid Flow I	2	2	1	5	3	

Course Description

Application of Bernoulli's equation and derive the flow rate equations and explain the principles of flow measuring devices in open and closed channels...

Derive and define the governing equations of compressible fluid flow: continuity, energy and momentum equations from principles of mass, energy and momentum conservation with various gas flow conditions, Mach Number and flow through conversion-diversion nozzle with application for subsonic, sonic, supersonic flow, types of gas pumping devices, Compressors types with ideal and actual gas compression cycle and calculation of compressor work ...

Define and description for liquid mixing equipment and its design calculations with the energy consumption by this equipment...

Derive the terminal falling velocity and description drag coefficient for flow through packed columns and pressure drop calculation for fixed and fluidized beds and transport of particles...

Course Text

- 1- Coulson, J.M., Richardson, J.F., Backhurst, J.R. and Harker, J.H., "Chemical Engineering" Volume(1) 6thEd., Butterworth-Heinemann, 1999
- 2- Coulson, J.M., Richardson, J.F., Backhurst, J.R. and Harker, J.H., "Chemical Engineering" Volume (2) 5th Ed., Butterworth-Heinemann, 2002
- 3- Holland, F.A. and Bragg, R., "Fluid Flow for Chemical Engineers", 2nd Ed., Edward Arnold, 1995.

Other support books :-

- 1- McCabe, W. L., Smith, J. and Harriot, P., "Unit Operations of Chemical Engineering", 6th Ed., McGraw – Hill, International Edition, 2001. 2- Christi J. Geankoplis "Transport Processes and Unit Operations" 3rd Ed. Printice Hall
- International Editions, 1993.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Define the operation principles of the different types flow measurement, solve problems in fluid flow through flow measurement devices with applications for steady and unsteady flow.
- 2- Demonstrate knowledge of compressible fluid flows, with differences of equations using depending on compressible flow conditions, sonic (sub)(super)sonic flow, conversion*diversion nozzle, types of gas pumping devices.
- 3- Provide the ability to estimate the energy (power) consumption for liquid mixing

equipment and to design it by predict necessary fluid parameters of full scale projects by performing simple model experiments.

- 4- Provide the ability to estimate the terminal falling velocity and description drag coefficient for flow through packed columns and pressure drop calculation for fixed and fluidized beds and transport of particles...
- 5- Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently.

Topics Covered (Syllabus)/Fluid Flow II

No.	Contents	Duration
1	Flow Measurement: Pitot tubes, orifice meter, venturi meter, nozzle meter, Rotameters other types of flow meters, flow in open channels and weirs with steady and unsteady applications	6 hrs
2	Flow of Compressible Fluid: General equation, equation of state, sonic velocity in fluids, Mach No. Isothermal, Non-isothermal and Adiabatic flow of an ideal gas in horizontal pipes, Converging-diverging nozzle for gas flow. Types of gas pumping devices (fans, blowers compressors) compressors types and gas compression cycle and calculations of work and efficiency of compressor	10 hrs
3	Liquid Mixing: Stirring and mixing and rotational force, effective forces and dimensionless numbers for rotational fluid flow. Stirred vessels (power consumption, power curve, scaled-up), equipment	6 hrs
4	Flow of Fluid through Granular Bed and Packed Columns: Motion of particles in a fluid, Drag force on a particle, terminal falling velocities, Sedimentation of fine and coarse particles, Pressure drop in granular beds, packed columns: packing types, Pressure drop estimation (Kozeny and Carmen equations), Fluidization Minimum fluidization velocity, Pressure, Pressure drop, Ergun equation, bed expansion and transport of particles.	8 hrs

Practical Fluid Flow II

No.	Experiment Name
1	Discharge through an orifice
2	Open Channel Flow over Weir
3	Flow through a Venturi Meter
4	Fluidization
5	Forced Vortex
6	Flow of Compressible Fluid
7	Impact of Jet
8	Non-Newtonian Fluids Behavior
	CHEMICAL STRATEGRIDOG DEPREMIERING

	am	Oil and O	Gas Refin	erv Eng	ineerin	<i>g</i> .	
Cours	se Code	CES.R.236		Credits I		8.	
	se Title	Physical ChemistryII	•	Creans	п		Units
Term		2^{nd} Semester	Theoretical	Practical	Tutorial	Total	Units
Droro	quisite(s)		Theoretical	Tractical	Tutonai	Total	
Fiele	quisite(s)	1-chemical engineering principles 2-chemistry	2	-	-	2	2
Cour	rse Descrip	tion	·				
of so galva electri 2. G. 2000 Court 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	lutions of e anic cells, in rodes. se Text Laidler, phy Mortimer, se Objecti 1- 1. Be ab gases an 2- 2. Unde electroc 3- 3. Be ab standard 4- 4. Be ab	ery important part in the dev lectrolytes and with process in which a chemical reaction vsical chemistry, Bosten; Ho physical chemistry , San Fra ves : at the end of the seme le to solve problems related id liquid. rstand how the thermodynar hemical cells. le to calculate cell voltages	es that occur at produce an ele oughton M, ffl.i ancisco; Altarc ester the stude to the macrosc nics of non sim	electrodes. ctric potenti n company, ourt science nt should b copic equilib	It concern al differen 1999. and techn e able to : prium prop	ed with ce betwe ology co erties of	en two
	alastraa	l reduction potentials and the le to solve problems relating	e nerst equatior g equilibrium c	ı.		Z	-
Toni		le to solve problems relating hemically measured quantiti	e nerst equatior g equilibrium c	ı.		Z	-
Topi No.		le to solve problems relating hemically measured quantiti l (Syllabus)/ Course Title	e nerst equatior g equilibrium c	ı.		ergy char	-
	CS Covered Application The PVT I process, the process.	le to solve problems relating hemically measured quantiti (Syllabus)/ Course Title Co ons of the equations of ideal g behavior of pure substances, th e constant pressure process, th	e nerst equation g equilibrium c es. ntents gases e ideal gas, the c	n. onstants and constant volu	l Gibbs en me	ergy char	nges to
No.	CS Covered Application The PVT I process, the process.	le to solve problems relating hemically measured quantiti l (Syllabus)/ Course Title Co ons of the equations of ideal g behavior of pure substances, th	e nerst equation g equilibrium c es. ntents gases e ideal gas, the c	n. onstants and constant volu	l Gibbs en me	ergy char	nges to
No.	CS Covered Application The PVT I process, the process. Solutions Electrical electrolyte activity co	le to solve problems relating hemically measured quantiti (Syllabus)/ Course Title Co ons of the equations of ideal g behavior of pure substances, th e constant pressure process, th	e nerst equation g equilibrium c es. ntents gases e ideal gas, the c e adiabatic proce lysis, molar conc and ionic strengt	n. onstants and constant volu ess, the polyt luctivity, wea h, determina	I Gibbs end me ropic ak tion of	ergy char	nges to
<u>No.</u> 1	 Covered Application The PVT Inprocess, the process, the process. Solutions Electrical fielectrolyted activity concatalysis and process and process. 	le to solve problems relating hemically measured quantiti (Syllabus)/ Course Title Co ons of the equations of ideal g behavior of pure substances, th e constant pressure process, th of electrolytes units, Faradays laws of electro s, strong electrolytes, activity a efficient from solubility, the D	e nerst equation g equilibrium c es. ntents gases e ideal gas, the c e adiabatic proce lysis, molar conc and ionic strengt	n. onstants and constant volu ess, the polyt luctivity, wea h, determina	I Gibbs end me ropic ak tion of	ergy char	nges to

Program	Oil and Gas Refinery Engineering							
Course Code	CES.R.212		Credits l	nr				
Course Title	Computer Programming III					Units		
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	10. Basic Principles of chemical engineering I.11. Mathematics I.12. Computer programming II	1	2	1	4	2		

Course Description

To introduce chemical engineering students to modern calculating tool used in the practice of engineering by demonstrating an ability to create small structured programs in a MATLAB programming environment and understanding how user written functions interact with numerical methodsroutines.

Course Text

- 1- Rudra Pratap: Getting started with MATLAB 7, Oxford Press (Indian edition),2006.
- 2- Desmond J. Higham and Nicolas J. Higham: Matlab Guide, SIAM, 2000.

Other support books :-

- 1- Duane Hanselman and Bruce Littlefield: Mastering Matlab-6: A Comprehensive Tutorial and Reference, Prentice Hall, 2001.
- 2- Schilling R. J., Harries S.L., Applied Numerical Methods for Engineers using MATLAB & C, Thomson Books, 2002.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Solve sets of linear and nonlinear equations using numerical methods as well as in-built MATLAB functions.
- 2- Apply numerical methods and MATLAB functions to differentiate and integrate a function or a set of discrete points.
- 3- 3. Apply explicit and implicit numerical methods and MATLAB functions to integrate single and multiple sets of initial value problems

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Two-Dimensional Plots: The plot command , The f-plot command , Plotting multiple graphs in the same plot , Formatting a plot, Plots with logarithmic axes, Plots with error bars, Plots with special graphics , Histograms, Plotting multiple plots on the same page , Multiple figure windows Graphics.	4 hr
2	Three-Dimensional Plots: Line plots, Mesh and surface plots, Plots with special graphics, The view command.	2hr
3	Using Script Files: The MATLAB workspace and the workspace window, Input to a script file, Output commands, The save and load commands, Importing and exporting data.	1 hr
4	Functions And Function Files: Creating a function file, Structure of a function file, Local and global variables, Saving a function file, Using a user-defined function, Examples of simple user-defined functions, Comparison between script files and function files, Function functions, Sub-functions	4 hr
5	Numerical Analysis : Solving an equation with one variable, Finding a minimum or a maximum of a function, Numerical integration, Ordinary differential equations.	4 hr

ENGINEERING

Program	Oil a	Oil and Gas Refinery Engineering					
Course Code	CES.R.224		Credits hr				
Course Title	Material Eng. II					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	general chemistry	2	2	1	5	3	

Course Description

Imperfection in solid. diffusion and atomic movement in solid. Solid solution and phase diagram for different alloys. Ceramic materials and composite materials.

Course Text

1-Donaled R. Askeland, The science and engineering of materials, international student edition, 2006.

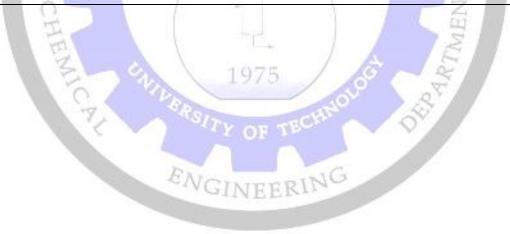
2-William D. Callister, Jr., Materials science and engineering, Fifth edition, 2000.

3-Lawrence H. Vanvlack, Elements of materials science and engineering, Fifth edition, 1987.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Describe the geometry of imperfections
- 2- Calculate the extent of diffusion- driving composition changes based upon composition, time and temperature.
- 3- Predict the equilibrium microstructure of a material given the binary phase diagram, thermal history of the materials.
- 4- Describe the types and properties of ceramic and composite materials.

Topics Covered (Syllabus)/ Course Title


No.	Contents	Duration
1	Imperfections in solids Point defects, line defects, interfacial imperfections, Macroscopic defects	6hr
2	Atomic and ion movements in materials Stability of atoms and ions, mechanisms for diffusion, rate of diffusion (Fick's first law), factors affecting diffusion, non-steady state diffusion (Fick's second law).	6hr
3	Solid solutions and phase diagrams. Basic concepts, solubility and solid solution, phase and phase diagram, unary phase diagram, binary Iso-morphous system, binary eutectic system.	6hr
4	The Iron-Carbon system The Iron-Iron carbide phase diagram, development of microstructures in Iron-carbon alloys	6hr
5	Ceramic materials Crystal structure, mechanical properties of ceramic, classification of ceramic materials on the basis of its application.	2hr
6	Composites Material combination, Reinforced composites, structural composites.	4hr

Practical:Material Eng. II

No.	Experiment Name
1	Tension test
2	Hardness Testing
3	Bending Test
4	Creep Test
5	Abrasion Test
6	Impact Test
7	Moisture Measurement in Engineering Materials
8	Determination of Linear Thermal Expansion for a Solid
9	Microstructure Examination of pb-Sn alloys using the metallurgical microscope

Program	Oil a	Oil and Gas Refinery Engineering				
Course Code	CES.R.228	Credits hr				
Course Title	Properties of Petroleum Products					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Properties of Petroleum fuels	2	0	0	2	2

Course Description

The objective of this course to understand the physical and chemical properties of the petroleum specialty products which is the invisible fuels, and explain in details all the properties of this products.

Course Text

- 1. Speight, J.G, Handbook of petroleum product analysis, John Willey & Sons, 2002.
- 2. Speight J.G. and Ozum,B; Petroleum Refinery processes, Macel Dekker, New York, 2002.
- 3. Speight J.G., The chemistery and Technology of petroleum, 3rd Edition. Marcel Dekker, New York 1999.
- 4. Petroleum Fuels Manufacturing hand book; SurinderParkash, McGraw-Hill companies, 2010.

Course Objectives : at the end of the semester the student should be able to :-

- 1- A comprehensive understanding of the petroleum product which they appear in less visible .form over the entire spectrum of industry such as automobile lubricants , greases, carbon black for truck tires.
- 2- Ability to think that a refinery may produce specialty manufactures a large number of the products from the basic refinery products .such as{ LPG, naphtha, kerosene, diesel, and fuel oils}.

Topics Covered (Syllabus)/ Properties of Petroleum Product

1	Bitumen: Introduction,Bitumen composition{ Asphaltine, resinearomatic oil,saturated oil}, Bitumen for pavement, Bitumen evaluation for pavement	2 hrs
2	Types of Bitumen: Cut back bitumen, bitumen emulsion, polymer modified bitumen, oxidized bitumen,Industrialuses of bitumen, storage and handling of bitumen.	2 hr
3	Petroleum Coke: Introduction,manufacturing process, petroleum coke type, properties of calcined coke, uses of petroleum coke	2 hr
4	Carbon black: Introduction, manufacturing processes, channel blacl process, carbon black process, carbon black properties, secondary properties.	2 hr
5	Carbon black test methods: Application and uses,	2 hr
6	Lube base stocks : Introduction conventional process, catalytic dewaxing, API classification of base oil	2 hr
7	Lubricating oil blending : Introduction, classification of lubricating oils, effect of viscosity on fuel economy, automotive oil additives, viscosity index improvers, detergent inhibitors.	2 hr
8	Engine oil formulation: effect of base stock quality, gear oil, automotive lubricants test methods	2 hr
10	Synthetic lubricants	2 hr
11	Turbine oil : Introduction, base oil, formulation, life of turbine oil, tests method{ acid number, copper corrosion, rust test, foam test, turbine oil test}	2 hr
12	Lubricating greases : Introduction, grease composition, base oil, grease thickeners, additives	2 hr
13	Grease manufacture: Lubricating greases quality, automotive greases, air craft greases, marine greases, high temperature grease.	2 hr
14	Waxes : Introduction, nonpetroleum waxes, other plant waxes, properties, test method{ melting point, hardness, color, oil content, viscosity, acid number}	2 hr
15	Microcrystalline waxes Petroleum wax manufacture,	2 hr

Program	Oil a	Oil and Gas Refinery Engineering					
Course Code	CES.R.225	Credits hr					
Course Title	Eng. Statistics				Units		
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Mathematics I, Mathematics II	2	2	1	5	3	

Course Description

Theory, applications, deferent methods calculation, sample descriptive statistics and graphical representation of data.

Course Text

- 1- Murry R. Spiegel, Statistics, Mc Grow-Hill international book company 1st addition.
- 2- Michael Sullivan III, Statistics informed decision using data 3rd addition, pearson education international 2010.
- 3- Jones' instrument technology.
- 4- Butterworth and co. (publishers) 2nd addition 1987.

Course Objectives: at the end of the semester the student should be able to:-

Use all the methods of statistical calculations to solve problems in chemical engineering and others applications.

Topics Covered (Syllabus)/Eng. Statistics

No.	Contents	Duration
1	Introduction: Statistics, population and sample descriptive and inductive statistics and graphical representation of datas	2hr
2	Frequency distribution table, raw data, arrays, types of frequencies.	2hr
3	Graphical representation of frequency distribution table.	2hr
4	Measures of central tendency.	2hr
5	Measures of dispersion	2hr
6	Curve fitting, Least squares method, Straight line forms, polynomial regression, variance and correlation coefficient.	4hr
7	Multiple and partial correlation: regression equation, normal equations for the least square regression, the coefficient for multiple correlation, relationship between multiple and partial correlation.	4hr
8	Probability distribution, continuous and discrete probability distribution, normal distribution.	2hr
9	The binomial distribution, the poisson probability distribution, approximation of standard distributions.	2hr
10	The chi-square test, confidence intervals, degree of significant, test of	4hr

	hypothesis, test for goodness of fit of probability distributions test of independence.	
11	Companing three or more means (one-way analysis of variance (ANOVA), requirements of ANOVA test, ANOVA F-test, decision rule in ANOVA test.	4hr

Topics Covered (Syllabus)/ Statistics Laboratory Guide

No.	Contents
1	The concept of statistical analysis, the important statistics to life, about the most
1	important statistical programmes
2	Install Statistical ,About statistical analysis software, interfaces and quibbles
3	Working environment and Statistical data entry program
4	Using Statistica in statistical analysis with examples
_	Regression And Correlation (Curve Fitting) with Examples
5	25
6 7 8	 How to finds With examples 1- Find minimum and maximum and variance. 2- Find standard deviation, mean, mode. 3- Find second max frequency. 4- Find max class mark and its frequency? 5- Find max frequency. 6- Find second class mark and its frequency. Ways to validate the equation imposed with examples Line (45) Method with examples
9	Correlation Coefficient Method with examples
10	Residual Plot Method with examples
11	Multiple Linear Regression liner model with examples
12	Multiple Linear Regression Non liner model with examples
	ENGINEERING

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.331	Credits hr				
Course Title	Thermodynamics I					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Material &Energy Balance, Physical Chemistry,Fluid Flow	2	2	1	5	3

Course Description

The course of chemical engineering thermodynamics I comprises the study of volumetric properties of pure fluids; Entropy and second law analysis of engineering systems; Thermodynamic properties of fluids; Applications of thermodynamics to flow processes.

Course Text

1- J. M. Smith, H.C. Van Ness, Introduction to chemical engineering thermodynamics, 6th edition (International Edition), Mc-Graw Hall, 2008.

Other support books :-

1-K.V.Narayanan, Atext book of chemical engineering thermodynamics, prentice Hall of India, New Delhi, 2011.

2- B.G.Kyle, Chemical and process thermodynamics ,(3rd Edition), prentice Hall Inc.New Jersey, 1984.

3-J. Rayner, Basic engineering thermodynamics inSI units, printed in great Britain, 1971

Course Objectives : at the end of the semester the student should be able to :-

- 1- To familiarize the students with basic concepts of the first and second laws of thermodynamics and their applications in engineering problems.
- 2- Develop a practical ability to solve energy balance problems, minimum work.
- 3- 3.Students will demonstrate basic understanding of basics and definitions of thermodynamics and properties of pure substances.
- 4- 4.Describe the reversible and irreversible processes (macroscopic description of an ideal and real processes).

Topics Covered (Syllabus)/Course Title

No.	Contents	Duration
1	Volumetric properties of pure fluids Review on virile equation of state, cubic equation of state, generalized correlations for gases and for liquids.	6 hr
2	The 2nd law of thermodynamics Review on the 2nd law and Carnot heat engine, entropy balance for open system, calculation of ideal work, lost work.	9 hr
3	Thermodynamic properties of fluids Review on the property relations (Δ H, Δ S, Δ Uand Δ G) residual properties, two phase systems, thermodynamic diagrams and tables, generalized property correlations for gases.	6 hr
4	Applications of thermodynamics to flow processes Duct flow of compressible fluids, pipe flow, nozzles, throttling process, turbines, compression processes compressors, ejectors.	9 hr

Practical Thermodynamics I

No.	Experiment Name
1	Measurement of the solar irradiation
2	Alternating current solar installation
3	Refrigeration 1975
4	Hydrolysis of methyl acetate
5	Pressure and Temperature relationship for steam
6	Liquid -vapor equilibrium Isotropic Mixtures
7	Boyles' law
8	Regulating and charging battery

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.321	Credits hr				
Course Title	Numerical Analysis				Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Computer Programming II, III	2	2	1	5	3

Course Description

This course introduces students to: Error analysis; Finding roots of a non-linear function; Approximation and interpolation; Numerical integration and differentiation; direct and indirect solution of systems of linear equations; Solution of systems of nonlinear equation; solving ordinary differential equations and partial differential equations. All examples within the course concerning with principles of chemical engineering.

Course Text

- 1. "Numerical Methods for Engineers", Steven C. Chapra, Raymond P. Canale, McGraw Hill, 6th edition, 2010.
- 2. "Numerical Methods for Engineers and Scientists", Joe Hoffman, McGraw-Hill Book Company,1993.
- 3. "Applied Numerical Analysis", Gerald,C.F. and Wheatley, P.O., 6th Edition, Pearson Education, 2006.
- 4. "Numerical Methods for Chemical Engineers with MATLAB Applications", Alkis Constantinides, Navid Mostoufi, Prentice Hall, 1999.

Course Objectives: at the end of the semester the student should be able to:-To solve chemical engineering problems with numerical analysis techniques.

Topics Covered (Syllabus)/ Numerical Analysis

No.	Contents	Duration
1	Introduction to Numerical Analysis: Numerical Solution, type of errors; relative error, absolute error, percentage error, truncation error, round off error. Floating point.	2hr
2	Root Finding: Roots of polynomials, Bisection method, Secant method, Newton-Raphson method.	4hr
3	Interpolation and Polynomials Approximation: Lagrangian Polynomials, Divided differences, Cubic spline interpolating polynomials, Newton's forward and backward difference formulas.	4hr

	Numerical Differentiation and Numerical Integration:	
4	Forward, backward and central difference approximation. Numerical integration by Trapezoidal and Simpson's 1/3 and 3/8 rules. Double integrals using trapezoidal and Simpson's rules.	6hr
	Solving System of Equations:	
5	Solution of linear system of equations by direct methods (Gaussian elimination and Gauss-Jordon). Solution of linear system of equations by Iterative methods (Jacobi and Gauss-Seidel). Solution of non-linear system of equations by Newton-raphson.	4hr
	Solution of ordinary Differential Equations:	
6	Initial value problems. Solution of first-order ordinary differential equations using Taylor', Eular, Runge-Kutta and Predictor-corrector methods. Solution of simultaneous ordinary differential equations.	4hr
	Solution of Partial Differential Equations:	
	Types of Partial Differential Equations: Elliptic (Poisson) equation, Parabolic	
7	(heat) equation, Hyperbolic (wave) equation. Finite difference solution of Partial Differential Equations. Numerical solution of partial differential equations using explicit, implicit and Crank-Nicolson methods elliptic (Laplace) equation.	6hr

Topic	s Covered (Syllabus)/ Numerical Analysis Laboratory Guide
No.	Contents
1	Review of properties of Matlab programming language.
2	Bisection method and Secant method.
3	Newton-raphson method.
4	Lagrange interpolation.
5	Newton's forward and backward difference formulas.
6	Trapezoidal rule.
7	Simpson's 1/3 and 3/8 rules.
8	Solution of linear system of equations by direct methods (Gaussian elimination and
0	Gauss-Jordon).
9	Solution of linear system of equations by Iterative methods (Gauss-Seidel and Jacobi).
10	Solution of differential equation using Euler's method.
11	Solution of differential equation using Runge-Kutta method.
12	Solution of partial differential equations using explicit and implicit methods.
13	Solution of partial differential equations using Crank-Nicolson method.
14	Solution of steady state diffusion through catalyst
15	Solution of un-steady state diffusion through catalyst

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.333		Credits hr			
Course Title	Mass Transfer				Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemical engineering principles, thermodynamics, fluid flow	2	2	1	5	3
Course Decerint		Lill=	11211		0	

Course Description

This course covers diffusion and mass transfer in binary& multi-components, molecular diffusion in fluids, convective mass transfer, mass transfer coefficients, mass transfer correlations, interphase mass transfer, mass transfer theories.

Course Text

- 1- Coulson, J. M & Richardson J. F. (2006). "Chemical engineering, Volume 1", 3rd Edition, Robert Maxwell. M. C.
- 2- Dutta Binary K. (2007), "Principles of Mass Transfer & Separation Process", Bvt. Ltd. Prentice Hall, ISPN 8-1203-2990-2.

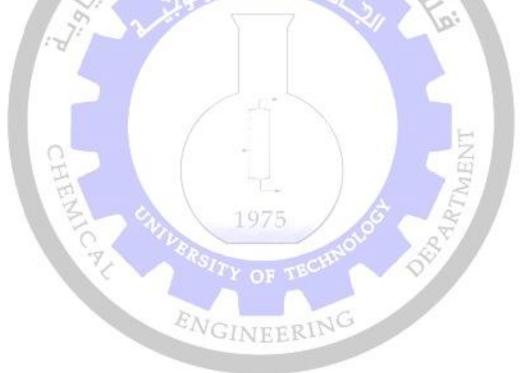
Other support books:-

- 1- Treybal Robert E. (1975), "Mass transfer Operation" 2ed Edition, Mc-Graw-Hill Book.
- 2- McCabe, W., Smith, J., Harriott, P. (2004), "Unit Operations of Chemical Engineering", Mc-Graw-Hill Co., 7th Edition, ISBN0072848235.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Understand the basics of diffusion as applicable to mass transfer phenomena.
- 2- Estimate Molar fluxes in convective and inter phase mass transfer.
- 3- Explain the concept of diffusion theories.
- 4- Applying the convective mass transfer correlations to calculate mass transfer rates in many units operation.

Topics Covered (Syllabus)/ Mass transfer


No.	Contents	Duration
1	Introduction:	2 hrs
	Fundamentals of mass transfer processes, concentrations, velocities, mass & molar fluxes.	
2	Diffusion in binary gaseous:	6 hrs
	Fick's first law of diffusion. Diffusion in gas mixtures,	
	Equimolecular diffusion, diffusion in stationary layer. Correlations	
	to calculate diffusivity, correcting diffusivity	
3	Diffusion in multi component mixtures:	4 hrs
	Multi-component gas phase systems, effective diffusivity. Maxwell's law of diffusion	
	Maxwell's law of diffusion	
4	Diffusion in liquids.	2 hrs
5	Diffusion in solids.	2 hrs
6	Diffusion theories:	4 hrs
	Diffusion across phase boundary, Film theory, two film theory,	
	Mass transfer coefficients (individual & overall) in laminar and turbulent flow.	
7	Diffusion resistances:	4 hrs
	Calculating the resistance to mass transfer in both phases.	
	Calculating intermediate concentrations.	
8	Unsteady state mass transfer:	6 hrs
	Introduction to unsteady state mass transfer, mass transfer	
	accompanied by a chemical reaction.	

Practical :Mass Transfer

No.	Experiment Name
1	Liquid-Liquid diffusion
2	Absorption
3	Batch Distillation Column
4	Fluid Mechanics of Packed Bed
5	Sieve Analysis
6	Gas Solid Fluidization

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.335		Credi	ts hr		
Course Title	Chemical reaction kinetics					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Physical chemistry	2	-	-	2	2

Course Description

Theory, Kinetic parameters and rate law, multiple reactions, yield and selectivity, stoichiometric considerations and collection and analysis of rate data

Course Text

1-Octave Levenspiel (1999), *CHEMICAL REACTOR ENGINEERING*, 3rd edition, John Wiley & Sons Inc., USA ISBN: 9780471254249.

2-J.M. Smith (1987), *CHEMICAL ENGINEERING KINETICS*, 3rd edition, McGraw-Hill International Editions, Singapore. ISBN: 9780070587106

Other support books :-

1- Ronald W. Missen; Charles A. Mims; Bradley A. Saville (1999), *INTRODUCTION TO CHEMICAL REACTION ENGINEERING AND KINETICS*,1stedition, John Wiley & Sons Inc.,USA.

Course Objectives : at the end of the semester the student should be able to :-

This course aims to establish fundamental knowledge for the students in chemical reaction kinetics. At the end of this course, students should be able to:

(i) interpret and analyseschemical reaction kinetics data.

(ii) apply reaction kinetics principles in chemical reaction.

(iii) identify and formulate problems in chemical reaction kinetics and find appropriate solutions.

No.	Contents	Duration
1	 Kinetic parameters and rate law: L1: Definition in terms of reacting compounds and reaction extent; irreversible and reversible reactions, homogeneous catalyticreactions L2: Symbols and relationships between concentration and conversion L3: Introduction to rate laws, stoichiometry. L4: Reaction order and elementary reactions. L5: Reaction rate constants, Arrhenius equation, Van't Hoff equation L6: Temperature and pressure effects on reaction rates. L7: Thermal effects due to heat of reaction. 	10hr
2	Multiple reactions, yield and selectivity: L8: Types of multiple reactions. L9: Definitions of yield and selectivity. L10: Analysis of parallel, series, consecutive reactions. L11: Effect of pressure and temperature on multiple reactions L12: The Denbigh reaction and its special cases	10hr
3	Stoichiometric considerations: L13: Stoichiometric considerations in batch systems (constant and variable density). L14: Stoichiometric considerations in flow systems (constant and variable density). L15: Examples: batch, semi-batch reactors, flow reactors, and Industrial reactors.	6hr
4	Collection and Analysis of rate data: L16: Differential and integral methods. L17: Initial rate and half-life methods.	4hr

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.337		Credi	ts hr			
Course Title	Heat transfer I						
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	Units	
Prerequisite(s)	Fluid flow & Math	2	0	1	3	2	

Course Description

To introduce and develop an understanding the modes of heat Transfer (conduction, convection and radiation).Derive and discusses all types of equation in these modes of heat transfer. Analyze heat transfer rate data in different modes. Derive the necessary equations for hydrodynamics and thermal boundary layer. Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Course Text

- 1- J.P.Holman, Heat Transfer, Ninth edition.
- 2- Frank P. Incropera & David P. Dewitt, Fundamentals of Heat and Mass Transfer, Fifth Edition.

Other support books :-

1- Coulson ,J.M and Richardson J.F. "Chemical Engineering , volume 1",3rd edition.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Develop a deep understanding of issues related to the heat and energy balance for different chemical process
- 2- Define and solve problems in heat transfer mechanism in various engineering applications.
- 3- Explain and derive heat equations for the conduction and convection heat transfer.
- 4- Apply the analytical equations and correlations in convection heat transfer problems.

Topics Covered (Syllabus)/ Course Title

C.F.F.

No.	Contents	Duration
1	Modes of Heat Transfer: Conduction, Convection and Radiation.	4 hrs
2	Steady State Heat Conduction in One Dimension: General heat conduction equation in different coordinates, Plane wall, Radial systems, heat source systems, Boundary surrounded by fluids, Overall heat transfer coefficient, Conduction convection systems and fins.	10 hrs
3	Unsteady State Heat Transfer: Temperature as a function of time, lumped capacity system, quenching of small bodies and heating of tank.	4 hrs
3	Principles of Convection: Transport equations, Fluid mechanism aspect of convection, laminar boundary layer, The turbulent portion of boundary layer, The laminar sub-layer. Thermal boundary layer, Empirical and practical relations for pipe and tube flow and flow normal to single and tube banks. Reynolds analogy.	12 hrs

ENGINEERING

DER

Program	Oil and Gas Refinery Engineering							
Course Code	CES.R.339		Credits h	ır				
Course Title	Combustion					Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	1.Chemical Engineering principle 2.Energy balance	2	-	-	2	2		

Course Description

Scope and History of Combustion, Combustion of Gaseous and Vaporized Fuels. Gas –fired furnace combustion and flames, Combustion of Liquid Fuels and Oil –Fired Furnaces Combustion, Direct –Injection Engine Combustion, Combustion of Solid Fuels

Course Text

1-Gary L.borman, Combustion (Engineering), 1998 by Mc Grawhill

2-Stephen R.turns,(An introduction to Combustion), 2000 by Mc Grawhill.

3-F .ElMahallawy and S.ElD in Habik ,"(Fundamentals and Technology of Combustion)",2002 by Elsevier

Course Objectives : at the end of the semester the student should be able to :-

- 1- Study the nature of combustion ,scope of internal combustion engine
- 2- Types of flame, study the effect of temp and pressure
- 3- study the types of solid fuels and the drying of solid fuels
- 4- Study the types of furnaces and furnaces efficiency

Topics Covered (syllabus) / Course Title

No	Contents	Duration
1	Scope and History of Combustion: The nature of combustion, Historical perspective of fuels, Historical perspective of combustion technology (lighting /steam boilers/ internal –combustion engines/compression ignition engines/gas turbines/rocket engines).	2 hr
2	Combustion of Gaseous and Vapourized Fuels : 1-Gas –fired furnace combustion Furnaces and tubular furnace, energy balance and furnace efficiency (Furnace efficiency and heat loss calculations), burners types, radiation and convection rooms in furnace, furnace wall layers and refractories ,chimney height calculation, tube layers in furnaces.	16 hr

	2- Flames: First law combustion calculations (adiabatic flame
	temperature), Laminar premixed flames: (effect of stoichiometry on
	laminar burning velocity /effect of reactant pressure and
	temperature on laminar burning velocity/stabilization of a premixed flame), laminar flame theory(laminar burning velocity theory
	/simplified laminar flame model), diffusion flames, combustion
	zones and temperature profiles, flammability limits, flame stability,
l	flame and combustion speed.
	Combustion of Liquid Fuels:
	1- Spray Formation And Droplet Behavior Spray formation, size distributions, fuel injectors, spray dynamics
	(diesel spray dynamics, single –droplet dynamics), vaporization of
	single droplets
3	2-Oil –Fired Furnaces Combustion
	Gas turbine sprays combustion, Gas turbine operating parameters,
	combustor design, combustion rate, Liner heat transfer.
	3-Direct –Injection Engine Combustion
	introduction to diesel engine combustion, fuel injection, combustion rates
	Combustion of Solid Fuels:
	Solid Fuel Combustion Mechanisms
4	Solid fool derive of colid fools develocities of colid fools 2hr
	Solid fuel, drying of solid fuels, devolatilization of solid fuels.
	1975 9 4

SITY OF TECH

ENGINEERING

50

AG

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.3311		Credits hr				
Course Title	Chemicals from Petroleum					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	General ,Organic chemistry and unit operation	2		1	3	2	

Course Description

Primary and secondary raw materials ,Ethylene ,Butylenes ,Higher olewfins and Syn gases Derivative Of Ethylene ,Propylene ,Syn gas ,End products –Polymers PCS and complexes.

Course Text

1. Hydrocarbonn processing:petrochemicalprocesses,2005

Other support books :-

1-Shreve's Chemical Process Industries, 5th edition, 1988.

2-List,H.L."Petrochemical Technology, 1986

3-Jamaly, J.S. "Petrochemical processes, 1984: Arabic

Course Objectives : at the end of the semester the student should be able to :-

- 1- To know sourses: (feed stock). These sources are petroleum fractions and natural gases.
- 2- To introduce petrochemicals generations: first :basic PCs,2nd: derivatives,3rd:end product.
- 3- Ability to select of appropriate equipment for the separation of materials in process plant.
- 4- Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction : OGNEER Raw material, characterization Image: Characterization	2hr
2	Primary Petrochemicals:	
	Olefins, Diolefins, Higher Olefins, LAB, Aromatics, separation Aromatics, Syn gas, H ₂ production, steam reforming ,PO	11hr
3	Derivatives Syn gas derivatives:	
	Methanol, Acetic acid	
		9hr
	Ethylene derivatives :	
	Vinyl chloride M, Ethylene Oxide. Ethylene glycol, MEA, DEA&TEA	

	Propylene derivatives : Acrylonitrile, Derivatives of C ₄ hydrocarbon : MTBE, Adipic acid .	
	Benzene derivatives Ethyl benzene, styrene, nitrobenzene, aniline, cyclohexane, cumene, Phenol, acetone.	
	Toluene derivatives : Benzoic acid Xylene derivatives : Terephthalic acid	
4	Products: polymers: LDPE, HDPE, PVC, PP.	6hr
5	Petrochemical complexes: Ethylene ,Propylene ,Benzen , C4 ,BTX	2hr

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.3313	Credits hr					
Course Title	Equipment Design					Units	
Term	1st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Basic Principles of chemical ,fluid flow,	2		1	3	2	

Course Description

.The course content process planning, piping and pumps network , gas-gad separation ,solid handling, hear and mass transfer equipments

Course Text

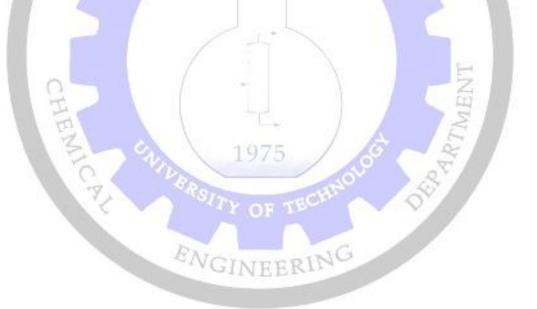
. Sinnott R. and Towler C; 2013 " chemical Engineering Design" 5th edition Butterworth-Heinemann

Coke,A.K ;2007"Ludwig s Applied Process Design of Chemical and petrochemical Plant" vol. 1 4th edition Gulf professional Publisher

Course Objectives : at the end of the semester the student should be able to :-

The ability to apply the design equation and equipments specifications as practical

To prepare students to be able to read and understand chemical engineering plants drawing


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Process planning: Introduction, Nature of design ,the organization of a chemical engineering projects Scheduling .Standards and codes. Flow sheet design, flow sheet types and designation .Block diagram .Process flow sheet .Piping and instrumentation diagram .Utilities, Computer aided drafting ,process simulation programs .Layout and plot plan .Project evaluation and cost estimation	6hr
2	Piping network and Pumps:Valves selection . Piping design standards and codes . Pipe size selection.Mechanical design of piping system. Pump type, pump specifications, andpump data sheet	4hr
3	Gas-Gasseparation: (adsorption, membraneetc); Solid-Solid separation ;Liquid-Solid Separation	4hr

	Solid Handling:	
4	Screening Classification with Streams of Air or Water Air Classifiers . Size Reduction. Equipment for Size Reduction Particle Size Enlargement Extrusion Processes	4hr
5	Heat Transfer Equipments: Heat exchanger types and applications. Basic design procedure and theory. Overall heat transfer coefficient. Heat exchanger data sheet. Furnaces convection and radiation zone. Steam boilers	6hr
6	Mass Transfer Equipments: Columns types . Plate Types. Packing types . Pressure drops in columns . Column data sheets	6hr

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.332	Credits hr					
Course Title	Thermodynamics II					Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Mass Transfer,Unit Operation I ,Equipment Design	2	-	1	3	2	

Course Description

The course discuss the study of Power cycles; Refrigeration and liquefaction process; Theory and application of solution thermodynamics ;Vapor/liquid equilibrium in both: binary and multicomponents; Ideal and non-ideal solutions are discussed using Raoult's and modified Raoult's law; Fugacity and fugacity coefficient definitions; Chemical reaction equilibriumandThermodynamic analysis of processes.

Course Text

1- J. M.Smith,H.C.Van Ness, Introduction to chemical engineering thermodynamics, 6th edition (International Edition), Mc-Graw Hall, 2008.

Other support books :-

1-K.V.Narayanan, Atext book of chemical engineering thermodynamics, prentice Hall of India, New Delhi, 2011.

2- B.G.Kyle, Chemical and process thermodynamics ,(3rd Edition), prentice Hall Inc.New Jersey, 1984.

3-J. Rayner, Basic engineering thermodynamicsinSI units, printed in great Britain, 1971.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Apply the laws of thermodynamics to power, refrigeration and liquefaction cycle.
- 2- Establish thermodynamic constraint that apply to VLE, and explain qualitatively the VLE diagram.

3-Apply thermodynamics to VLE of pure components and solutions in terms of fugacity and fugacity coefficients.

4-Apply equilibrium criteria to chemical reactions and evaluate the effect of temperature.

5. Revision for thermodynamic analysis of processes.

No.	Contents	Duration
1	Production of power from heat : The steam power plant, Rankin cycle, the regenerative cycle, internal combustion engines Otto engine, diesel engine, gas turbine engine.	4 hr
2	Refrigeration and liquefaction: The Carnot refrigerator, the vapor compression cycle, the choice of refrigerant, absorption refrigeration, the heat pump, liquefaction processes.	6 hr
3	Vapor\liquid equilibrium; introduction : The nature of equilibrium, the phase rule, Duhem,s theorem, diagrams for vapor liquid equilibrium, simple models for VL equilibrium: Rault,s law, dew point and bubble point calculations, Henrys law, VLE by modified Raults law, VLE from K value correlations, flash calculations.	9 hr
4	Solution thermodynamics: theory: Fundamental property relations, the chemical potential and phase equilibrium, ideal gas mixtures, fugacity and fugacity coefficient, the fundamental residual property relations, the ideal solutions.	2 hr
5	Chemical Reaction equilibrium: The reaction coordinate, standard Gibbs energy change and equilibrium constant, effect of temperature on equilibrium constant, evaluation of equilibrium constant, liquid phase reactions, equilibrium conversion for single reactions.	6 hr
6	Thermodynamic analysis of processes: Second law relation for steady state flow processes, calculation of ideal work, thermodynamic analysis of steady state flow processes.	3 hr

ENGINEERING

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.322	Credits hr				
Course Title	Applied					
	Mathematicsin					
	chemical					Units
	Engineering					
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics I, II	2	-	1	3	2

Course Description

This course introduces students to: Solve ordinary differential equations: apply Laplace transform to solve various systems of ordinary differential equations: Solve different types of partial differential equations. At the end of the course students should be able to apply these methods to tackle all kinds of problems that appear in chemical engineering.

Course Text

- 1- "Mathematical Methods in Chemical Engineering", Jenson. V.J. and Jeffereys, G.V, 2nd Edition, Academic Press New York, 1977.
- 2- "Applied Mathematics and Modeling for Chemical Engineers", Rice R G. and. Do, D. D., John Wiley and Sons, New York, 1995.
- 3- "Applied Mathematical Methods for Chemical Engineers", Loney, Norman W., 2nd edition, CRC Press Taylor & Francis Group, Boca Raton, 2007.

Course Objectives: at the end of the semester the student should be able to:-

Apply different analytical methods to solve chemical engineering problems.

Topics Covered (Syllabus)/Applied Mathematics in chemical Engineering

No.	Contents	Duration
1	Ordinary Differential Equations : First-order differential equations, Linear and nonlinear first-order equations, Formation of differential equations, Solutions of linear differential equations, Initial and Boundary value problems, Separable first-order ode's, Exact differential equations, Differential operator, Integrating factors, Solutions of second order linear homogenous equations, Coupled first order equations, Method of reduction of higher order differential equations, Solutions of higher order homogenous linear equations. Chemical engineering applications: Application of the law of	10 hr
	conservation of mass, First-order chemical reaction in a batch reactor,	

	Heating a closed kettle, Cooling of a hot object, Dilution of a salt solution in a stirred tank, Consecutive reaction system in a batch reactor, Radial heat transfer through a cylindrical conductor, Reaction in a spherical and cylindrical catalyst, Flow of heat from fin. Simultaneous diffusion and chemical reaction in a tubular reactor, Solvent extraction in N stages.	
2	Laplace transform: Laplace transforms, Laplace transform of the derivatives, Laplace transform of Integral, Laplace Transform of t.f (t) (multiplication by t), Properties of Laplace transform, Laplace transform of special functions (step, pulse, Impulse, ramp and periodic functions), Convolution theorem, Initial value problems (multiplication by s), Final value problems (division of s), First shifting properties, second shifting properties, Inverse of Laplace transform, Inverse Laplace transform of derivatives, Inverse Laplace Transform of Integrals, Partial Fraction, Solution of differential equations, Solution of simultaneous ordinary differential equations, Application of Laplace transform to solve chemical engineering problems.	10 hr
3	Partial differential equations:Classification of partial differential equations, Formulation of partialdifferential equations, Continuity equation, Unsteady-state componentmass transfer with axial symmetry, Unsteady-state heat conduction withaxial symmetry, Boundary conditions, Solution of partial differentialequation by direct Integration, General and particular solutions,superposition of solutions, Complementary solution, Particular solution,Solution using separation of variables method, Solution using Laplacetransforms method, Solution using combination of variables method. <u>Chemical engineering applications:i. Heat conduction in a semi-infinite slab.ii. Unsteady conduction/diffusion in one dimension.iii. Steady-state heat conduction in two-dimensions.</u>	10 hr
	ENGINEERING	

Program	Oil a	Oil and Gas Refinery Engineering				
Course Code	CES.R.334		Credi	ts hr		
Course Title	Unit Operations I					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mass transfer	2	0	1	3	2

Course Description

This course covers two main operations, gas absorption, stripping and distillation for binary and multi component mixtures. Concepts to design mass transfer equipment.

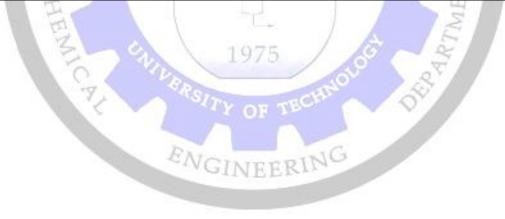
Course Text

- 1- Coulson, J. M & Richardson J. F. (2006). "Chemical engineering", Volume 2, 3rd Edition, Robert Maxwell. M. C.
- 2- Dutta Binary K. (2007), "Principles of Mass Transfer & Separation Process", Bvt. Ltd. Prentice Hall, ISPN 8-1203-2990-2.

Other support books:-

- 1- Treybal Robert E. (1975), "Mass transfer Operation" 2nd Edition, Mc-Graw-Hill Book.
- 2- McCabe, W., Smith, J., Harriott, P. (2004), "Unit Operations of Chemical Engineering", Mc-Graw-Hill Co., 7th Edition, ISBN0072848235.

Course Objectives: at the end of the semester the student should be able to:- Z


- 1- Understand the basics of gas absorption, stripping and distillation.
- 2- Design absorbers, strippers and distillation columns.
- 3- Find Operating lines, feed line and No. of trays or amounts of packing required.
- 4- Calculate columns efficiency.

Topics	Covered (Syllabus)/ Unit Operation I	I
No.	Contents	Duration
	Introduction to separation processes:	
1	General separation techniques. The mechanism of absorption and stripping processes. Flow regimes.	4 hrs
	Absorption in packed bed columns:	
2	Constructions, mass transfer coefficients & specific area, capacity, height of columns based on gas film, liquid film, and based on overall conditions, operating line, the transfer units, the importance of gas and liquid flow rates.	4 hrs

r		
	Absorption in Tray towers :	
3	Types of trays, number of trays analytically and graphically. How to calculate the tray and column efficiency.	4 hrs
	Introduction to distillation process:	
4	Partial pressure, Dalton's, Raoult's & Henry's laws. Relative volatility, non ideal systems. Method of diffusion, binary mixtures, batch distillation, flash distillation, steam distillation. Fractionating column.	3 hrs
	Fractionating process:	
5	Number of plates required importance of reflux ratio, location of feed point, multiple feeds and side streams.	3 hrs
	Multi-component Distillation:	
6	Key components. Components distributions, equilibrium data, feed & product compositions, minimum reflux ratio, calculation number of trays required, relation between reflux ratio & number of plates.	4 hrs
	Plate & packed distillation columns:	
7	General designed methods, column efficiency	4 hrs
	Reynolds Analogy:	
8	Mass transfer with bulk flow, flow over a plane surface, flow in a pipe.	4 hrs

Program	Oil and Gas Refinery Engineering,					
Course Code	CES.R.336		Credi	ts hr		
Course Title	Reactor Design					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemical Reaction Kinetics	2	-	-	2	2

Course Description

Theory, design fundamentals and mass conservation equations for ideal reactors, isothermal reactors for homogeneous reactions, non-isothermal reactors, multiple reactor System.

Course Text

1-Octave Levenspiel (1999), *CHEMICAL REACTOR ENGINEERING*, 3rd edition, John Wiley & Sons Inc., USA ISBN: 9780471254249.

2-J.M. Smith (1987), *CHEMICAL ENGINEERING KINETICS*, 3rd edition, McGraw-Hill International Editions, Singapore. ISBN: 9780070587106

Other support books :-

- 1- Ronald W. Missen; Charles A. Mims; Bradley A. Saville (1999), *INTRODUCTION TO CHEMICAL REACTION ENGINEERING AND KINETICS*,1stedition, John Wiley & Sons Inc.,USA.
- 2- . H. S. Fogler, Elements of Chemical Reaction Engineering, 4th Ed (2006),a. Prentice Hall,NewYorK.

Course Objectives : at the end of the semester the student should be able to :-

This course aims to establish fundamental knowledge for the students in chemical reactor engineering. At the end of this course, students should be able to:

(i) apply reaction kinetics principles in chemical reactor engineering.

(ii) identify and formulate problems in chemical reactor engineering and find appropriate solutions.

(iii) specify and size the most common industrial chemical reactors to achieve production goals for processes involving homogeneous reaction systems.

Topics Covered (Syllabus)/Course Title

No.	Contents	Duratio
1	Introduction to reactor design: L1: Interpretation of rate data, scale-up, and design L2: Classification of reactors.	2hr
2	Design fundamentals and mass conservation equations for ideal reactors: L1: Conservation of mass in reactors. L2: The ideal stirred-tank reactor (Batch and steady-state flow) L3: The ideal tubular flow reactor (PFR) L4: Space time and space velocity	4hr
3	Isothermal reactors for homogeneous reactions: L5: Design procedure: Batch reactor (constant volume and constant pressure) L6: Design procedure: Continuous stirred-tank reactors (Single and multiple reactions) L7: Design procedure: Tubular-flow reactors L8: Comparison of stirred-tank and tubular-flow reactors. L9: Flow recycle reactors L10: Non-steady flow (semi-batch) reactors	8hr
4	Non-isothermal reactors: L11: Energy conservation equations L12: Batch stirred-tank reactors L13: Continuous stirred-tank reactors	8hr
5	Multiple reactor System: L14: Plug flow reactors in series and/or parallel L15: Equal- size mixed flow reactors in series (first order and second order reactions) L16: Mixed Flow Reactors of different sizes in series. L17: Best arrangement of a set of ideal reactors	8hr

Program	Oil and Gas Refinery Engineering,					
Course Code	CES.R.338		Credi	ts hr		
Course Title	Heat transfer II					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Heat transfer I	2	2	1	5	3

Course Description

Characterization the design procedures for different heat transfer equipments as heat exchanger. Discuss the heat transfer in boiling and condensation processes .Characterization the design procedures for furnace. Give a new knowledge in renewable energy systems. Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Course Text

- 1- J.P.Holman ,Heat Transfer, Ninth edition.
- 2- Frank P. Incropera & David P. Dewitt, Fundamentals of Heat and Mass Transfer, Fifth Edition.

ENGINEERING

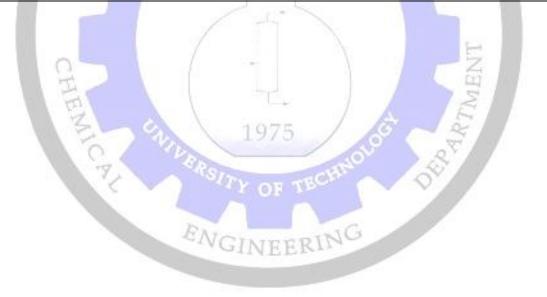
Other support books :-

1- Coulson, J.M., Richardson, J.F., Backhurst, J.R.and Harker, J.H., "Chemical Engineering" Volume(1) 6thEdition.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Design heat exchanger equipments.
- 2- Define and solve problems in boiling and condensation heat transfer.
- 3- Design the furnace and understand the radiation heat transfer.
- 4- Solve problems in heat transfer applications.

Topics Covered (Syllabus)/ Course Title


No.	Contents	Duration
1	Heat Exchangers: Various types and their general characteristics, Overall heat transfer coefficient, fouling factor, Heat exchangers mean temperature differences and Co-current and counter current flow.	10 hrs
2	Shell and Tube Exchanger: Types and various specifications, design calculations by conventional and by effectiveness (NTU) methods and optimum design calculation.	6 hrs
3	Condensation and Boiling Heat Transfer: Condensation of single vapors, Laminar film condensation Design calculations for condenser, Pool and flow boiling, Boiling regime, General aspects, Boiling correlations.	6 hrs
4	Radiation and Furnace design: Radiation properties, shape factor, heat exchange for non black bodies, parallel planes, shields, gas tradition.	4 hrs
5	Renewable Energy: Solar radiation, Solar water heater, Solar air heaters, Heat exchangers for ocean thermal energy, Heat storage and transmits.	4 hrs
	ENGINEERING	

Practical:<mark>Heat Transfer II</mark>

No.	Experiment Name
1	Conductive Heat Transfer in Steady State.
2	Coil Heat Exchanger.
3	Determination of Overall Heat Transfer Coefficient on Air Velocity
4	Performance of Cooling Tower
5	Graphite Heat Exchanger
6	Extended Surface Heat Transfer

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.3310		Credits l	nr			
Course Title	Petroleum and Gas Field Processing					Units	
Term	2nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Chemistry of Petroleum Properties of Petroleum fuels Properties of Petroleum Products	2	0	0	2	2	

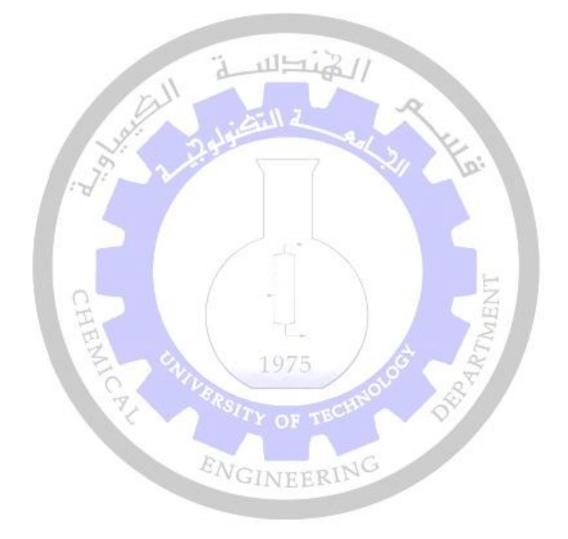
Course Description

"*Petroleum and Gas Field Processing*" course deals on the various surface unit operations commonly used in production facilities.

Course Text

- 1- Francis S. Manning-Oilfield Processing of Petroleum, Vol. 1_ Natural Gas -Pennwell Pub (1991)
- 2- Francis S. Manning, Richard E. Thompson-Oilfield Processing, Vol. 2_ Crude Oil Pennwell Corp (1995).
- 3- H. K. Abdel- Aal, Mohamed eggour, M. M Fahim "Petroleum and Gas Field Processing "MARCEL DEKKER, (2003)

Course Objectives: at the end of the semester the student should be able to :-


- 1- To provide an understanding of the general principles and importance of *Petroleum and Gas Field Processing* in the petroleum industry,
- 2- A comprehensive understanding the fundamentals of the *Petroleum and Gas Field Processing* mechanisms at the basis of the processes.
- 3- Provide criteria affect the processing options and the processing equipment required in a *Petroleum and Gas Field Processing*

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Oil and Gas, From Formation to Production : Formation and Accumulation of Oil and Gas Types Of Petroleum Reservoir	4hr
2	Two-Phase Gas-Oil Separation : Introduction, The Separation Problem, Theory of Gas-Oil Separation, Methods of Separation, Gas-Oil Separation Equipments	4hr
3	Three-Phase Oil-Water-Gas: Introduction, Separation Theory, Separator Types, Separator Sizing Equation and Rules.	4hr

	Treatment of Crude Oil :		
4	Emulsion Treatment and Dehydration of Crude Oil, Desalting of Crude Oil,	4hr	
	Crude Oil Stabilization and Sweetening		
	Field Processing and Treatment of Natural Gas :		
	Overview of Gas FieldProcessing,		
5	Sour Gas Treating,	14hr	
	Gas Dehydration,		
	Recovery, Separation, and Fractionation of Natural Gas Liquids		

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.3312		Credits hr			
Course Title	Petroleum refinery engineering 1					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Properties of petroleum products Chemistry of petroleum	2		1	5	3

Course Description

An introduction to petroleum feedstocks, refining processes, and how refined products are made. Heating of crude oil, Design of atmospheric and vacuum columns for petroleum fractionation will be explained. This course contains Solvent extraction processes for lube oil base stocks

Course Text

1. W.L..Nelson "Petroleum Refining Engineering " 4th Edition. McGraw Hill, New York, 1985

2. M.A. Fahim, T.A. Al-Sahhaf, and A.S. Elkilani," Fundamentals of Petroleum Refining", Elsevier, 2010.

3. J.H. Gary and G. E. Handwerk and M.J. Kaiser, "Petroleum Refining Technology and Economics", 5th Ed. CRC Press, 2007.

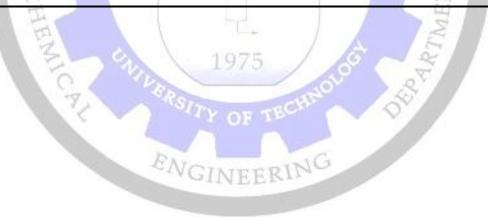
Course Objectives : at the end of the semester the student should be able to :-

- 1- Become knowledgeable in composition, properties and classification of crude oil or
- 2- petroleum.
- 3- Become familiar with the overall refinery processes including physical separation operations.
- 4- Be able to learn basic calculations and methods used to design and run some petroleum refining facilities.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
	Introduction to petroleum refinery:	
1	World petroleum resources, petroleum industries in IRAQ.	2hr

2	General review of refining processes of crude oil. Refinery configurations	2hr
3	Composition and classification of crude, methods of evaluation : ASTM, TBP and EFV distillation. Classification: Compound type, Correlation index, density, carbon distribution.	4hr
4	Properties and specifications of petroleum products : Such as FG, Gasoline, naphtha, kerosene, diesel oils, lubricating oils, waxes and the like. Composition: Chemical composition, hydrocarbon components. viz. paraffinic, naphthanic, aromatic olefinic.	4hr
5	Separation processes: introduction	2hr
6	Heating of crude oil : Types of pipe still heaters, calculations of radiant absorption rates, Wilson lobo Hotel equations, lobo Evans method pipe still design. Heat exchanger in refinery design and operational problems fluid mechanics and refinery applications use of combustion Charts.	4hr
7	 Distillation of crude oil 1) Atmospheric distillation tower, types of refluxes. Energy balance in a topping tower and calculations involve estimation of top, side, bottom draw tray temperatures. Calculation of side steam strippers 2)Vacuum distillation tower, type of operations, economic consideration, flash zone & tower base calculations, flash zone pressure, steam requirements, heat & material balance calculation 	8 hr
8	Solvent extraction processes for lube oil base stocks and wax processing : solvent de-waxing, deasphalting, clay contacting, principles operating parameters, feed and product equalities and yields.	hr4


ENGINEERING

Practical:Petroleum Refinery Eng I

No.	Experiment Name
1	Atmospheric Distillation
2	Characteristics of Airplane Turbine Fuel
3	Combustion Behavior of Gaseous Fuel
4	Asphalt Content
5	Characteristics of Diesel fuel
6	Blending Properties
7	Properties of Petroleum Products at low Temperature
8	Total Acidity
9	Lubricating oil by Gasoline Dilution
10	Water content in crude oil
11	Sediments content in crude oil
12	Sulfur content in crude oil
13	Smoke Point

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R.3314	Credits hr				
Course Title	Equipment, Storage Design Using CAD					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Thermodynamics, heat and mass transfer	2	2	1	5	3

Course Description

. The aim of the subject is to engaged students with chemical plants by explain to them the main items of plant design and teach them procedures to design different equipments with computer programs

Course Text

.Sinnott R. and Towler C; 2013 " chemical Engineering Design" 5th edition Butterworth-Heinemann

Coke,A.K ;2007''Ludwig s Applied Process Design of Chemical and petrochemical Plant'' vol. 1 4th edition Gulf professional Publisher

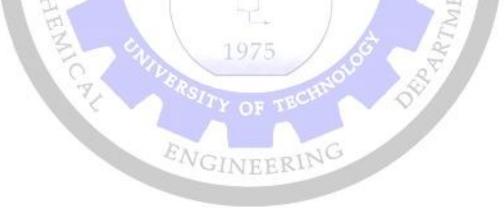
Course Objectives : at the end of the semester the student should be able to :-

1-Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

2- The student be able to use computer software packages to perform design activity beside the conventional methods

3- The student should have the necessary skills to design equipments

Topics Covered (Syllabus)/ Course Title


No.	Contents	Duration		
1	Applied Design for Pressure vessels ,pumps and compressors flash drum, gas-liquid separator, liquid-liquid separator, gas movers and compressors manually and with computer aided	12 hr		
2	Applied Design for heat equipments (shell And tube heat exchanger, plate heat exchanger, coil type exchanger, condenser, vaporizer, air cooleretc) manually and with computer aided			
3	Applied Design for mass transfer equipments (distillation column, absorber column, leaching equipment, scrubberetc) manually and with computer aided	6 hr		

Practical: Equipment, Storage Design Using CAD

No.	Contents
1	Introduction
2	Equation of state & stream
3	Rotating Equipment (3.1 Compressor, 3.2 Expander, 3.3 pump)
4	Separation Operations (Separator , 3-Phases Separator , 4.3 Tank)
5	Heat Transfer Equipment (Heater & Cooler, Heat Exchanger, LNG, Air Cooler)
	Column distillation
6	(Column Installation, Column Property View, Column-Specific Operations and
U	Running the Column)
7	Reactors(CSTR, General Reactor, Gibbs, Equilibrium, conversion)
8	Logical Operations (Adjust, Balance, Recycle, Set)
9	process plant involving reaction and separation
10	Examination lab

Program	Oil and Gas Refinery Engineering						
Course Code	CES.R.421		Credits hr				
Course Title	Project I					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	 10. Basic Principles of chemical engineering I 11. Basic Principles of chemical engineering II 12. Material & Energy Balance. 13. Thermodynamics I & II 		2		3	2	

Course Description

The course includes the design aspects and design considerations for plant of chemical industry.

Course Text

Sinnott R.K. "Chemical Engineering Design", Coulson and Richardson's. Chemical Engineering, Volume 6, Fourth edition, (2005).

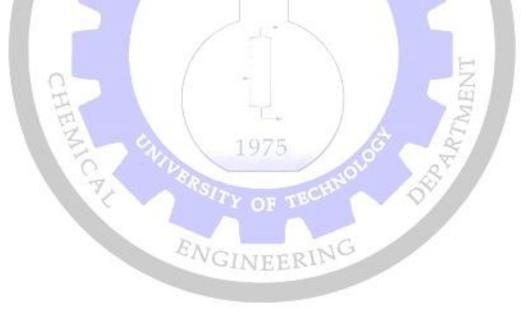
Other support books :-

1- Peters M. S., Timmerhaus K.D. and West R.E. Plant Design and Economics for Chemical Engineering, Fifth edition, (2003).

Course Objectives: at the end of the semester the student should be able to:-

To learn the students the basic information's of designing the chemical plants and the economic and engineering aspects

Topics Covered (Syllabus)/ Course Title


No.	Contents	Duration
1	Introduction to Design: The anatomy of chemical manufacturing process, general overall design considerations, development of design data base, process creation, types of process design.	5 hr
2	Design Information and Data: Source of information of physical properties , predication of physical properties (density, viscosity, thermal conductivity , etc)	5 hr
3	Material and Energy Balance: Review of material and energy balance, flow sheet symbols, PFD information in flow diagram	5 hr

Project Requirements

No.	Contents	Duration
1	Chapter One Introduction, Historical Profile, Physical and Chemical Properties, Applications for chemical material production.	4 hr
2	Chapter Two Production Methods, Comparison between Processes, Selected the optimum Process, Physical properties of raw materials and by products, Production Capacity.	4 hr
3	Chapter Three Material balance for the plant process.	10 hr
4	Chapter Four Energy balance for the plant process, Process flow diagram (PFD).	10 hr
5	Poster and Oral Presentation	2 hr

Program	Oil a	nd Gas K	Refinery	, Engin	eering	
Course Code-	CES.R. 431		Credi	ts hr		
Course title	Unit Operation II					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics II , Engineering Mathematics I , II, Numerical Analysis, Energy Balance, Material &Energy Balance, Fluid FlowI, II, Thermodynamics I, II, Mass Transfer, unit operation I , II, Heat treansfear I, II,		2/	1	5	3

Course Description

Theory, applications and design of unit operations which are mostly employed in the chemical industry, drying of solid, humidification, dehumidification and cooling tower and liquid evaporation and crystallization.

Course Text

- 1- Coulson ,J.M and Richardson J.F. "Chemical Engineering , Volume 1, 3rd edition ,Robert Maxwell.M.C.
- 2- Coulson J.M, and Richardson J.F. "Chemical Engineering, Volume 2, 3rd edition, Robert Maxwell.M.C.

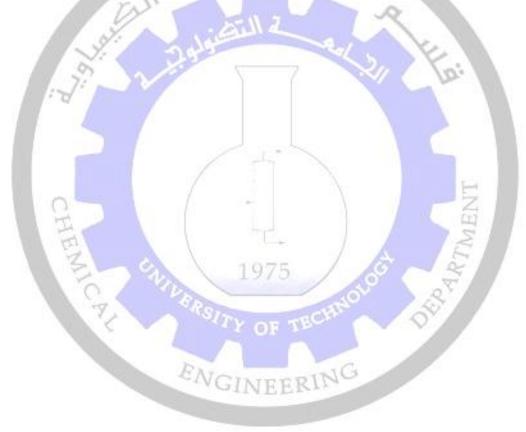
Other support books :-

- 1- Perry, J.H, "Chemical engineering handbook ", Mc-Graw Hill Bookcom. 1975.
- 2- Binay.K.Dutta "Mass transfer and separation process" 2007.
- 3- Trebal Robert E., "Mass transfer operation"2nd edition, Mc-Graw –Hill Book com.1975.

Course Objectives: at the end of the semester the student should be able to:-

- 1- To provide an understanding of the general principles of separation processes to allow students to make sensible options given a separation task (Humidification, Dehumidification and Cooling tower, Evaporation, crystallization, and Wet Solid Drying).
- 2- A comprehensive understanding of the transport processes related to chemical engineering operations, with focus on both theory and applications.
- 3- Ability to select of appropriate equipment for the separation of materials in process plant.
- 4- Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Topics Covered (Syllabus)/Course Title


No.	Contents	Duration
1	Drying of Solids: Introduction Drying of SolidsGeneral Principles. Wet Solid Group.Terminology and Definitions. Humidity Measurement. Humidity Data for Air – Water system. Temperature –Humidity Chart (Psychometric Chart). Uses of Humidity Chart. Rate of Drying. Calculation method of Drying Rate and Time. Drying Rate. Drying Time. Mechanism of Moisture Movement in Wet Solid. Material and Heat Balance for Continuous Dryers. Rate of Drying for continuous Direct Heat Driers. Drying at High Temperature. Drying at Low Temperature. Drying Equipment.	6 hrs
2	Humidification, dehumidification and Cooling towers: Introduction. Humidification Operations. Adiabatic Operations. Non- Adiabatic Operations. Mixing of Humid Streams. Mixing of Two Stream of Humid Gas. Addition of Liquid or Vapor to a Gas. Humidification Processes Theory. Cooling Tower Principles and Operations. Cooling Tower Classification. Design Cooling Tower. Adiabatic Humidification — Cooling. Dehumidification Tower	9 hrs
3	Evaporation: Introduction, Types of Evaporations, Evaporation Equipment, Heat transfer in Evaporation Process, single, double and Multi effect Evaporators, Design of evaporators, Comparison of Forward, backward and Parallel effect evaporators, boiling Point rise.	9 hrs
4	Crystallization: Crystallization fundamentals, cooling crystallizer, Evaporating crystallizer, Batch and continuous crystallization Crystallizer selection.	6 hrs

Practical Unit Operation II

No.	Experiment Name
1	Tray Dryer
2	Plate and Frame Filtration
3	Rotary Drum Filtration
4	Design of Cooling Tower
5	Sedimentation
6	Liquid - Liquid Extraction

Program	Oil a	and Gas Refinery Engineering				
Course Code	CES.R. 433		Credi	ts hr		
Course Title	Process Dynamics					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	1.Heat and Material balance 2.Applied Mathematics	2	-	1	3	2

Course Description

Study of dynamics characteristics of open-loop Oil and Gas Refinery Engineering processes to formulate transfer function and analysis response of the system to design and select closed-loop controlscheme.

111

Course Text

1. D.R. Coughanowr and S. LeBlanc, Process Systems Analysis and Control, McGraw-Hill, 3nd edition, 2008.

2. Stephanopoulos G., "Chemical Process Control-An Introduction to Theory and Practice, "Prentice -Hall, New Jersey, 1984.

Other support books :-

1. Luyben W. L., "Process Modeling, Simulation and Control for Chemical Engineers," McGraw-Hill, New York, 2nd Ed., 1990.

2. Process Dynamics: Modeling, Analysis and Simulation, by Wayne Bequette.

Course Objectives : at the end of the semester the student should be able to :-

- 1. Study of dynamic analysis of chemical processes to allow students to identify the system under different operating conditions.
- 2. Understanding of formulate transfer function of the system.
- 3. Testing and selecting of critical process variables.
- 4. Developing of skills, solving open ended problems and to work in teams.

Topics Covered (Syllabus)/ Process Dynamic

No.	Contents	Duration
1	Linear Open-Loop Systems Transfer function, Transient Response, Forcing Functions: Step Response ,Impulse Response Ramp Response Sinusoidal Response.	10hr
2	Applications of First Order Systems Liquid –level system, heating system, Mass transfer system, Reactors, absorber, pressure vessel, Linearization.	8hr
3	Response of First-Order Systems in Series Non-interacting System, Interacting System.	4hr
4	Higher-Order Systems Second-Order: Under-damped, Critical and over-damped, Transportation Lag	8hr
	CHEMIC 2 41 1975 1975 DEPARTURE DEPA	

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R. 43 <mark>5</mark>		Credits l	hr		
Course Title	Petroleum Refinery Eng II					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	0
Prerequisite(s)	Chemistry of Petroleum Properties of Petroleum fuels Properties of Petroleum Products Petroleum and Gas Field Processing	2	-	1	3	2

Course Description

"Petroleum Refinery Eng II" course deals with conversion processes for petroleum fractions as produced by the separation operations that are covered in the *Petroleum Refinery Eng I course*.

Course Text

- 1. W.L..Nelson "Petroleum Refining Engineering "4th Edition. McGraw Hill, New
- 2. York, 1985Mohamed A. Fahim, Taher A. Al-Sahhaf, Amal Elkilani-Fundamentals of Petroleum Refining-Elsevier Science (2009)
- 3. Pierre Leprince-PETROLEUM REFINING V.3_ Conversion Processes (Publication IFP)-Editions Technip (2000)

Other support books :-

1. James H. Gary, Glenn E. Handwerk, Mark J. Kaiser, PETROLEUM REFINING Technology and ,Fifth Edition, CRC Press © 2007 by Taylor & Francis Group, LLC

Course Objectives: at the end of the semester the student should be able to :-

- 1- To provide an understanding of the general principles and importance of conversion processes in the refining industry,
- 2- A comprehensive understanding the fundamentals of the chemical mechanisms at the basis of the processes. These disciplines are thermodynamics, chemical kinetics, reactor calculation and industrial catalysts.
- 3- Provide criteria affect the processing options and the processing equipment required in a modern refinery

Topics Covered (Syllabus)/ Petroleum Refinery Eng II

No.	Contents	Duration
	Thermal Cracking : introduction, Coking:	
1	Delayed Coking, Feed Types, Background, Typical Product Yields and Characteristics, Description of the Delayed Information, Typical Yields, Process Description, Uses for Low Btu Gas, Use of Purge Coke	2hr
	Visbreaking of Residues:	2hr
2	Background Information, Feed Composition, Cracking Reactions, Reaction Kinetics and Mechanism, Process Data, Operating Variables, Product Properties and Yields, Process Flow Schemes, Specific Equipment, Environment,	
	Catalytic Cracking :	4hr
3	Overview, The FCC Process, Introduction, Feeds and Products, Description, Thermal Balance, Fluidization and Pressure Balance, Operating Variables, Conversion, and Cracking Severity, Changing Technology, Residue Cracking, Reactions, Reactivity, and Mechanisms, Reactions, Modern FCC Catalyst,	
	Hydrocracking:	2hr
4	Importance, Background, Typical Feeds, Reaction Thermodynamics, Kinetic, Catalysts, Effects of Feed Impurities and Components,, Typical Flow Schemes, Operating Conditions, Product Yields and Quality, Hydrogen Consumption, ,	
5	Catalytic Reforming: Importance, Process Background, Reactions, Catalysts ,Operating Variables, Influence of Feeds, Technology, Fixed Bed, Moving Bed, Industrial Performance , Operating Conditions, Typical Yields, Reformate Characteristics, , Capacity	4hr
	Isomerization of C5-C6 Paraffins:	2hr
6	Aim, Thermodynamics, The Catalyst, Reaction Mechanism, Kinetics, The Isomerization Process, , Isomerization of n-Butane, Aim, Thermodynamics, Catalysts, Reaction Mechanism, Kinetics, Process	
	Aliphatic Alkylation:	2hr
7	Importance, Reaction Thermodynamics, Alkylate Compositions, Catalysts, Production Mechanisms, Red Oil Production Mechanisms, Structure and Function of Red Oils, Process Data, Feed Composition, Feed Pretreatment, Operating Conditions, Sulfuric Acid Alkylation Processes, HF Alkylation	
	Olefin Etherification :	2hr
8	Importance, Properties of Ethers, Feedstocks, Etherification Process, Reaction Mechanism, Kinetics and Thermodynamics, Catalysts, Side Reactions, Process Data, Feed Treatment, Raffinate Treatment, Operating Conditions, Process Flow Schemes, Reactor Design, Product Yield and Quality,	

	Residue Hydroconversion:	2hr
9	Introduction, Background, Reactions, Catalysts, Kinetics and Operating Conditions, Technologies and Process Data, Fixed Bed Processes, Moving Bed Processes, Product Yields and Characteristics, Associating the Hydrotreating Process with Deasphalting and	
	Hydrogen Production:	2hr
10	Hydrogen in the Refinery, Requirements, Sources, Hydrogen Balance, Hydrogen Production by Steam Reforming, Production of Synthesis Gas, Carbon Monoxide to Hydrogen Conversion, Carbon Dioxide Removal, Methanation of Residual CO and CO2, Purification by Adsorption, Comparison of Conventional Methanation and Adsorption (PSA) Methods, Ongoing Developments, Hydrogen Production by Partial Oxidation, Synthesis Gas Production, Hydrogen Production Sequencing, Hydrogen and Electricity Coproduction, Other Technologies, Hytex Process, Catalytic Autothermal Process,	
	White Products Refining by Sweetening:	
11	Mercaptan Distribution in Petroleum Cuts, Background Data, Recapitulation of Process History, Current Technologies, Industrial Processes, Liquid/Liquid Contact Technologies, Fixed Bed Catalyst Processes, Economic	2hr
	Hydrotreating:	2hr
12	Objectives, Impurities and their Origins, Heteroatoms and Metals, Unsaturated Products, Hydrotreating Processes, Background Information, Hydrotreating Reactions, Catalysts, Process Information, Catalyst Reaction Kinetics, Operating Variables, Catalysts, Process Technology, Reactors, Process Flow Schemes, Selecting Construction Materials, Industrial Performance, Feed Pretreatment for Gasoline Catalytic Reforming Units, Hydrotreating Kerosene and Gas Oil, Hydrotreating Vacuum Distillates,	
	Desulfurization of Stack Gases:	2hr
13	Principle of Stack Gas Desulfurization Processes, Choice of Sulfur Oxide Chemical, Operating Conditions, Regenerative Processes and Throwaway Processes, Characteristics of Stack Gas Desulfurization Processes, Stack Gas/Reactant Contactor, Heating the Stack Gases, Corrosive Nature of the Stack Gases, The Main Processes, Processes Using Lime orLimestone, Semiwet Processes, Dry Processes with Discharges, Regenerative Processes with Production of Concentrated SO2	

Program	Oil and G	nd Gas Refinery Engineering				
Course Code	CES.R. 435		Credits l	ır.		
Course Title	Refinery Management and Ethics					Units
Term	1 st Semester	Theoretical	Practical	Tutoria 1	Total	
Prerequisite(s)	Equipment Design Heat transfer Mass transfer	2	-	1	3	2

Course Description

Theory and applications, of Industrial Engineering Management which are mostly employed in The chemical industryIndustrialEngineering Management; ,Industrial organization, Maintenance Work Measurement Techniques, Engineering Ethics, Quality Control, ISO and Safety Requirements.

Course Text

T.R. Banga and S.C. Sharma "Industrial Engineering Management" including Production Management, Eleventh Edition:2008.

M.S. Peters, K.D. Timmerhaus and R.E. West "Plant Design and Economics for Chemical Engineers" Fifth Edition: 2003.

Course Objectives: at the end of the semester the student should be able to:-

To helps and learn in the optimum use of plant, equipment, efforts towards productivity improvement, establishing the most efficient and effective utilization of human effort and synchronizing various resources like men, machine and material as well as Engineering Ethics.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Management:Principle of management, types and classifications, management responsibility, organization responsibility.	4hr
2	Industrial organization : Site, Feasibility study, Development of efficient work method (plant layout, flow of material, material handling), Workstations, Inputs and Outputs, Production planning (types of Productions).	3hr
3	Maintenance: Classification, Cost, Machine replacements, Case studies and examples.	3hr

Network Analysis:	
Deinsight and employed and ordered (CMD) C	3hr
Principles and applications, Critical path method (CMP), Ga	ant Chart, Pert
techniques (examples and case studies).	
5 Work Measurement Techniques	3hr
Time and Motion study. Engineering Ethics:	
Engineering Etincs:	
Engineering has a direct and vital impact on the quality of life	for all people
Engineering is an important and learned job. Engineers and	1 1 I
exhibit the highest standards of honesty and integrity. Ac	
services provided by engineers require honesty, impartiality	
equity, and must be dedicated to the protection of the public	
and welfare. Engineers must perform under a standard of	
behavior that requires adherence to the highest principles of eth	
Quality Control:	
Standardization Specification Sampling techniques Inspectiv	on- analysis of
results. Quality costs (preventive cost, appraisal cost and	
Application of quality control chart-examples, Reliability.	
ISO:	
8	3hr
Requirements, applications, ISO series, Quality management s	system (QMS),
Total Quality management (TQM), Requirements and application	ons.
Safety Requirements:	E
Hazards (type's e.g. industrial hazards, pollution (air po	
pollution, industrial pollution). Industrial by products and in	
Safety requirements of industrial sites, Requirements of	
environment (examples with particular emphasis in chemical in	idustry).
T SPACE	14
TY OF TECS	· • • ·

ENGINEERING

Program	Oil and G	il and Gas Refinery Engineering				
Course Code	CES.R. 437	Credits hr				
Course Title	Heterogeneous Reactor and catalyst					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Physical chemistry ,mass- and heat- transfer, fluid and thermo- dynamics	2		1	3	2

Definition, classification of catalysts, properties of heterogeneous catalysts (activity, acidity, selectivity, and porosity), effectiveness of presence the catalysts on kinetic and thermodynamic properties, mechanism of chemical interactions occurring within the catalysts, applications of catalysts in catalytic processes, movement of the reactant molecules around and throughout the body of a catalyst in different types of reactors (fixed-, fluidized-, slurry-, and trickle-bed), intraparticle and diffusivities inside porous catalysts, and modern characterization techniques.

Course Text

1-J. M. Smith (1981), Chemical Engineering Kinetics, 3rd edition, Mc Grow - Hill, Singapore.

2-H. V. Bekkum, E. M. Flanigen, P. A. Jacobs, and J. C. Jansen (2001), Introduction to zeolite science and practice, 2nd edition, Amsterdam: Elsevier.

Other support books :-

1-J.F. Lepage, J. Cosyns & P.Couty, (1987), Applied heterogeneous catalysis. Paris: Editions Technip.

2-R. W. Missen, C. A. Mims, and B. A. Saville (1999), Chemical reaction engineering and kinetics, John Wiley & sons.

3-Daniel Decroocq (1984), Catalytic cracking of heavy petroleum fractions, Paris: Editions Technip.

Course Objectives: at the end of the semester the student should be able to :-

1-The objective of this course focuses on:

in-depth understanding of the catalyst and its impact on either chemical reactionskinetics or thermodynamics.

2-comprehension the principle of diffusion on the internal and external surfaces of the porous catalyst particles with their impact on the nature of reaction products in terms of increasing the quantity and quality and reducing the operating cost.

3-As well as the utilize of the operating equations and design for various kinds of reactors containing the catalyst particles as a key parameter in their work.

4-also to discover the theoretical knowledge about the equipments and characterization techniques used in catalyst and catalysisscience.

5-In addition, identify scientific and engineering information about the performance of a catalyst in enhancing the reaction mechanisms, problem solving, and other related issues.

No.	Contents	Duration
	Introduction:	
1	Definition, classification of catalysts, mechanisms of catalysis, properties of porous catalysts (i.e. mechanical strength, stability, activity, and selectivity), morphology, pore size, solid density and porosity calculations, pore volume distribution, developing the support, promoters and inhibitors, coke formation on the catalyst surface, catalyst deactivation and reactivation.	6 hrs
	Applications of catalysts in catalytic processes:	
2	History of the catalysts in catalytic processes, direct oxidation of methanol to formaldehyde, hydrogenation of acetone in a packed bubble column.	4 hrs
	Surface area and kinetic parameters determinations:	
3	Determination the surface area of catalyst, calculations of pressure drop and void fraction in a solid catalyst within a packed bed, calculations both the reaction rate and the activation energy over a solid catalyst, operating condition (i.e. temperature, pressure, residence time; W/F) and catalyst performance.	4 hrs
	Diffusion of bulk fluid over a solid catalyst within a packed bed and	10
4	reactor design: Fixed-bed reactors: mass and heat-transfer coefficients (fluid-particle), fluidized-bed reactors: particle-fluid mass and heat transfer, slurry-bed reactors:mass-transfer coefficients: gas bubble to liquid (k_L) , and liquid to catalyst particle (k_c) , trickle-bed reactors: mass-transfer coefficients: gas to liquid (k_La_g) , and liquid to particle (k_ca_c) with calculation of global rate.	10 hrs
	Intra-particle and diffusivities estimation inside porous catalysts:	
5	Diffusion coefficient of Knudsen and Bulk diffusion, Gaseous diffusion in the micro- and macro- cylindrical pores, Diffusion in liquids, Diffusion within porous catalysts (effective diffusivity), pore models (parallel-pore model and random-pore model), surface diffusion, effectiveness factors.	6 hrs

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R. 438		Credits	hr		
Course Title	Environmental Pollution.					
	& Safety in Petroleum					Unit
	Refineries					S
Term	1 st Semester	Theoretica 1	Practica 1	Tutoria 1	Total	
Prerequisite(s)	Petroleum Refinery	2	0	1	3	2

Course Description

Definitions of pollutants emission from petroleum refinery.Classification of air pollutants, Sources and type of air pollution, Particulate and air born particulate. Air pollution control equipment: types of equipment, Design of settling chamber and cyclones.

Source of water, Utilization, and classification. Type of water pollutants and its effect, Wastewater treatment. Oxygen demanding wastewater: Dissolved Oxygen DO, BOD, Oxygen sage curve and the related equations. Classification of solid waste, the methods of disposal of the solid waste.

Safety in petroleum refinery

Course Text

- 1- C.S.Rao, "Environmental Pollution Control Engineering", 2nd Edition, New Age International(P) Limited, Published, 2006, Reprint 2007.
- 2- R. K. Sinnott, Chemical Engineering Design, Vol. 6. 4th edition, Chemical Engineering Design, 2005, pp. 450-457.
- 3- Noel de Never, "Air Pollution Control Engineering", McGrow-Hill, Inc 1987.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Understand the concept of the environment and environmental pollution and global problems resulting from environmental pollution.
- 2- Provide solutions to environmental problems.
- 3- Concerned with local and worldwide environmental issues.
- 4- Design devices that are used in the control of air pollution.
- 5- Environmental engineers conduct hazardous-waste management studies in which they evaluate the significance of the hazard, offer analysis on treatment and containment.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction: Definition: Environment, Environmental Eng., Environmental Pollution and Pollutant. Causes effect and control measures of different types of petroleum pollutants of; Air, Water, Soil, Marine, Noise pollution and Nuclear Hazards.	2hr
	Petroleum pollution allowable limits in the environment. The Impact of Production Operations:	
2	Measuring Toxicity, Hydrocarbons, Salt, Heavy metals, Production chemicals, Produced water, Air pollution.	2hr
3	Treatment of Wastewater from Petroleum Industry: Removal of suspended Hydrocarbons, Removal of Dissolved Hydrocarbons, Removal suspended solids and Removal of Dissolved Solids processes.	10hr
4	Treatment of Air Emissions: Air pollutants (Hydrocarbons, Particulates, Gases), Characterization, Meteorological factor influencing, Characteristics of Stack Plume. Control of Particulates. Control of Gases (CO, SO _X , NO _X). Chimney Design.	8hr
5	Treatment of Solids: Removal water, Removal Hydrocarbons, Solidification	2hr
6	Safety in Petroleum Refinery: Fire Prevention and Control. Materials handling and storage, Noise Hazardous, Radiation Hazardous, Common Hazardous Materials in Refinery	6hr

Program	Oil and G	Oil and Gas Refinery Engineering				
Course Code	CES.R. 422	Credits hr				
Course Title	Project II					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	 14. Mass Transfer 15. Unit OperationI and II 16. Heat Transfer I and II 17. Equipment Design 18. Catalysis Eng. And Reactor Design 	1	2		3	2

Course Description

The course includes the design aspects and design considerations for plant of chemical industry.

11-1

Course Text

Sinnott R.K. "Chemical Engineering Design", Coulson and Richardson's. Chemical Engineering, Volume 6, Fourth edition, (2005).

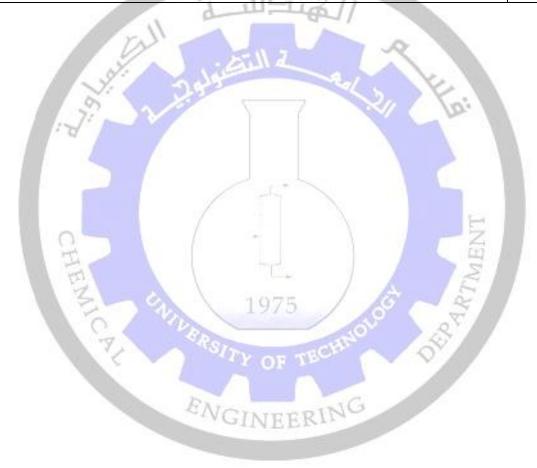
Other support books :-

1- Peters M. S., Timmerhaus K.D. and West R.E. Plant Design and Economics for Chemical Engineering, Fifth edition, (2003).

Course Objectives: at the end of the semester the student should be able to:-

To learn the students the basic information's of designing the chemical plants and the economic and engineering aspects

Topics Covered (Syllabus)/ Course Title


No.	Contents	Duration
1	Choice of Plant Location and Layout Standard	3 hr
2	Piping and Instrumentation Pipes, valves, Pumps, Mechanical design and control	4 hr
3	Cost and Project Evaluation	3 hr
4	Safety and Loss Prevention	2 hr
5	Design with Computer Aided	3 hr

Project Requirements

No.	Contents	Duration
1	Chapter Five Design main equipment by design equation with mechanical design, cost evaluation, control and computer aided using Hysys software	14 hr
2	Design supported equipment with mechanical design, cost evaluation and control.	6 hr
3	Chapter Six Environmental effect for raw materials, products and by products	6 hr
3	Poster and Oral Presentation	4 hr

Program	Oil a	nd Gas K	Refinery	, Engin	eering	
Course Code-	CES.R. 432		Credi	ts hr		
Course title	Unit Operation III					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics II, Engineering Mathematics I, II, Numerical Analysis, Energy Balance, Material & Energy Balance, Fluid FlowI, II, Thermodynamics I, II, Mass Transfer, unit operation I, II, Heat treansfearI, II,		- 0	1 2	3	2

Course Description

A comprehensive understanding of the transport processes related to chemical engineering operations with focus on theory, design and applications of Solid–liquid filtration, Sedimentation, liquid - liquid extraction, Leaching and Washing.

Course Text

- Coulson ,J.M and Richardson J.F. "Chemical Engineering", Volume 1, 3rd edition, Robert Maxwell.M.C.
- Coulson, J.M and Richardson J.F. "Chemical Engineering", Volume 2, 3rd edition, Robert Maxwell.M.C.

Other support books :-

- De Sinha and Parameswar De "Mass Transfer: Principles and Operations", Parameswar De, New Delhi, 2012
- Binay.K.Dutta "Mass transfer and separation process" 2007.
- Trebal Robert E., "Mass transfer operation"2nd edition, Mc-Graw –Hill Book com.1975.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Basic information, concepts and terminology of the general principles of separation processes of Solid –liquid filtration, Sedimentation, liquid liquid extraction, Leaching and Washing.
- 2- Demonstrating a broad and integrated knowledge and a deep understanding of issues related to separation processes in a chemical process and important role it plays in the success of the process both economically and environmentally.
- 3- Ability to select of appropriate equipment for the separation of materials in process plant.
- 4- An ability to apply effective, creative and innovative solutions, both independently and cooperatively, to current and future problems in separation processes and transport phenomena.

Topics Covered (Syllabus)

No.	Contents	Duration
1	Filtration : Type of Filters, Filtration theory, Plate and frame filter press, leaf filter, filtration at Constant ΔP , Filtration at Constant rate, washing Time, centrifugal filtration	9 hrs
2	Sedimentation: Introduction, Settling and Sedimentation in particle fluid separation, Sedimentation and thickening design, equipment for settling and Sedimentation.	6 hrs
3	Liquid - Liquid Extraction: Definition, Extraction process, Equilateral Triangular coordinates (Ternary Diagram), system of three liquid _ one pair partially soluble, choice of solvent, Equipment in extraction cross _ current extraction, multi stage Cross Current extracting cross current for insoluble Liquid , Continuous Counter current extraction , Continuous Counter Current in Soluble , Liquid , Minimum Solvent .	12 hrs
4	Leaching : General principles, Equipment for leaching, Mass transfer in leaching, continuous operation, Equilibrium-stage model for leaching and washing.	3 hrs

ENGINEERING

Program	Oil and Gas Refinery Engineering					
Course Code	CES.R. 434	Credits hr				
Course Title	Process Control and Instruments for Petroleum Refinery					
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Process Dynamic	2	2	1	5	3

Course Description

Analysis of closed-loop Petroleum Refinery Engineering processes system to design and select closed-loop controlscheme that will operate the plant with stable conditions.

Course Text

1. D.R. Coughanowr and S. LeBlanc, Process Systems Analysis and Control, McGraw-Hill, 3nd edition, 2008.

2. Stephanopoulos G., "Chemical Process Control-An Introduction to Theory and Practice, "Prentice -Hall, New Jersey, 1984.

Other support books :-

1. Luyben W. L., "Process Modeling, Simulation and Control for Chemical Engineers," McGraw-Hill, New York, 2nd Ed., 1990.

2. Process Dynamics: Modeling, Analysis and Simulation, by Wayne Bequette.

Course Objectives : at the end of the semester the student should be able to :-

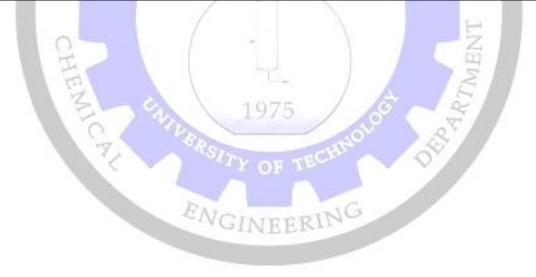
- 1- To enhancement the ability of students for the analysis of closed-loop system and response of controlled system under different operating conditions.
- 2- Construction of transfer function of the closed system for different schemes.
- 3- Provide practice of tuning of controller parameters and limiting of stable operating conditions.
- 4- Motivation and encourage the students for solving open ended problems.

1946

Topics Covered (Syllabus)/ Process Control and Instruments for Petroleum Refinery

No.	Contents	Duration
1	Instrumentation: Sensors: pressure, temperature, level, flow and concentration. Control valve. Dynamics characteristics of Instruments.	6hr
2	Linear Closed-Loop Systems: The Control System, Controllers and Final Control Elements, Block Diagram of Controlled System, Overall Closed-Loop Transfer Functions.	4hr
3	Characteristics of the Closed Loop System Transient Response of Simple Control Systems, Stability	7hr
4	Frequency Response Methods: Introduction to Frequency Response Bode Diagrams, Control System Design by Frequency Response, Ziegler-Nichols Controller Settings.	7hr
5	Computer Control of Chemical process: Analog Computer, Digital Computer, Computer Control Loops.	3hr
6	Control of Complex Processes: Distillation Column, Heat Exchanger, Catalytic Reactor.	3hr

ENGINEERING


MICRI

Practical)/ Process Control and Instruments for Petroleum Refinery

No.	Experiment Name
1	Feedback Control
2	Dynamic Behavior of Second order under Damped System (Orifice)
3	Flow rate Control
4	Level Control in the Tank
5	Pressure Control
6	Dynamic Behavior of Second order over Damped System (Stirred Tanks)
7	Dynamic Behavior of Second order over Damped System (Stirred Tanks Heater)
8	Temperature Control
9	PH Control
10	Control of Water Treatment Unit

Program	Oil a	Oil and Gas Refinery Engineering				
Course Code	CES.R. 436		Credits hr			
Course Title	Petroleum Refinery Economics					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Pet. Ref. eng. 1 Pet. Ref. eng. 2	2	0	0	2	2

Course Description

This course presents an overview of refinery economic terminology, including fundamentals and methodology used to assess profitability of ongoing operations, planned.

This course contains Refining Capacity, Refining Costs Estimation: including capital and operating costs, calculation of crack spreads and refining margins, issues influencing feed and product pricing, refinery complexity, Refinery Economic Evaluation,

Process models and linear program applications as operating and optimization tools, feed and process unit economic drivers.

Course Text

R.E. Maples, "Petroleum Refinery Process Economics", Pennwell Books, 2nd edition., 2000.
 James H. Gary, Glenn E. Handwerk "Petroleum Refining, Technology & Economics", 5th ed., & Mark J. Kaiser

3. M.A. Fahim, T.A. Al-Sahhaf, and A.S. Elkilani," Fundamentals of Petroleum Refining", Elsevier, 2010.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Become familiar with refinery margins and economics
- 2- Ability to maximize refinery margins by optimizing a number of variables including: the type of crude feedstocks and products etc.
- 3- Ability to use appropriate analytical tools for planning strategy, improving operations, and assessing investment opportunities.

Topics Covered (Syllabus)/ Petroleum Refinery Economics

No.	Contents	Duration
1	Introduction	2hr
2	Refining Capacity	2hr
3	Refining Costs Estimation: Capital Costs, Operating Costs (Variable Cost, Fixed Cost), Factors Affecting Refinery Costs.	6hr
4	Refining Margins	2hr
5	Refinery types and complexity	2hr
6	Refinery Economic Evaluation: Cash Flow Diagram, Time Value of Money, Inflation, Taxation and After-tax Cash Flow, Profitability and Project Evaluation.	6hr
7	Refinery Value Drivers: Cost of Inputs vs. Price of Outputs, "Crack" Spreads	
8	Global Trends	2hr
9	Refinery Planning: Linear Programming Overview, Refinery Linear Programming Models, Economics and Planning of Refining processes and process economics: Crude oil evaluation, Production planning, Product blending, Shutdown planning, Configuration studies, Technology evaluation	8hr

ENGINEERING

Program	Oil an	Oil and Gas Refinery Engineering				
Course Code	CES.R. 424	Credits hr				
Course Title	Optimization					Units
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Eng.Mathematics1,2 ,Unit Operation.	2	-	1	3	2

Course Description

The subject is to be given in one semester. studying the formulation of objective the theory of optimization of single variable using analytical and numerical methods. Determination in the solution of multi variables problems .studying and solving the linear programming problems(LP).

Course Text

1) Optimization, Greirg D.M. Longmangroup limited London.

2) Optimization, converse A.O ,Holt, Reinhart, and Winston.

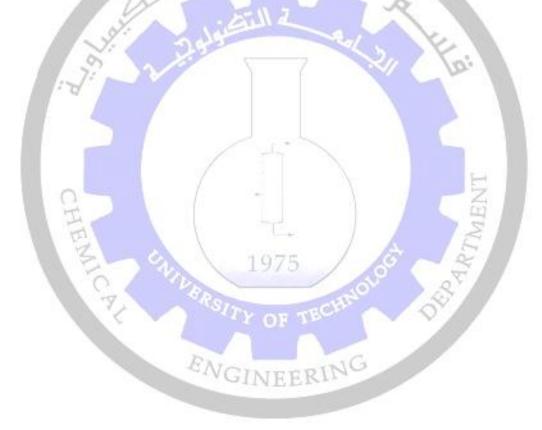
Other support books :-

1) Numerical methods for unconstrained optimization, Murrayw. Academic press.

2) Constrained optimization by direct search Swann, W.H. Gill and Murray.

Course Objectives : at the end of the semester the student should be able to :-

- 1- To formulate many problems arising in widely different situations.
- 2- Ability for finding optimum. Minimum, or maximum in unconstrained or constrained single or multi variables functions..
- 3- Deals with the special case of linear programing (functions and constraints are linear).
- 4- Provide practice to deal with industrial optimization problems.


Topics Covered (Syllabus)/ Optimization

No.	Contents	Duration
1	Introduction to optimization.	2hr
2	 Recognizing an optimization problems and their solution. Formulation of optimization problems. Unconstrained and constrained problems. 	6hr
3	 Optimization methods for single variable problems. Analytical methods; constrained and unconstrained. Graphical method. Numerical methods. c- Unconstrained functions; fixed step method, DSC method, Newton method. d- Constrained functions; sequential search, Dichotomous search; Fibonacci search, Golden ratio search. 	12hr
4	Determining the solution to multivariable optimization problems. d- Unconstrained minimization and maximization strategy.	10hr

- Solving linear and non linear equations using matrices.
- Optimality conditions for unconstrained problems.
- Lagrangian criteria.
- Simplex method direction step length calculation.
- e- Solution of constrained multivariable problems.
 - Analytical solution.
 - Lagrangian duality.
 - Linearization of nonlinear optimization problems.
 - Simplex method.
 - Pivot table formulation.
- f- Linear programming (LP) formulation.
 - Solving linear system.
 - Basic solution of an (LP) problems.
 - Graphical interpretation.

Program	Oil an	Oil and Gas Refinery Engineering				
Course Code	<mark>CES.R. 4</mark> 39					
Course Title	Corrosion Eng. In Petroleum Refinery		Credits hr			Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Material Engineering	2	-	-	2	2

Course Description

Introduction, Classification of Corrosion, Kinetics of aqueous corrosion, Thermodynamics, Determining, Passivity, Reference Electrode, Corrosion prevention, Corrosion in refining industries.

Course Text

- 1- Zaki Ahmed, "Principle of Corrosion Engineering and Corrosion Control",1ST Edition, ,IChem^E,ELSEVIER, 2006.
- 2- Denny A. Jones, "Principle and Prevention of Corrosion", 2nd Edition, Prentice Hall, 1996.
- 3- Herbert H. UHLIG, " Corrosion and Corrosion Control" John WILEY, 2008.
- 4- Fontana, M.G and Greene, N.D, "Corrosion Engineering", 3rd Edition, McGraw-HILL, 1986.
- 5- Sankara Papavinasam, "Corrosion Control in the Oil and Gas Industry", Elsevier, 2014.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Understanding the concept of corrosion. The form of corrosion, How the material destroyed by corrosion.
- 2- Determine the corrosion rates and electrochemical behavior of the metals and the thermodynamics of corrosion reactions.
- 3- Applying the corrosion prevention technology.
- 4- Selection of materials involved in applying the corrosion prevention technology in petroleum refineries.

Topics Covered (Syllabus)/Course Title

No.	Contents	Duration
1	Introduction: Definitions, Corrosive environment, Consequences of corrosion, Cost of corrosion, Why metals corrode, Basic concepts on corrosion, Anodic and Cathodic reactions, Types of cells.	2 hr
2	Classification of corrosion: Wet corrosion, Dry corrosion, Sweet Corrosion, Sour Corrosion , Forms of corrosion	4 hr

	Kinetics of aqueous corrosion:	
3	Faraday's laws of electrolysis and its application in determining the corrosion rate, reversibility and exchange current density, polarization, Activation polarization, Concentration polarization, Combined polarization.	4 hr
	Thermodynamics and its application on corrosion:	
4		4 hr
	Free energy, Cell potential, Reversible electrode potential, Nernst equation	
	Determining the corrosion rate:	
5	Corrosion rate measurement units, methods determining corrosion rate: 3- Immersion test 4- Electrochemical technique a-Tafel extrapolation b-Linear polarization	4 hr
6	Passivity: Active passive metal and conditions for passivity, Kinetics of passivity table passivity, Unstable Passivity	2 hr
7	Reference electrodes: Hydrogen electrode, Ag/AgCl electrode, Zn/ZnCl ₂ electrode, Pb/PbCl ₂ electrode	2 hr
	Corrosion prevention in Oil Industry:	
8	Materials selection, Alteration of Environment, Design, Coating, Anodic protection, Inhibitors	2 hr
	Pourbaix diagram:	10
9		2hr
	Equilibrium Diagram, Advantage and Disadvantage of Pourbaix Diagram	
10	Cathodic Protection: Sacrificial anode corrosion protection, Impressed current anode corrosion protection, Major impressed current anodes, Galvanic systems anode, Design parameters in cathodic protection, Stray current corrosion	4 hr

Program	Industrial and Petroleum Pollution Engineer					ing
Course Code	CES.E.111		Credits h	ır		
Course Title	Technical English "I"					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Basic principles in English language (grammars and vocabularies)	2	-	-	2	2

Course Description

Define a specialknowledge and basic concepts in English language, review of (words, terms and phrases commonly utilized) with practical everyday language that students need, the fundamental principles of grammars used in English language such as question and answer, the negative, the tail questions, the singular and plural, the numbers, nouns, pronouns, the verb (to be, to have, and to do), adjectives, regular and irregular verbs, using so & neither, and adverbs, degrees of comparison, conjunctions and interjections, kinds of letter (S) with general exercises. Also, accurate description of the nature of vocabularies and idioms used by the chemical engineers and that the student needs in his/her academic and/or in his/her professional career by means of applying two reading passages focus mainly on studying the chemical engineer work in the factories as well as equipment, tools and materials used.

Course Text

- 3- The language of chemical engineering in English, Roy V. Hughson (1979), Regents publishing company, Inc.
- 4- New headway plus (English Course), Liz & John Soars (2014), Oxford University press. Other support books :-
 - 3- Life Lines workbook (Pre-intermediate and Intermediate level), Tom Hutchinson (2007), Oxford University press.
 - 4- English in a simplified way, Tahir Al- Bayati (1991), Baghdad.

Course Objectives: at the end of the semester the student should be able to :-

The objective of this course focuses on:

1-in-depth understanding and comprehension of the essential grammars in the English language that usually used in writing and/or speaking with choosing the correct way of speaking and/or listening the vocabulary (phonetics and spelling) by the use of common phrases and words.

2-Also, focus on the use of technical English(reading passages) as a heart of chemical engineer work, such as what chemical engineers do, research and development.

3- The development of the student's ability to apply and arrange knowledge in English language and thus become able to employ them appropriately in his/her daily dealing without the complexity.

4- As well, encourage students to develop their capabilities in the field of English language through participation by the training on the use and improve their language.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Academic Comprehension: (Reading passages related to chemical engineering) The first reading passage (<i>What chemical engineers do</i>) (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion)	8 hrs
2	Academic Comprehension: (Reading passages related to chemical engineering) The second reading passage (<i>Research and development</i>). (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion).	8 hrs
3	English Grammar: A general introduction to the English language and its importance as a means of communication between different peoples around the world,Review of the words, terms and phrases commonly used,Review of the simple grammars in English language, such as question and answer, the negative, the tail questions, the singular and plural, the numbers, telling the date, and telling the time, Nouns, pronouns, the verb to be, the verb to have, the verb to do, Adjectives and regular and irregular verbs, Reading and writing grammars that include short forms and words with two different meanings, The use of so & neither, and adverbs, Degrees of comparison,Conjunctions and interjections with general exercises, Kinds of letter (S) with general exercises.	14 hrs

Program	Industrial an	ndustrial and Petroleum Pollution Engineering				
Course Code	CES.E.121		Credits hr			
Course Title	Mathematics I					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematic of secondary school	2	-	1	3	2

Course Description

Introduction to functions, limits, Special functions, Derivatives, Chain rule, and their applications. Introduction to integral calculus, Methods of integration.

Course Text

1-Thomas Calculus, by George B.Thomas, Jr, Elevnth Edition Media Upgrade 2008" Other support books :-

2-Mathematical methods for science students, Second Edition, by G. Stephenson .

3-Advanced Engineering Mathematics, Fifth Edition, by C.Raywylie,LouisC.Barrett . Mathematical Methods in chemical Engineering, Second Edition, by V.G.Jenson and G.V. Jeffreys .

Course Objectives : at the end of the semester the student should be able to :-

- 1- To develop an understanding with the concepts of calculus and analytic geometry and the applications of these concepts to the solution of engineering problems.
- 2- Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.
- 3- Develop a deep understanding of issues related to the basic principles of calculus, and how to solve problems in chemical engineering

ENGINEERING

No.	Contents	Duration
	Preliminaries:	
1	Absolute value, coordinates of the plane, slope of lines, angle of inclination, functions, graph of the functions, domain and range, identifying functions, sum, differences, products and quotients, composite functions, shifting a graph of a function, scaling and reflecting a graph of a function.	6hr
	Limits and Continuity:	
2	Properties, limits involving infinity, continuity	4hr
	Transcendental functions:	
3	Logarithmic and exponential functions, trigonometric functions, inverse trigonometric functions, humanalia functions, inverse humanalia	4hr
	trigonometric functions, hyperbolic functions, inverse hyperbolic trigonometric functions.	
	Derivatives:	
	Definition, chain rule, derivative of inverse trigonometric functions, of	
4	hyperbolic functions, of inverse hyperbolic functions, derivative of	6hr
	exponential and logarithmic functions, L, hopitals rule, partial derivative,	
	function of two or more variables. Integration:	
5	Indefinite integration, integration of inverse trigonometric functions, integration of hyperbolic functions, integration of inverse hyperbolic	10hr
5	functions, integration methods; (substitution, by part, trigonometric	TOIL
	substitution, partial fraction). 1975	/
	TSITY OF TECH	
	t or or the	

ENGINEERING

Program	Industrial and Petroleum Pollution Engineering						
Course Code	CES.E.131		Credits hr				
Course Title	Chemical Engineering Principles I						
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	1-Basics Maths 2-Chemistry Basics	2		1	3	2	

Course Description

To teach students fundamental knowledge of chemical engineering and application of this knowledge in the solving of material balances of chemical processes.

The course will cover concepts ranging from basics such as units and dimensions, stiochiometry to the simultaneous application of material and energy balances with and without occurrence of chemical reaction.

Behavior of ideal gases including the procedures for estimation of vapor pressure and heats of vaporization will be extensively covered.

Course Text

1- Himmelblau, D.M. and J.B.Riggs," Basic principles and calculations in chemical engineering",8^{ed}, Prentice-Hall Inc., New Jersey,2013.

2- Sikdar, D.C., Chemical process calculations, PHI Learning private ltd., New Delhi, 2013.

Course Objectives: at the end of the semester the student should be able to :-

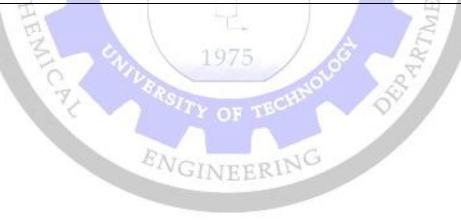
1-Identify and understand the unit operations involved in a process, draw flowcharts, and develop relationships between process variables.

2-Perform simple degree-of-freedom analysis to identify the number of unknowns relating to mass, mass flow rate, composition and energy, and develop the linearly independent mass and energy balances needed to determine unknown quantities.

3-Apply ideal gas rule and equations of state for real gases.

4-describe various forms of energy, work, enthalpy, specific properties. state functions. and volumetric properties of pure liquids.

5-Convert from SI unit to British unit system and vice versa.


6-Understand the dimension concept, Understand of conversion coefficient concept and Use conversion coefficient.

Topics Covered (Syllabus)/Course Title

No.	Contents	Duration
1	General Knowledge of Chemical Engineering: Definition of chemical engineering, Chemical process industries (CPI), Generalized chemical process, Flow sheet and representation of a chemical process (PFD) The difference between the chemist and the chemical engineer.	4 hr
2	Mathematical , Physical and Chemical Principles:Dimensions, units, symbols and conversion factors , Precision and significant figures., Density and specific gravity, Temperature, Pressure, The mole unit , Composition and concentration. Basis of calculation, Principles and expressions of stoichiometry.	16 hr
3	Gases and Vapors: Ideal gas law, Ideal gas mixtures, Real gas relationships, Real gas mixtures, Vapor pressure and saturation.	10 hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.123	Credits hr				
Course Title	Chemistry					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemistry	2	2	0	4	3
Course Descript	ion		•		•	

Introduction to environmental chemistry and pollution including environmental of water and air

Course Text

1- Harrison, R.M," Understanding Our Environment An Introduction to Environmental Chemistry and Pollution", 3ed edition, The Royal Society of Chemistry 1999

Other support books :-

- 1- Benefield, L.D.Judkins, J.Fand weand ,B.L Process Chemistry for water and west water treatment .Prientice-Hall,Inc. Eagleood Cliffs, New Jersey,1982.
- 2- Weiner, R. F. "environmental engineering" 4th edition Elsevier Science 2003.

Course Objectives: at the end of the semester the student should be able to :-

- 1- To provide an understanding of the general principles of Environmental chemistry
- 2- A comprehensive understanding of the water chemistry and west water.
- 3- Ability to select the application and uses of water depend one properties
- 4- Students will learn to think about Chemical pollution

Topi	cs Covered (Syllabus)/ <mark>Course Title</mark>	
No.	Contents	Duration
1	Introduction to environmental chemistry: concept and scope of environmental chemistry, components of environment, natural cycles of matter in the environment. Stoichiometry, Gibb's redox potential chemical potential, chemical equilibria, acid-base reaction, solubility of gases in water, definition of environmental terms.	8hr
2	Chemistry of water and wastewater: Hydrological cycle, structure of water molecule, water as a solvent principles of equilibrium chemistry, pH, oxidation-reduction and the applications of principles of chemistry for solving Environmental Engineering Problems.	12hr
3	Chemistry of the air environment: Chemistry of the atmosphere, combustion related air pollution, global environmental problems – chemistry of CFC, ozone depletion, greenhouse effect, acid rain, La Nino etc. Chemistry of pollution due to detergents, pesticides, polymers, traces organics, metals, petroleum and radioactive compounds.	10hr

Practical: (Chem. lab.)

No.	Experiment Name
1	Introduction and chemical safety basic rules
2	Equipment and how to use it
3	Preparation of standard solution (primary and secondary)
4	Direct Titration
5	Titration pH Curves
6	Determination of Chloride Ions in Water
7	Redox reaction
8	Determination of Hardness of Water
9	Determine of Salinity by electrical conductivity
10	Determination of Turbidity
11	Identification of organic compound

Progr	am	Industrial an	d Petrole	um Pol	lution l	Enginee	ring
Cours	se Code	CE- CES.E.125		Credi	ts hr		
Cours	se Title	Environmental Physics					Units
Term	L	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prere	quisite(s)	Physics	2	-	-	2	2
Cour	se Descripti Basic glol	<mark>on</mark> oal climate, Energy, T	Fransport of p	ollutants, N	oise and so	und.	
Cour	rse Text	,		ug //			
1- 2-	-R.A.Tlinricl -Egbert Boek	ns and M. Kleinbach, ker & Rienk Van Gro es : at the end of the	ndele," Enviro	onmental Pl	nysics"		
	1- The bassource	asic physical environ and noise	mental Physic			the second se	on's
	cs Covered ((Syllabus)/ Course T	itle			A	
No.			Contents				Duration
1		on: tials of environmen e, enjoying the sun, tr			-	and the second se	5hr
2	Basic Envi Solar spec	ronment Spectrosco trum, interaction o les, ozone and UV. L	py: f light with	-]		ME	5hr
3	The Globa		RSITY OF	climate, c	limate vibr	ration and	5hr
4	Energy: Heat transfe		fuels, renewa			ergy.	5hr
 Heat transfer, energy from fossil fuels, renewable energy, nuclear energy. Transport of Pollutants: Diffusion, flow in rivers, ground water flow, the equation of fluid dynamics, turbulence diffusion, particle physics. 					5hr		
6	Noise: Basic aco transmissio	ustics, human perc n sound	eptions and	noise cri	teria, Redu	ucing the	5hr

Program	Industrial an	d Petroleum Pollution Engineering				
Course Code	CESE.127		Credits hr			
Course Title	Engineering drawing					
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	None	1	2		3	2

Course Description

Introduction inEngineering drawing, engineering drawing applications, engineeringprocess, analysis model to view and study the full and half Sections, conclusion of the third projection, Draw isometric and Oblique.

Course Text

- لرسم الهندسي، تاليف (عبد الرسول الخفاف) الطبعة الثانية، ١٩٩٣ .
- 4. R.P Hoelscher and C.H Springer "Engineering Drawing and Geometry ".2nd edition

Course Objectives: at the end of the semester the student should be able to :-

- 1- 1. The students can be use Tools Drawing in draw and analyze geometric shapes
- 2- 2. Enable students to draw devices, equipment & PFD in chemical engineering.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction	3hr
2	Planning of Drawing paper	3hr
3	Types of line	3hr
4	Engineering operation	3hr
5	Projection Drawing	3hr
6	First angle projection	3hr
7	Third angle projection	3hr
8	Full section	3hr
9	Half section	3hr
10	The finding of third view	3hr
11	Application Example	3hr
12	Pictorial Drawing (Isometric and Oblique)	3hr
13	Application Example	3hr
14	Dimensions	3hr
15	Examples of chemical engineering drawing and exercises.	3hr

Program	Industrial an	d Petroleum Pollution Engineering				ring
Course Code	CES.P.113	Credits hr				
Course Title	Computer					
	Programming(I)					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	None	1	2		3	2

Course Description

This course provides an overview of the operating system Windows 10 and the program of Microsoft Office 2010 and the Visual Basic and includes the operation of Visual Basic and describe the elements of the design environment and user interface design and the difference between the project and the program and introduce students to the philosophy of programming using visual Basic and a programming process events Event-Driven Programming and programming objects Object Oriented Programming and gives the student an introduction to object-oriented programming and introduce students to the fundamental differences between the concept of the programming language BASIC visual and languages BASIC traditional and explain the steps to design and program planning.

Course Text

1-" Visual Basic: Crash Course - The Ultimate Beginner's Course to Learning Visual Basic Programming ", 3rd Edition, A. Tannenbaum, Prentice-Hall, 1996.

2-"Beginning Visual Basic " by Bryan Newsome Wrox, USL Press, | December 2003 | ISBN-10: 1119092116 |

3- "Course Notes for Learn Visual Basic 6.0", 4th Edition, F. Halsall, Addison-Wesley, 2000.

Course Objectives : at the end of the semester the student should be able to :-

- 1- start Microsoft Office applications and work with the Microsoft Office interface Create documents in Microsoft Word. Create workbooks in Microsoft Excel.Create presentations in Microsoft PowerPoint
- 2- Define and modify the the properties and methods associated with an object
- 3- Load, modify, and save changes made to forms and projects in the Visual Basic environment
- 4- Define and implement form objects including data arrays, control arrays, text boxes, message boxes, dialog boxes, labels, controls, menus, frames, picture boxes, pull-down menus, and combo boxes

No.	Contents	Duration
	Windows 10 and Microsoft Office:	
1	the operating system Windows 10 and MicrosoftOffice word, Microsoft excel, Microsoft power point.	3hr
	Introduction to Visual Basic Programming:	
2	Menu bar, Tools bar, Project explorer, Tool box, Properties windows, Form, Code, Controls, Command Buttons, Label, Textbox, Pointers, Picture box, frame, Naming Controls, Properties for controls: Height, Width, Left, Top, Font, Forecolor, Backcolor, Name, Caption, Text, and Visible, Events, Saving Visual Basic Project, Examples, Chemical Engineering Applications.	2hr
	Mathematics:	
3	Arithmetic Operations: +, , *, /, mod, ^. (Using Simple Example for each Operation), Logical Operations. AND, OR, NOT. And the Truth Table for each Operation, (Using Simple Example for each Operation), Relational Operation: >, <, >=, <=, <>, =, String Concatenation (&), Operation Precedence. For all arithmetic, logical, relational operators, Print statement and Formatting. Illustrate (colon, comma, and semicolon), Examples: Chemical Engineering Applications	1hr
4	Built inFunctions: Builtin math functions, Abs(x), Int(x), Rnd(x), sgn(x), sqr(x), str(x), val(x), round(x,n),CInt(x),Fix(x),String Functions, InputBox, MsgBox, Examples: Chemical Engineering Applications.	1hr
	Selection Structure:	
5	Single Selection: If/Then structure, Double Selection: If/Then/Else structure, Nested If/Then/Else structure, Select Case Multiple Selection Structure, Examples: Chemical Engineering Applications.	2hr
	Reputation Structure:	
6	For Next Loop, While Wend, Do While Loop, Do Loop Until, Exit Do, Exit For Examples: Chemical Engineering Applications.	1hrs

Variables: Data Types: Boolean, Integer, Long, Single, Double, String, Valid Jaming of Variables, Initial Value for each Type of the Variables Initial Value for each Data Type), Size of each Variable Type in Bytes, Jow to Declare Variables. (Dim statement), Using: Dim variable name As Data type, Using Suffix: Integer, Long, Single, Double, String, Constant Variable. Examples: Chemical Engineering Applications.	2hrs
ntroduction: Defining Arrays, Array Declaration Statement, Assigning Values	
Arrays (i.e. minig array science tvalue entief by loop of by unect ssignment statement), Re Dim Statement, Using Loops with Arrays. (i.e. writing an application on array using loops), Two Dimensional Arrays, Operations on Arrays, Fill Array Elements with Random Numbers using and Function, Sorting, Searching. (i.e. Linear search), Swapping Two lements. Examples: Chemical Engineering Applications.	2hr
Graphics in Visual Basic: Graphics control, Picture box, Image box, Coordinate system, Pixel, Graphics methods (Line,Circle, pset) Examples: Chemical Engineering Applications.	1hrs
)po nd lle xa Fr dra	erations on Arrays, Fill Array Elements with Random Numbers using I Function, Sorting, Searching. (i.e. Linear search), Swapping Two ments. amples: Chemical Engineering Applications. aphics in Visual Basic : aphics control, Picture box, Image box, Coordinate system, Pixel, aphics methods (Line,Circle, pset)

ENGINEERING

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.112	Credits hr				
Course Title	Technical English "II"					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Basic principles in English language (grammars and vocabularies)	2	-	-	2	2

Course Description

Define a specialknowledge and basic concepts in English language, review of phonetics and spellingwith words and sounds that need attention in understanding the meaning and pronunciation, the fundamental principles of grammars utilized in English language such as the use of the prefixes (un, im, in, and dis), the use of since & for, the definite and indefinite articles. As well as simple, continuous and perfect tenses (present, past, and future), the punctuation, active voice and passive voice, direct and indirect speech, finite and non-finite verbs, analyses and kinds of sentences. Also, accurate description of the nature of vocabularies and idioms used by the chemical engineers and that the student needs in his/her academic and/or in his/her professional career by means of applying two reading passages focus mainly on studying the chemical engineer work in the factories as well as equipment, tools and materials used.

Course Text

- 1- The language of chemical engineering in English, Roy V. Hughson (1979), Regents publishing company, Inc.
- 2- New headway plus (English Course), Liz & John Soars (2014), Oxford University press. Other support books :-
 - 1- Life Lines workbook (Pre-intermediate and Intermediate level), Tom Hutchinson (2007), Oxford University press.
 - 2- English in a simplified way, Tahir Al- Bayati (1991), Baghdad.

Course Objectives: at the end of the semester the student should be able to :-

The objective of this course focuses on:

1- Study and conception of the advance grammars in the English language that usually employed in academic writing and also explain the use of grammars correctlyin speaking and/or listening the vocabulary (phonetics and spelling) via increasing the ability to rapid recognize the words that have two different meanings depending on their presence in the context of speech

2- Accurate description of the nature of vocabulary and idioms used by the chemical engineers in dealing with their respective fields in addition to the vocabulary of daily dealing. Also, focus on the use of reading passages such as process design and plant operation, which are related to student competence and his/her profession as an engineer in the chemical companies.

3-Enhancement of student's ability by applying modern information in English language about the characteristics of the chemical engineer job and then try to the simulation that in writing the

scientific report, expression, and formulate of simple sentences and complex ones without the difficulty.

4- Finally, promote the qualifications of students in the field of English language by training on the use and the progress of their language in order to allow them to easily use it in his/her future academic study in chemical engineering.

11 - 10 /1

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Academic Comprehension: (Reading passages related to chemical engineering): The third reading passage (<i>Process design</i>) (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion)	8 hrs
2	Academic Comprehension: (Reading passages related to chemical engineering): The fourth reading passage (<i>Plant operation</i>). (Special terms or definitions, vocabulary practice - the word and its meaning, paragraphs - read and explanation, review, and discussion).	8 hrs
3	English Grammar: Phonetics & Spelling (consonant sounds & vowel sounds), Words and sounds that need attention in understanding the meaning and pronunciation, as well as the use of the prefixes (un, im, in, and dis),The use of since & for, as well as the definite and indefinite articles,Punctuation (such as the use of the capital letter, the question mark, and the commaetc), Simple tenses (present, past, and future), Continuous and perfect tenses (present, past, and future), Active voice and passive voice,Direct and indirect speech, Finite and non-finite verbs, Analyses of sentences, and kinds of sentences (either according to form or to number of statements).	14 hrs

Program	Industrial & Petroleum Pollution Engineering					
Course Code	CES.E.122	Credits hr				
Course Title	Mathematics II				Units	
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics I	2	-	1	3	2

Course Description

Definite integral and applications, Polar coordinates, Vector analysis, Determinant and matrices

Course Text

- 1- Thomas Calculus, by George B. Thomas, Jr, Elevnth Edition Media Upgrade 2008" Other support books :-
 - 1- Mathematical methods for science students, Second Edition, by G. Stephenson,
 - 2- Advanced Engineering Mathematics, Fifth Edition, by C. Raywylie, Louis C. Barrett
 - 3- Mathematical Methods in chemical Engineering, Second Edition, by V. G. Jenson and G.V. Jeffreys

Course Objectives : at the end of the semester the student should be able to :-

- 1- To understand these concepts of applications and how to evaluate volumes, surface area , and to understand analytic geometry.
- 2- Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.
- 3- Develop a deep understanding of issues related to the basic principles of polar coordinates, vector analysis, determinants, and how to solve problems in chemical engineering

ENGINEERING

Topi	cs Covered (Syllabus)/ <mark>Mathematics II</mark>	
1	Definite integration and Applications: Double integrals, reverse order of integration, length of curves, surface area, volumes	10hr
2	Polar Coordinates: Definition, Cartesian versus polar coordinates, graphing in polar coordinate.	4hr
3	Vector Analysis: Definitions, properties, vector in space, scalar and cross product of vector, product of three vectors.	8hr
4	Determinates and Matrices : Definition, determinate evaluation, solution of system of linear equation by matrix; (Inverse of matrix, Gauss elimination), Rank of matrix, Eigen value and Eigen vectors.	8hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.132		Credit	s hr		
Course Title	Chemical Engineering Principles II					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	1-Basics Maths 2-Chemistry Basics 3.Chemical Engineering Principles I	2	-	1	3	2

Course Description

The objective of this course is to present an introduction to chemical engineering calculations, establish mathematical methodologies for the computation of material balances and to present an overview of industrial chemical processes. It is prerequisite for several junior-level courses in the curriculum, including courses in process fluid dynamics, heat transfer and phase equilibrium.

The course reviews the fundamentals of chemistry and physics as they pertain to chemical problems and applies mathematics to the development of time-dependent equations to describe materials flow through a process. Examples of the processes studied include stoichiometry in combustion and other reactions, materials flow with recycle streams.

Course Text

 Himmelblau, D.M. and J.B.Riggs," Basic principles and calculations in chemical engineering",8^{ed}, Prentice-Hall Inc., New Jersey,2013.
 Sikdar, D.C., Chemical process calculations, PHI Learning private ltd., New Delhi, 2013.

Course Objectives: at the end of the semester the student should be able to :-

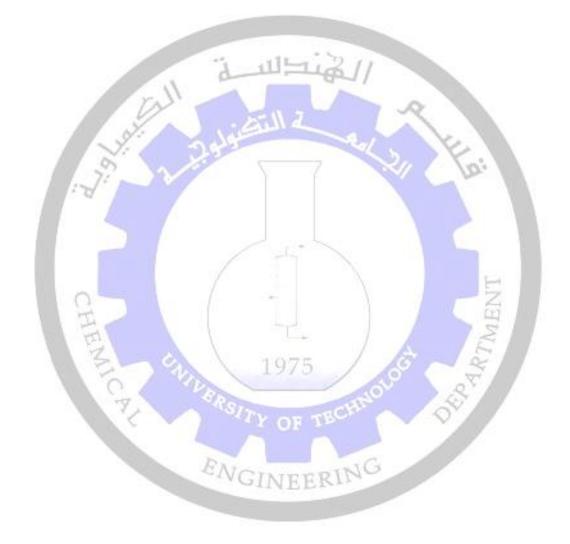
1-Create representative process flow diagrams and use them to organize systems of equations.

2-Formulate material balances to solve for compositions and flow rates of process streams.

3-Incorporate single and multiple reactions into unit operations within chemical processes.

4-Understanding of the degrees of freedom analysis and its significance.

5-Ability to make material balances on unit operations and processes.


Topics Covered (Syllabus)

No.	Contents	Duration
1	Concepts of material balance.	2 hr
2	Systematic steps of solving material balance problems.	2 hr
3	Material balances without chemical reactions.	4 hr

4	Material balances with chemical reactions.	6 hr
5	Material balances on combustion processes.	6 hr
6	Material balances involving recycle.	6 hr
7	Bypass and purge streams.	4 hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.124		Credi	ts hr		
Course Title	Bio-Chemistry					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemistry	2	2	0	4	3

Course Description

Fundamentals of biochemistry-chemical basis of life and in environmental

Course Text

1- Lehninger A.L., Nelson D.L., Cox, M.M. "Principles of Biochemistry, Worth Publishers, 2004

Other support books :-

- 1- Benefield, L.D.Judkins, J.Fand weand , B.L Process Chemistry for water and west water treatment .Prientice-Hall, Inc. Eagleood Cliffs, New Jersey, 1982.
- 2- Weiner, R. F. "environmental engineering" 4th edition Elsevier Science 2003.

Course Objectives: at the end of the semester the student should be able to :-

After this course students should be able to understand basic chemical processes in the cell as well as their environmental effects

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Definition of biochemistry-chemical basis of life, polymeric biomolecules and their monomeric building blocks	2 hr
2	Carbohydrates:	4 hr
	Classification, Monosaccharide, disaccharide, Oligosaccharides, Polysaccharides	
3	Lipids:	4 hr
	fatty acid, waxes, phospholipids, prostaglandins, triacylglycerols, steroids, lipophilic Vitamins	
4	amino acids: Amino Acid Polymers, proteins, Derivatives, Peptide Bonds	4 hr
5	nucleic acids:	4 hr
	Types, Nucleosides, Nucleotides, Deoxyribonucleic Acid, Ribonucleic Acid	
6	introduction to enzymology:	4 hr
	classes of enzymes, enzyme specificity and mechanisms of action as well as	

	the regulation of their activity; flow of genetic information - replication, transcription, translation and regulation of gene expression; bioenergetics and basic cellular metabolic processes	
7	Environmental Implications of Food	
		4 hr
	Fats, oils, Carbohydrates, proteins, vitamins, fertilizers.	
8	Global problems:	
		4 hr
	Fossil Fuel energy and global warming, Greenhouse Effect	

الهنطلالي

Practical: (Bio-Chemistry.)

1

No.	Experiment Name				
1	Introduction to Techniques Experiment 1A Use of Pipetmen				
2	Specific identification of sugars -1				
3	Specific identification of sugars -II				
4	Specific identification of lipids- I				
5	Specific identification of lipids				
6	Specific identification of amino acid				
7	Specific identification of amino acid				
8	Specific identification of protein				
9	Specific identification of protein 1975				
10	Protein Purification (chromatography)				

ENGINEERING

Program	Industrial and Petroleum Pollution Engineering						
Course Code	CES.E.126						
	Engineering						
Course Title	Mechanic and		Units				
Course Thie	Strength of						
	Materials						
Term	2 nd Semester	Theoretical Practical Tutorial Total					
Prerequisite(s)	Physics	2	I	1	3	2	

Course Description

Principles of statics, Resultant of a force system, Equilibrium of a force system, Moment of a force, Friction, Centroid and center of gravity, Moment of inertia, Analysis of internal force, Strain, Stress-strain diagram, Hook's law, Shearing deformation, Poisson's ratio, Volumetric strain, Thin-walled cylinders, Thermal stress, Shear and bending moment in beam.

Course Text

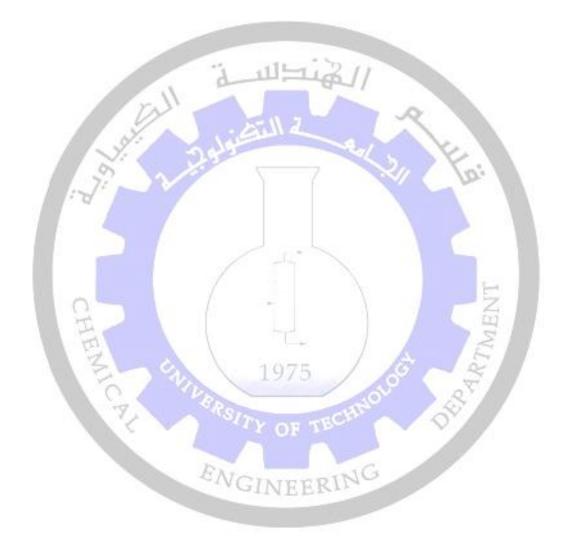
1- Engineering Mechanic-Statics and Dynamics volume 1; Higdon, A. and Stiles, W.B., 3^{ed} Edition, Prentice-Hall, India, (1968).

2- Strength of Materials; Singer, F.L. and Pytel, A., 3^{ed} Edition, Harper and Row, London, (1980).

Course Objectives : at the end of the semester the student should be able to :-

- 3. Designed to study the effects of external forces on a group of solid objects.
- 4. Resistance of materials and their applications in chemical engineering.

Topics Covered (Syllabus)/Course Title


No.	Contents	Duration					
1	Friction: Theory of Friction, friction on an inclined plane						
2	Centroid and Center of Gravity	3 hr					
3	Moment of Inertia (Second moment of the axis): Polar moment of inertia, Transfer formula for moment of inertia						
4	Introduction Force in Rigid Bodies: Definitions of Stress and Strain, Stress-Strain Diagrams	2 hr					
5	Proportional Limits: Elastic limit, Stiffness elasticity, Plasticity, Hardness and working stress.	4 hr					

Topics Covered (Syllabus)/ Course Title

6	Hook 's Law	3 hr
7	Poisson Ratio, Composite Stresses:	4 hr
	Volumetric Stress, Bulk Modulus, Thin Walled Cylinders	
8	Thermal Stress	4 hr
9	Shear and Bending Moments in Beam	4 hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.114		Credi	ts hr		
Course Title	AutoCAD					Units
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Computer Programming I	1	2		3	2

Course Description

introduction, AutoCAD program components and how to use it, knowing AutoCAD commands like point, lines, Rectangle, Polygon, Poly line, Arc with their option to draw 2D engineering drawing, learning Hatching, text, mtext, Dimension creation and editing, Modify command and Layers for 2D engineering drawing.

3D drawing methods: Surfaces, Solids and Composite solid.

Render, background, lights for drawing.

Course Text

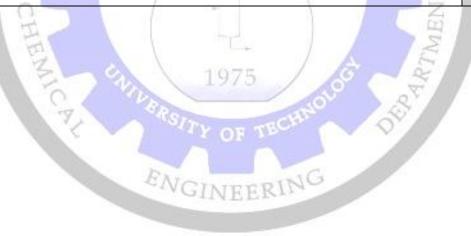
1-Terry T. Wohler, applying AutoCAD 2002 fundamentals, Glencoe /McGraw-Hill
2-James A. Leach, AutoCAD 2002 Companion Essentials of AutoCAD plus Solid modeling ,2003, McGraw-Hill, Boston
3- Terry T. Wohler, applying AutoCAD a step by step approach for AutoCAD release 13, 1996, Glencoe McGraw-Hill
4- James A. Leach, AutoCAD 14 Companion Essentials of AutoCAD plus Solid modeling ,1999,WCB / McGraw-Hill, Boston

Other support books :-

David Byrnes and Mark Middlebrook, AutoCAD® 2007 For Dummies, Wiley Publishing, Inc.

Course Objectives : at the end of the semester the student should be able to :-

- 1. The students can use AutoCAD program and produce 2D and 3D chemical engineering drawings.
- 2. Enable students to draw designed equipment in AutoCAD program.


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction, Drawing program screen components, Setting drawing limits, Units, Grid and snap, Zoom, Orthogonal, Osnap, UCS. 2D drafting: Cartesian system coordinate, AutoCAD drawing command: Point, Line: line, multi-line, construction line, drawing line by using: absolute coordinate, polar coordinate, relative coordinate, Example	3hr
2	Continuous line drawing: Rectangle, Polygon, Poly line with their options, Example	3hr
3	Curves drawing: Arc, Circle, point –SP line, Ellipse with their options, Example.	3hr
4	Hatching, text command: text, mtext, Example	3hr

5	Dimension creation and editing, Example	3hr
6	Region, block, insert block, Example	3hr
7	Modify command: 1-coy tool: copy, mirror, offset, array. 2- Erase tool: erase, trim, break .3- move tool: move, rotate .4- Change tool: stretch, Lengthen, Extend, Scale, Chamfer, and Fillet .5-Explode, Example	3hr
8	Layers: Create a new layer ,rename layer, active layer, run and extinguishing layers ,Freezing layers, Lock and open layers, the color ,Font type ,Line width, Example	3hr
9	3D drawing methods: Surfaces drawing: box, Wedge, Pyramid, Dome, Sphere, Cone, Torus, Dish, Example	3hr
10	3D drawing methods: Solids: box, Cylinder, Sphere, Cone, Wedge, Torus, Example	3hr
11	Composite solid: Union, Subtraction, Intersection, Example	3hr
12	render, background, lights, Example	3hr
13	Examples of chemicalengineering drawing and exercises.	3hr
14	Examples of chemicalengineering drawing and exercises.	3hr
15	Examples of chemicalengineering drawing and exercises.	3hr

	am	Industrial a	and Petrol	eum Po	<i>llution</i>	Engine	ering
Cour	se Code	CES.E.128		Credits	hr		
Cour	se Title	Electrical					
		Technology					Units
Term	L	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prere	quisite(s)	Physics	1	-	1	2	1
The o		the basic electric calculations, standar			-		
					-		
		,generator, alternati					•
	se Text	,generator, arternati	ing current,, train	stormer ,m	otors and m	strumentati	,
		" Electrical Circuit T	Theory and Tecl	nology" 2r	^{id} edition E	lsevier Scie	nce
1	2003	, Electrical Circuit	theory and reel	11010 <u>5</u> y ,2	cultion, L		, mee,
2.		" Electrical and Elec	tronic Principle	and Techn	ology" 2nd	edition 20	03
		izzoni, "Fundamenta					05
	-	neldrake, "Handbook		-			td 2003
		es : at the end of the					2005
		0				e to :-	-
		g of the fundamental			0.	C .:	DC
		d be know the basic	-	• ·			
		s, transformer and s			-	-	field
and	l tollow the	instruction relation			. 1 1	1 1	• 1
		instruction relation	n between ele	ctrical and	technology	y and che	mical
eng	ineering.			ctrical and	technolog	y and che	mical
eng	ineering.	(Syllabus)/ Course [ctrical and	technolog	y and che	mical
eng	ineering. cs Covered	(Syllabus)/ <mark>Course (</mark>		ctrical and	technolog	y and che	mical Duration
eng Topi	ineering. cs Covered		<mark>Fitle</mark>	ctrical and	technolog	y and che	
eng Topi	ineering. cs Covered	(Syllabus)/ <mark>Course (</mark>	<mark>Fitle</mark>	ctrical and	technolog	y and che	
eng Topi	ineering. cs Covered Introduction Material us	(Syllabus)/ Course 7 on To Dc Circuit: e in electric compon	Contents Contents	temperature	e Coefficier	nt, Review	
eng Topic No.	ineering. cs Covered Introduction Material us	(<mark>Syllabus)/ Course '</mark> on To Dc Circuit:	Contents Contents	temperature	e Coefficier	nt, Review	Duration
eng Topic No.	ineering. cs Covered Introducti Material us of Kirchho	(Syllabus)/ Course 7 on To Dc Circuit: e in electric compon	Fitle Contents ent, ohms law, rallel circuit, et	temperature	e Coefficier	nt, Review	Duration
eng Topic No.	ineering. cs Covered Introducti Material us of Kirchho Conversior	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pa	Contents Contents ent, ohms law, rallel circuit, eq nalysis	temperature	e Coefficier	nt, Review	Duration
eng Topio No.	ineering. cs Covered Introduction Material us of Kirchho Conversion Dc And Ac	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pa , Node And Mesh A c Generator And Me	Contents ent, ohms law, rallel circuit, equality is otor:	temperature quivalent re	e Coefficier esistance, s	nt, Review tar / delta	Duration 4hr
eng Topic No.	ineering. cs Covered Introducti Material us of Kirchho Conversion Dc And Ac Principle o	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pat , Node And Mesh A c Generator And Me f DC generator and	Contents ent, ohms law, rallel circuit, equality is otor: motor, Transfo	temperature quivalent re	e Coefficier esistance, s duction mo	nt, Review tar / delta tor(Single	Duration
eng Topio No.	ineering. cs Covered Introducti Material us of Kirchho Conversion Dc And Ac Principle o	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pa , Node And Mesh A c Generator And Me	Contents ent, ohms law, rallel circuit, equality is otor: motor, Transfo	temperature quivalent re	e Coefficier esistance, s duction mo	nt, Review tar / delta tor(Single	Duration 4hr
eng Topio No.	ineering. cs Covered Introducti Material us of Kirchho Conversion Dc And Ac Principle o	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pat , Node And Mesh A c Generator And Me f DC generator and	Contents ent, ohms law, rallel circuit, equality is otor: motor, Transfo	temperature quivalent re	e Coefficier esistance, s duction mo	nt, Review tar / delta tor(Single	Duration 4hr
eng Topio No.	ineering. cs Covered Introduction Material us of Kirchho Conversion Dc And Act Principle of phase), Material	(Syllabus)/ Course f on To Dc Circuit: e in electric compon ff's Laws Series Pat , Node And Mesh A c Generator And Mesh f DC generator and gnetic and electroma	Contents ent, ohms law, rallel circuit, equality is otor: motor, Transfo	temperature quivalent re	e Coefficier esistance, s duction mo	nt, Review tar / delta tor(Single	Duration 4hr
eng Topio No. 1	ineering. cs Covered Introduction Material us of Kirchho Conversion Dc And Act Principle of phase), Ma Feil	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pa a, Node And Mesh A c Generator And Mesh f DC generator and gnetic and electroma mical,	Contents ent, ohms law, rallel circuit, equality is otor: motor, Transfo	temperature quivalent re	e Coefficier esistance, s duction mo	nt, Review tar / delta tor(Single	Duration 4hr 2hr
eng Topio No. 1	ineering. cs Covered Introduction Material uss of Kirchho Conversion Dc And Act Principle of phase), Ma Feil Electrocher Ac Circuit	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pa a, Node And Mesh A c Generator And Mesh f DC generator and gnetic and electroma mical,	Contents ent, ohms law, rallel circuit, equalitysis otor: motor, Transforgenetism, Natur	temperature quivalent re rmer, Intro al magnetic	e Coefficier esistance, s duction mo : field, mag	nt, Review tar / delta tor(Single netic flux,	Duration 4hr 2hr
eng Topio No. 1 2 3	ineering. cs Covered Introducti Material us of Kirchho Conversion Dc And Ac Principle o phase), Ma Feil Electrocher Ac Circuit Concepts o	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pat , Node And Mesh A c Generator And Mesh f DC generator and gnetic and electroma nical, : f AC circuit, rms va	Contents contents ent, ohms law, rallel circuit, equality is otor: motor, Transfortignetism, Natur alue Average value	temperature quivalent re rmer, Intro al magnetic	e Coefficier esistance, s duction mo : field, mag	nt, Review tar / delta tor(Single netic flux,	Duration 4hr 2hr 5hr
eng Topio No. 1 2 3	ineering. cs Covered Introduction Material us of Kirchho Conversion Dc And Ac Principle of phase), Ma Feil Electrocher Ac Circuit Concepts of and Reactive	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Par a, Node And Mesh A c Generator And Mesh f DC generator and gnetic and electroma mical, : f AC circuit, rms va a power – power face	Contents contents ent, ohms law, rallel circuit, equality is otor: motor, Transfortignetism, Natur alue Average value	temperature quivalent re rmer, Intro al magnetic	e Coefficier esistance, s duction mo : field, mag	nt, Review tar / delta tor(Single netic flux,	Duration 4hr 2hr 5hr
eng Topio No. 1 2 3	ineering. cs Covered Introduction Material uss of Kirchho Conversion Dc And Act Principle of phase), Ma Feil Electrocher Ac Circuit Concepts of and Reactive Polyphas	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pa , Node And Mesh A c Generator And Mesh f DC generator and gnetic and electroma mical, : f AC circuit, rms va // power – power fac es Circuit:	Contents contents ent, ohms law, rallel circuit, equality is otor: motor, Transforagnetism, Natur alue Average vactor.	temperature quivalent re rmer, Intro al magnetic alue, from a	e Coefficier esistance, s duction mo field, mag	tor(Single netic flux, ctors, real	Duration 4hr 2hr 5hr
eng Topio No. 1 2 3	ineering. cs Covered Introducti Material us of Kirchho Conversion Dc And Ac Principle o phase), Ma Feil Electrocher Ac Circuit Concepts o and Reactiv Polyphas Introductio	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Par , Node And Mesh A c Generator And Mesh f DC generator and gnetic and electroma nical, : f AC circuit, rms va // power – power fac es Circuit: on to three phase c	Contents contents ent, ohms law, rallel circuit, equality is otor: motor, Transforagnetism, Natur alue Average value ctor. ircuits, Introduct	temperature quivalent re rmer, Intro al magnetic alue, from a	e Coefficier esistance, s duction mo field, mag and peak fa	nt, Review tar / delta tor(Single netic flux, ctors, real	Duration 4hr 2hr 5hr
eng Topic No. 1 2 3 4	ineering. cs Covered Introduction Material uss of Kirchho Conversion Dc And Act Principle of phase), Ma Feil Electrocher Ac Circuit Concepts of and Reactiv Polyphas Introduction system, F	(Syllabus)/ Course (on To Dc Circuit: e in electric compon ff's Laws Series Pa , Node And Mesh A c Generator And Mesh f DC generator and gnetic and electroma mical, : f AC circuit, rms va // power – power fac es Circuit:	Contents Contents ent, ohms law, rallel circuit, equality is otor: motor, Transfortignetism, Natur alue Average vactor. ircuits, Introduation incuits, Introduation	temperature quivalent re rmer, Intro al magnetic alue, from a	e Coefficier esistance, s duction mo field, mag and peak fa	nt, Review tar / delta tor(Single netic flux, ctors, real	Duration 4hr 2hr 5hr 2hr

Program	Industrial and Petroleum Pollution Engineering						
Course Code	CES.E.115	Credits hr					
Course Title	Human rights					Units	
Term	2 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	none	1	-	-	1	1	

Course Description

The study of the human rights concept and history and its relationship to religions and the extent of his relationship with globalization and contemporary currents.

Course Text

1-Human rights, development, contents Dr.Riyad Aziz Hadi
٢-مبادئ و قواعد عامة في حقوق الأنسان د. صلاح حسن مطرود من المحمد المحمد المحمد المحمد المحمد المحمد ا
٣- حقوق الأنسان بين الأسلامي و العالمي د. محمد على الشجيري
٤ - حقوق الأنسان و الديمقر اطية د ماهر صالح الجبوري
٥- مشكلة الحرية د. زكريا أبر اهيم

Course Objectives : at the end of the semester the student should be able to :-

- 1-Rooting human rights values in the local culture.
- 2-leading to the development of the concept.
- 3-principles of human rights in general.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Psychological construction and its relationship with human right	1hr
2	Contemporary Arabs currents, its position on human right	1hr
3	Secular : the early stage of its development , disadvantages, her features	1hr
4	How can you balance between civil right and social	1hr
5	Capitalist and socialist society with human rights	1hr
6	Close society and an opened society	1hr
7	Theory of the social contract	1hr
8	Thomas Hughes ,Jan-jack Rousseau ,Volter ,AuxtComte,Max Weber	1hr
0	Montesquieu	
9	Relationship of right to democracy	1hr
10	Relationship of right to urbanization	1hr
11	Relationship of right with globalization	1hr
12	Human rights between rejection and acceptance	1hr
13	How can rooting the values of human rights in Arab culture and in the	1hr
13	great cultures	
14	The relationship between the political culture and ideological	1hr
15	Ideological religion	1hr

20

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.221	Credits hr				
Course Title	Engineering MathematicsI					
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics I, Mathematics II	2	-	1	3	2

Course Description

This course describes the evaluation of double, triple integrals, area and volume.Provide knowledge and skills in writing a periodic function in its Fourier series form and on their applications. Develop skills for applying this course in the future on various chemical engineering applications.

Course Text

Text book:

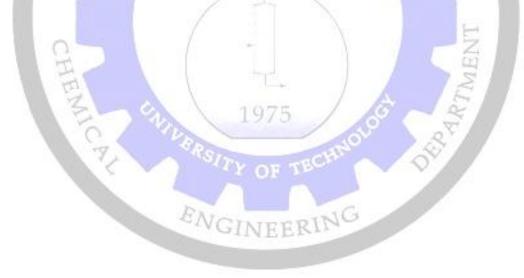
1. Higher Engineering Mathematics by Dr.B.S.Grewal, Khanna Publishers, 40th Edition, 2007.

Reference book:

1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edition, 2007.

Course Objectives: at the end of the semester the student should be able to:-

- 1. Able to evaluate double, triple integrals and the area, volume by double & triple integrals respectively.
- 2. Understand the concept of Fourier-series representation of periodic functions and their applications.


ENGINEERING

Topics Covered (Syllabus)/ Engineering Mathematics1

No.	Contents	Duration
1	Multiple Integrals: Double Integral, Area, Volume, Double Integral in polar coordinates, Triple Integral in rectangular coordinates, physical application of double and triple integration.	12hr
2	Function and definite Integrals: The error function, the gamma function, the beta function, factorial function.	6hr
3	Infinite Sequences and Series: Sequences, Convergence, Geometric series, nth partial sum, tests of convergence, alternating series, power and Taylor's series.	6hr
4	Fourier series: Periodic functions, Fourier series, Even and odd functions, Half range expansion.	6hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.231	Credits hr				
Course Title	Energy Balance					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemical Engineering principle I & II	2	-	1	3	2

Course Description

The aims of the course provide a deep knowledge, wide scope and improved understanding of the mechanisms in heat balance for closed and open system and for steady and unsteady state. The students should gain knowledge to apply the energy balance in engineering problems.

Course Text

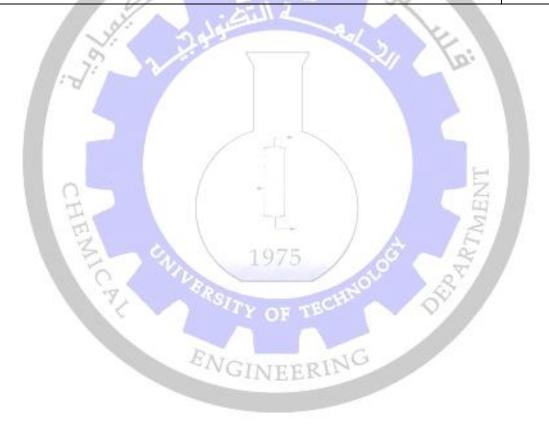
1. D.M.Himmelblau and J.B.Riggs ,Basic Principles and Calculations in Chemical Engineering ,7th Edition , 2004 .

Other support books :-

2. R.M.Felder and R.W.Rousseau , Elementary Principles of Chemical Processes ,3rd Edition ,2005.

Course Objectives : at the end of the semester the student should be able to :-

- 1. The terminology associated with energy balances, concepts, and units.
- 2. Introduction to energy balances for processes without reaction .
- 3. Calculation of enthalpy changes .
- 4. Energy balances : how to account for chemical reaction .


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Energy : Terminology , Concept , and units The terminology associated with energy balances , Types of energy : Work , Heat , Kinetic energy , Potential energy , Internal energy , Enthalpy .	4hr
2	Introduction to Energy Balances for Processes without Reaction The concept of the conservation of energy , Energy balances for closed , unsteady-state systems , Energy balances for closed , steady-state systems , Energy balances for open , unsteady-state systems , Energy balances for open, steady-state systems .	6hr
3	Calculation of Enthalpy Changes Phase transitions, Equation to estimate heat of vaporization , Heat	6hr

	capacity equations, Tables and charts to retrieve enthalpy values.	
	Application of Energy Balances in the Absence of Chemical Reaction	
4	Simplifications of the general energy balance , The strategy for solving energy balance problems , Applications of the energy balance to closed systems , Applications of the energy balance to open systems.	8hr
	Energy Balances : How to Account for Chemical Reaction	
5	The standard heat of formation, The heat of reaction, Merging the heat of formation with the sensible heat or a compound in making an energy balance, The heat of combustion.	6hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.233		Credi	ts hr		
Course Title	Fluid Flow I	- -				Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	Cints
Prerequisite(s)	Principles of Chem. Eng. & Math	2	2	1	5	3

Course Description

- Define fluid properties, stresses in fluids at rest and in motion and types of fluid flows, application of Newton law of viscosity and dimensional analysis methods...
- Derive and define the governing equations of fluid flow: continuity, energy and momentum equations from principles of mass, energy and momentum conservation and define the terms of Bernoulli's equation, include major and minor losses and required energy for flow...
- Define the types of fluid pumping devices and its characteristics and how to select the appropriate type and size for fluid pumping...
- Define the types on Non-Newtonian and two-phase fluids flow and their pressures drop calculations...

Course Text

- 1- Coulson, J.M., Richardson, J.F., Backhurst, J.R. and Harker, J.H., "Chemical Engineering" Volume(1) 6thEd., Butterworth-Heinemann, 1999
- 2- Holland, F.A. and Bragg, R., "Fluid Flow for Chemical Engineers", 2nd Ed., Edward Arnold, 1995.

Other support books :-

- 1- DARBY. R., Dekker M. "Chemical Engineering Fluid Mechanics", 2nd Ed.Marcell Dekker, 2001
- 2- Wilkes J. O., "Fluid Mechanics for Chemical Engineers", 2nd Ed. Prentice Hall PTR, 1999.
- 3- De Nevers, N. "Fluid Mechanics for Chemical Engineers", 2nd Ed.McGraw-Hill 1991.
- 4- McCabe, W. L., Smith, J. and Harriot, P., "Unit Operations of Chemical Engineering", 6th Ed., McGraw Hill, International Edition, 2001.
- 5- Christi J. Geankoplis "Transport Processes and Unit Operations" 3rd Ed. Printice Hall International Editions, 1993.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Demonstrate knowledge of incompressible fluid flows, two phase flow, fluid statics, kinematics of flows and essential basic hydrodynamics.
- 2- Define and solve problems in fluid dynamics in various engineering applications. Provide the ability to describe energy variation and its application in flow and pressure measurement and frictional energy losses calculations.
- 3- Provide the ability to estimate the required energy for fluid pumping (selection the size and type of appropriate pumping for liquid and gas) and to design the liquid mixing

equipment.

4-Predict necessary fluid parameters of full scale projects by performing simple model experiments.

5-Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently.

Topics Covered (Syllabus)Fluid Flow I

No.	Contents	Duration
1	INTRODUCTION: Definition of a fluid, fluid mechanics; Physical properties of fluids: Density, specific gravity, viscosity, kinematic viscosity, surface tension and capillarity, bulk modulus of elasticity, Pressure and shear stress; Types of Fluids: Newtonian, non-Newtonian fluids ideal and real fluids, Newton's law of viscosity.	4 hrs
2	Dimensional Analysis : Units and dimensions; Fundamental dimensions; Dimensional homogeneity; Dimensionless number Methods of dimensional analysis, 1- Rayleigh's method (power series) 2- Buckingham's П- method / Theorem	4 hrs
3	Fluid Statics : Basic consideration of fluid statics; Pressure head of liquid; Pressure force on surfaces; Buoyancy; Measurement of pressure: (Piezometer, Manometers, types of Manometers, Mechanical Gauges)	4 hrs
4	Fluid Dynamics, Newtonian's Incompressible Fluid: Fluid kinematics: Types of fluid flow (steady and unsteady flows, uniform and non-uniform flows, one, two, and three dimensional flows, Rotational and irrotational flows, laminar and turbulent, compressible and incompressible flows), velocity distribution in laminar and turbulent flow Boundary layer, Continuity equation, Momentum equation, Bernoulli's equation, Euler's equation of motion, modified Bernoulli's equation, pipe size selection; Two-Phase Flow, Horizontal and vertical flow regime, calculation of pressure drop of two-phase flow by Lockhart and Martinelli method.	8 hrs

6 hrs

Pumping of Liquids:

5 Total heads, NPSH, Horse Power and cost consumption, Pumping Efficiencies Characteristics curves Types of the pumps, Selection of Pumps. Centrifugal pump relations, homologous centrifugal pump, centrifugal pumps in series and in parallel.

Non-Newtonian Fluids in Pipes:

Definition, types of non-Newtonian fluids, flow characteristics, apparent viscosity, shear rate and description of time-independed fluid, calculation of friction and pressure drop for general time independent in laminar and turbulent flow

Practical Fluid Flow I

No.	Experiment Name.
1	Calibration of Bourdon Tube Pressure Gauge
2	Reynolds Experiment
3	Energy Loss in Pipes
4	Centrifugal Pump Characteristics
5	Bernoulli's Theorem Demonstration
6	Friction Losses in Piping Systems
7	Gear Pump OF TECHNOL
8	Flow Visualization

Program	Industrial & Petroleum Pollution Engineering								
Course Code	CES.E.235	Credits hr							
Course Title	Physical Chemistry& Colloid Science								
Term	1 st Semester	Theoretical	Practical	Tutorial	Total				
Prerequisite(s)	1.chemical engineering principles 2-chemistry	2	2	1	5	3			

Course Description

In chapter one deals with the basic principles of adsorption in different types, the collidal systems with a number different. The simplest type of chemisorption (Langmuir adsorption isotherm).

111

Course Text

J. Laidler, physical chemistry, Bosten; Houghton M, ffl.n company, 1999.
 G. Mortimer, physical chemistry, San Francisco; Altarcourt science and technology company, 2000.

Course Objectives : at the end of the semester the student should be able to :-

1. Be able to solve problems involving the collision theory of gas-phase reactions.

2. Understand the molecular basis of catalysis.

3. Be able to solve problems involving activities and activity coefficients in nonideal solutions.

4. Understand how the thermodynamics of a non simple system is applied to electrochemical cells.

5. Be able to calculate cell voltages for standard conditions and other conditions using standard reduction potentials.

Y OF TE

Topics Covered (Syllabus)/ Physical Chemistry& Colloid Science

Contents	Duration
Surface chemistry and colloids: Adsorption, adsorption isotherms, surface tension and capillary rise, colloidal systems, electrical properties of colloidal systems, gels, emulsions.	15 hr
Catalysis:	
Reaction of catalyst in homogeneity system, Enzyme reactions and kinetic of reactions.	3 hr
Electrochemistry: Conductivity measurements, Diffusion and ionic mobilities, Activity and ionic strength, Determination of activity coefficient from solubility, The debyehakle theory.	6 hr
Acid base catalysis and their dissociation constant: Electrochemical cells, Electromotive force (EMF) of a cell, The polarity of electrodes, The cell reaction and reversible cells, Free energy and reversible cells, Types of halfcells and classification EMF, Standard free energy and entropy of aqueous ions, Calculation of EMF of a cell, Oxidation – reduction reactions, Concentration cells, Electrolysis, Corrosion.	6 hr
	Adsorption, adsorption isotherms, surface tension and capillary rise, colloidal systems, electrical properties of colloidal systems, gels, emulsions. Catalysis: Reaction of catalyst in homogeneity system, Enzyme reactions and kinetic of reactions. Electrochemistry: Conductivity measurements, Diffusion and ionic mobilities, Activity and ionic strength, Determination of activity coefficient from solubility, The debyehakle theory. Acid base catalysis and their dissociation constant: Electrochemical cells, Electromotive force (EMF) of a cell, The polarity of electrodes, The cell reaction and reversible cells, Free energy and reversible cells, Types of halfcells and classification EMF, Standard free energy and entropy of aqueous ions, Calculation of EMF of a cell, Oxidation – reduction reactions, Concentration cells,

Practical Physical Chemistry & Colloid Science

No.	Experiment Name			
1.	Decomposition of hydrogen peroxide.			
2.	Three component system between the water& ethanolðyl acetate.			
3.	Calorimeter Constant.			
4.	Heat of solution			
5.	Surface tension.			
б.	Surface chemistry: Adsorption by solid from solution.			
7.	Spectrophotometer analysis of k ₂ cr ₂ o ₇ .			

Program	Industrial and Petroleum Pollution Engineering							
Course Code	CES.E.211							
Course Title	Computer Programming II					Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	13. Basic Principles of chemical engineering I.14. Mathematics I.15. Computer programming I	비난고	2	1	4	2		

Course Description

To introduce chemical engineering students to modern calculating tool used in the practice of engineering by being able to construct plots, fit data, and use built-in functions in MATLAB.

Course Text

- 1. Rudra Pratap: Getting started with MATLAB 7, Oxford Press (Indian edition),2006.
- 2. Desmond J. Higham and Nicolas J. Higham: Matlab Guide, SIAM, 2000.

Other support books :-

- 1. Duane Hanselman and Bruce Littlefield: Mastering Matlab-6: A Comprehensive Tutorial and Reference, Prentice Hall, 2001.
- 2. Schilling R. J., Harries S.L., Applied Numerical Methods for Engineers using MATLAB & C, Thomson Books, 2002.

Course Objectives: at the end of the semester the student should be able to :-

- 1. Develop the confidence necessary to successfully solve Mathematical problems with a computer.
- 2. Formulate and write structured code in MATLAB.
- 3. Understand the foundation behind the basic numerical methods for Matrix manipulations.

Topics Covered (Syllabus)/ Computer Programming II

No.	Contents	Duration
	Starting With Matlab:	
1	MATLAB windows, Menus and the toolbar, Working in the command	2hr
	window, Arithmetic operations with scalars, Display formats, Elementary	
	math built-in functions, Useful commands for managing variables, Script files	

	and the Editor Debugger, Matlab Help System	
	Symbolic Math:	
2	Symbolic objects, and symbolic expressions, Changing the form of an existing symbolic expression, Solving algebraic equations, Differentiation, Integration, Solving an ordinary differential equation.	3 hr
	Creating Arrays:	
3	Creating a one-dimensional array (vector), Creating a two-dimensional array (matrix), The transpose operator, Array addressing, Using a colon: in addressing arrays, Adding elements to existing variables, Deleting elements, Built-in functions for handling arrays, Strings and strings as variables.	2 hr
	Mathematics With Array:	
4	Addition and subtraction, Array multiplication, Array division, Element-by- element operations, Using arrays in MATLAB built-in math functions, Built- in functions for analyzing arrays, Generation of random numbers, Solving Algebraic Equations.	3 hr
	Polynomials, Curve Fitting, And Interpolation :	1
5	Polynomials, Curve fitting, Interpolation, Extrapolation.	2 hr
	Programming In Matlab :	
6	Relational and logical operators, Conditional statements, The switch case	3 hr

Progr	am	Industrial an	d Petrole	eum Po	llution I	Enginee	ering
	se Code	CES.E.223					
Cours	se Title	Material Eng. (I)				1	Units
Term		1 st Semester	Theoretical	Practical	Tutorial	Total	
Prere	quisite(s)	Strength of material+ General chemistry	2	-	1	3	2
Cour	se Descripti	on			2.0		
therm mater	nal and elect rials.	assification of mater rical properties of n				•	
	rse Text	celand, The science a	nd anaimenia	a of motor	lala interne	tion of stude	nt adition
20 2-Wil 3-Lav	006 . lliam D. Call wrence H. Va r <mark>se Objective</mark>	ister, Jr. , Materials s anvlack , Elements of es : at the end of the	cience and en materials scie	gineering, I ence and en student sh	Fifth editior gineering, l	n, 2000. Fifth edition <mark>le to :-</mark>	ı, 1987.
2	2. Describe materials.	and solve problems of and solve problems	s on mechan				
Topic	cs Covered ((Syllabus)/ <mark>Course T</mark>	<mark>itle</mark>	1			
No.			Contents				Duration
1	the second se	ion of Materials ation of materials, cl materials	lassification of	of materials	s bas <mark>e</mark> d on	structure,	4hr
2	Stress-strai	I Properties of Mate in behavior, ductility, io, hardness, effect or	, brittleness, to	0	nodulus of	resilience,	6hr
3	Atomic str The structu spacing	ucture are of atom, atomic	bonding, bo	onding ene	rgy and in	ter-atomic	6hr
4	Atomic order in solids Types of atomic or ionic arrangements, crystal structure, lattice, unit cells, metallic crystal structure, crystal systems, crystal direction and crystal planes , diffraction						
5	techniques for crystal structure analysisThermal and electrical properties of materialsHeat capacity, thermal expansion, thermal conductivity, thermal stresses,Glass transition temperature, Creep resistance, electrical conductivity, electronmobility, electrical resistivity of metals						

Program	Industrial and Petroleum Pollution Engineering							
Course Code	CES.E237	Credits hr						
Course Title	Fuel Technology		Units					
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	chemistry	2	2	0	4	3		

Course Description

Introduction to fuels technology (solid, liquid, and gases). Procedure and characterization in terms of physic-chemical properties.

Course Text

- Modern petroleum Technology, vol. 1, upstream, ed. By Richard A. Dave, 1P, 6th ed., Jhonwiley and sons. Ltd.
- 2- Modern Petroleum Technology, vol.2, Downstream, ed. By Alan G. Lucas, 1P, 6thed, ., Jhonwiley and sons. Ltd.
- 3- Fuels combustion and furnaces, Jhon Griswold, Mc-Graw Hill Book company.
- 4- Petroleum Refinery Engineering, Nelson, 4th ed. Mc-Graw, Hill Book Company.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Introduces basic knowledge about solid, liquid and gases fuels, their origin, classification.
- 2- Knowledge of preparation, procedure and characterization in terms of physic-chemical properties
- 3- Knowledge in liquid fuel section. Petroleum is the liquid fuel which is elaborated in terms of distillation and secondary processing. Different important gaseous fuels are included in gaseous fuel section.

ENGINEERING

Topics Covered (Syllabus)/Course Title

No.	Contents	Duration
1	Introduction: History of fuels, history of solid fuel, history of liquid fuels and gases fuels, fundamental definition, properties of liquid and gaseous fuels, various measurement.	4hr
2	Coal : classification,Composition and basis, coal preparation and washing, combustion of coal and coke and making, coal tar distillation coal liquefaction, coal gasification.	4hr
3	Crude Petroleum: Exploration of crude Petroleum, Evaluation of crude, distillation cracking, thermal cracking catalytic cracking, reforming of naphtha, hydrotreatment, dewaxing deasphalting, refinery equipment.	10hr
4	Natural gas and LPG: Producer gas, water gas, other fuel gases.	4hr
5	Combustion air Calculation: Calculation of calorific value of fuels, flame properties, combustion burners, combustion furnaces .	8hr

Practical Fuel Technology

No.	Experiment Name.
1	ASTM distillation exp.
2	Density and specific gravity exp
3	Viscosity& viscosity index exp.
4	Salt content in crude oil
5	Gum and gum stability
6	Flash & fire point
7	Ash content for petroleum products
8	Conrad Son Carbon residue of petroleum

1975

Program	Industrial and Petroleum Pollution Engineering							
Course Code	CES.E.213	Credits hr						
Course Title	Democracy		Units					
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	none	1	-	-	1	1		

Course Description

The study of the Democracy concept and history and its relationship to religions and relations with Development, also the advantages and the disadvantages of democracy

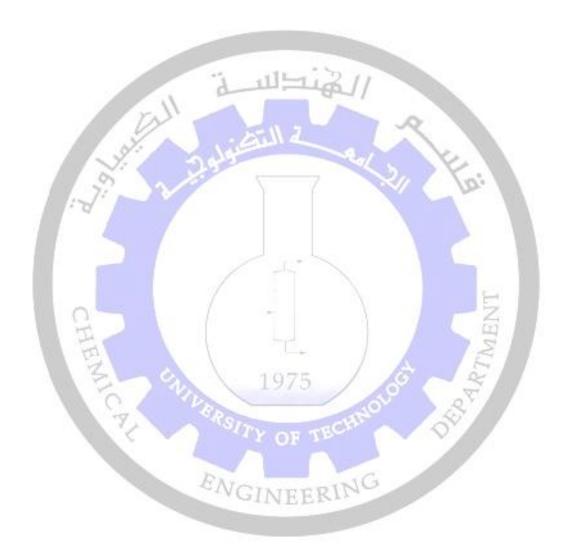
Course Text

1-Human rights, development, contents Dr.Riyad Aziz Hadi
٢-مبادئ و قواعد عامة في حقوق الأنسان د. صلاح حسن مطرود محمد محمد محمد محمد محمد محمد محمد مح
٣- حقوق الأنسان بين الأسلامي و العالمي د. محمد علي الشجيري
٤ - حقوق الأنسان و الديمقر اطية د. ماهر صالح الجبوري
٥- مشكلة الحرية د. زكريا أبر اهيم

Course Objectives : at the end of the semester the student should be able to :-

1- To know the democracy and how can adapt our culture with the principles of democracy in general.

2-Lock of student to their own cultural inventories in the concepts of democratization and it has be shining in the emergence of a democratic culture in university community with the intimate and external community.


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Democracy: definition, a brief history, characteristics advantages of democracy and its disadvantages	1hr
2	The most important problem facing the implementation of democracy in arab-muslim world	1hr
3	Relationship awareness in the application of democracy	1hr
4	How can adapt our culture with the principles of democracy	1hr
5	Democracy between changes and external pressures	1hr
6	A pressure group the difference between them and the political parties	1hr
7	The advantages of democracy and the disadvantages	1hr
8	The theory of social determinism in state-building	1hr
9	Relationship between democracy and globalization	1hr
10	Development and democracy	1hr
11	Religion and democracy	1hr
12	The third way between socialism and capitalism	1hr
13	Reasons for the spread of financial and administrative corruption and how	1hr

	to confront it	
14	The reasons for the collapse of democracy	1hr
	The relationship between the intellectual and power	1hr
15	Democracy and modernity	
	Democracy and alienation	

Program	Industrial an	d Petrole	um Pol	llution I	Enginee	ring
Course Code	CES.E.222		Credi	ts hr		
Course Title	Engineering					Units
	MathematicsII		•	•	P	Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Engineering Mathematics I	2	-	1	3	2
Course Descrip	tion	i ult	11211			

Course Description

This course describe the providing of knowledge on solving ordinary differential equations and applications of first order ordinary differential equations and chemical engineering applications of the theory portion covered will be emphasized.

Course Text

Text book:

1. Higher Engineering Mathematics by Dr.B.S.Grewal, Khanna Publishers, 40th Edition, 2007.

Reference book:

1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edition, 2007.

Course Objectives: at the end of the semester the student should be able to:-

1. Understand methods of solving First order and Higher order ordinary differential equations along with some physical applications.

ENGINEERING

2. Demonstrate the relevance of the mathematical methods learnt to chemical engineering.

Topics Covered (Syllabus)/ Engineering MathematicsII

No.	Contents	Duration
1	Solution by Series: Infinite series by Taylor theorem, Method of Frobenius (Case I, II, IIIa, and IIIb), Bessels's and Modified Bessel's Equation, Properties of Bessel Functions, Applications in chemical engineering ,Tubular Gas Preheater, Reaction in axisymmetric Spherical and Cylindrical pellets.	15hr
2	Ordinary Differential Equations: Introduction, Linear equation, Bernoulli's equation, Exact differential equations, Equations reducible to exact equations, Orthogonal trajectories, Newton's law of cooling. Linear differential equations with constant coefficients: Definition, Theorem, Operator D, Rules for finding the complementary function, Inverse operator, Rules for finding the particular integral, working procedure to solve the equation.	10hr
3	Application of Ordinary Differential Equations: Representation problems of 1 st and 2 nd ordinary differential equations (linear and nonlinear, homogeneousetc.).	5hr

Program	Industrial an	d Petrole	eum Po	llution I	Enginee	ering
Course Code	CES.E.232		Credi	ts hr		
Course Title	Material and Energy Balance					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Energy Balance	2	-	1	3	2

Course Description

The aims of the course provide a deep knowledge, wide scope and improved understanding the heat balance that include the effects of chemical reaction as well as unsteady state material and energy balances. The students should gain knowledge to apply the material and energy balance in engineering problems.

Course Text

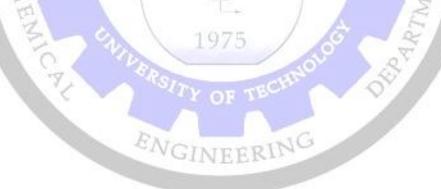
1. D.M.Himmelblau and J.B.Riggs ,Basic Principles and Calculations in Chemical Engineering ,7th Edition , 2004 .

Other support books :-

2. R.M.Felder and R.W.Rousseau ,Elementary Principles of Chemical Processes ,3rd Edition ,2005 .

Course Objectives : at the end of the semester the student should be able to :-

- 1. Energy balances that include the effects of chemical reaction .
- 2. Ideal process, efficiency, and the mechanical energy balance.
- 3. Heat of solution and mixing.
- 4. Humidity (psychrometric) charts and their use .
- 5. Unsteady state material and energy balances .


Topics Covered (Syllabus)/Course Title

No.	Contents	Duration
	Energy Balances that Include the Effects of Chemical Reaction	
1	Applications of energy balances in processes that include reactions, Calculation of an adiabatic reaction temperature, General energy balance in a process in which more than one reaction occurs, Energy balance to a process composed of multiple units.	8hr

2	Ideal Processes, Efficiency, and the Mechanical Energy Balances Ideal reversible processes, Calculation of the work done during evaporation of a liquid, Calculation of the work in a batch process, efficiency, the mechanical energy balances, Comparison of the reversible work for a batch process with that of a flow process operating under the same conditions, the mechanical energy balance to the pumping of water	4hr
3	Heat of Solution and Mixing Heat of solution , Heat of dissolution , Heat of mixing , Introducing the effects of mixing into the energy balance .	4hr
4	Humidity (Psychometric) Charts and their Use The humid heat , The humid volume , The dry-bulb temperature , The wet-bulb temperature , The humidity (psychometric) chart , Wet-bulb line , Adiabatic cooling line , Applications of the humidity chart .	6hr
5	Unsteady state Material and Energy Balances Unsteady-state material balance without generation , Material balance on batch distillation , Unsteady-state chemical reaction , Unsteady-state energy balance .	8hr

Program	Industrial an	d Petrole	um Pol	lution I	Enginee	ring
Course Code	CES.E.234		Credi	ts hr		
Course Title	Fluid Flow II					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Fluid Flow I	2	2	1	5	3

Course Description

Application of Bernoulli's equation and derive the flow rate equations and explain the principles of flow measuring devices in open and closed channels...

Derive and define the governing equations of compressible fluid flow: continuity, energy and momentum equations from principles of mass, energy and momentum conservation with various gas flow conditions, Mach Number and flow through conversion-diversion nozzle with application for subsonic, sonic, supersonic flow, types of gas pumping devices, Compressors types with ideal and actual gas compression cycle and calculation of compressor work ...

Define and description for liquid mixing equipment and its design calculations with the energy consumption by this equipment...

Derive the terminal falling velocity and description drag coefficient for flow through packed columns and pressure drop calculation for fixed and fluidized beds and transport of particles...

Course Text

- 1- Coulson, J.M., Richardson, J.F., Backhurst, J.R. and Harker, J.H., "Chemical Engineering" Volume(1) 6thEd., Butterworth-Heinemann, 1999
- 2- Coulson, J.M., Richardson, J.F., Backhurst, J.R. and Harker, J.H., "Chemical Engineering" Volume (2) 5th Ed., Butterworth-Heinemann, 2002
- 3- Holland, F.A. and Bragg, R., "Fluid Flow for Chemical Engineers", 2nd Ed., Edward Arnold, 1995.

Other support books :-

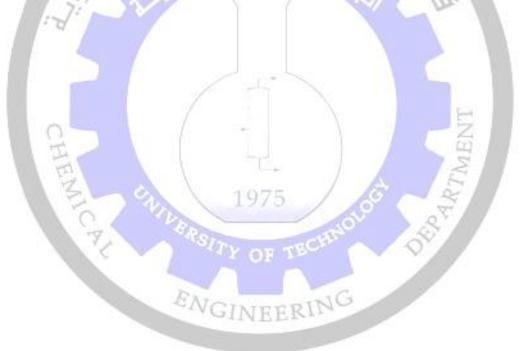
- 1- McCabe, W. L., Smith, J. and Harriot, P., "Unit Operations of Chemical Engineering", 6th Ed., McGraw Hill, International Edition, 2001.
- 2- Christi J. Geankoplis "Transport Processes and Unit Operations" 3rd Ed. Printice Hall International Editions, 1993.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Define the operation principles of the different types flow measurement, solve problems in fluid flow through flow measurement devices with applications for steady and unsteady flow.
- 2- Demonstrate knowledge of compressible fluid flows, with differences of equations using depending on compressible flow conditions, sonic (sub)(super)sonic flow, conversion*diversion nozzle, types of gas pumping devices.

- 3- Provide the ability to estimate the energy (power) consumption for liquid mixing equipment and to design it by predict necessary fluid parameters of full scale projects by performing simple model experiments.
- 4- Provide the ability to estimate the terminal falling velocity and description drag coefficient for flow through packed columns and pressure drop calculation for fixed and fluidized beds and transport of particles...
- 5- Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently.

Topics Covered (Syllabus)/Fluid Flow II


No.	Contents	Duration
1	Flow Measurement Pitot tubes, orifice meter, venturi meter, nozzle meter, Rotameters other types of flow meters, flow in open channels and weirs with steady and unsteady applications	6 hrs
2	Flow of Compressible Fluid General equation, equation of state, sonic velocity in fluids, Mach No. Isothermal, Non-isothermal and Adiabatic flow of an ideal gas in horizontal pipes, Converging-diverging nozzle for gas flow. Types of gas pumping devices (fans, blowers compressors) compressors types and gas compression cycle and calculations of work and efficiency of compressor	10 hrs
3	Liquid Mixing Stirring and mixing and rotational force, effective forces and dimensionless numbers for rotational fluid flow. Stirred vessels (power consumption, power curve, scaled-up), equipment	6 hrs
4	Flow of Fluid through Granular Bed and Packed Columns Motion of particles in a fluid, Drag force on a particle, terminal falling velocities, Sedimentation of fine and coarse particles, Pressure drop in granular beds, packed columns: packing types, Pressure drop estimation (Kozeny and Carmen equations), Fluidization Minimum fluidization velocity, Pressure, Pressure drop, Ergun equation, bed expansion and transport of particles.	8 hrs

Practical Fluid Flow II

No.	Experiment Name
1	Discharge through an orifice
2	Open Channel Flow over Weir
3	Flow through a Venturi Meter
4	Fluidization
5	Forced Vortex
6	Flow of Compressible Fluid
7	Impact of Jet
8	Non-Newtonian Fluids Behavior

	am	Industrial and Pe	etroleum H	^01111101	i Lngii	neerin	g
Cours	se Code	CES.E.236		Credits l	nr		
Cours	se Title	Physical Chemistry					Units
Term	L	2 nd Semester	Theoretical	Practical	Tutorial	Total	
	quisite(s)	 1- chemical engineering principles 2-chemistry 	2	-	1	3	2
	rse Descrip						
inclue princ Cour 1. J. I	des the qua iples deterr se Text Laidler, phy Mortimer,	stry is the application of litative and quantitative stu nining the behavior of matter ysical chemistry, Bosten; Ho physical chemistry , San Fra	idy. Both experier.	rimental and	1 theoretica 1999.	al of the	general
		ves : at the end of the seme	ester the stude	nt should b	e able to :		
		s of systems.					
liquie 4. Be reduc	d. e able to ca ction potent	olve problems related to the lculate cell voltages for star tials and the nerst equation.		1			
liquie 4. Be reduc	d. e able to ca ction potent	lculate cell voltages for star tials and the nerst equation. I (Syllabus)/ Course Title		1		s using s	
liquio 4. Be reduce Topi	d. e able to ca ction potent cs Covered Phase Eq Equilibrit involving vapor eq compositi	lculate cell voltages for star tials and the nerst equation. I (Syllabus)/ Course Title Co	ndard condition ntents component systria of two com obeying Raou nt curves), dis	tems, binar ponent syst	conditions y systems em, liquid mperature	s using s	tandard
liquid 4. Be reduc Topi No.	d. e able to ca ction potent cs Covered Phase Eq Equilibrit involving vapor eq compositi solubility	lculate cell voltages for star tials and the nerst equation. (Syllabus)/ Course Title Co uilibria: um between phases, one c vapor, liquid vapor equilib uilibrium in system not on diagram (boiling poir	ndard condition ntents component systemia of two com obeying Raou nt curves), dis	tems, binar ponent syst lts law, te stillation, a	conditions y systems em, liquid mperature	s using s	tandard tration
liquid 4. Be reduc Topi No.	d. e able to ca ction potent cs Covered Phase Eq Equilibrit involving vapor eq compositi solubility Applicati The PVT	lculate cell voltages for star tials and the nerst equation. (Syllabus)/ Course Title Co uilibria: um between phases, one c vapor, liquid vapor equilib uilibrium in system not on diagram (boiling poir of gases in liquids.	ndard condition ntents component system obeying Raou nt curves), dis cal gases: ces, the ideal	tems, binar ponent syst lts law, te stillation, a	conditions y systems em, liquid mperature zeotropes,	s using s	tandard tration
liquid 4. Be reduc Topic No.	d. e able to ca ction potent cs Covered Phase Eq Equilibrit involving vapor eq compositi solubility Applicati The PVT process, t process.	lculate cell voltages for star tials and the nerst equation. (Syllabus)/ Course Title Co uilibria: um between phases, one c vapor, liquid vapor equilib uilibrium in system not on diagram (boiling poir of gases in liquids. Cons of the equations of ide behavior of pure substan	ndard condition ntents component system obeying Raou nt curves), dis cal gases: ces, the ideal	tems, binar ponent syst lts law, te stillation, a	conditions y systems em, liquid mperature zeotropes,	s using s	tandard tration

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.212	Credits hr				
Course Title	Computer Programming III					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	16. Basic Principles of chemical engineering I.17. Mathematics I.18. Computer programming II	1	2	1	4	2

Course Description

To introduce chemical engineering students to modern calculating tool used in the practice of engineering by demonstrating an ability to create small structured programs in a MATLAB programming environment and understanding how user written functions interact with numerical methodsroutines.

Course Text

- 1- Rudra Pratap: Getting started with MATLAB 7, Oxford Press (Indian edition),2006.
- 2- Desmond J. Higham and Nicolas J. Higham: Matlab Guide, SIAM, 2000.

Other support books :-

- 1- Duane Hanselman and Bruce Littlefield: Mastering Matlab-6: A Comprehensive Tutorial and Reference, Prentice Hall, 2001.
- Schilling R. J., Harries S.L., Applied Numerical Methods for Engineers using MATLAB & C, Thomson Books, 2002.

Course Objectives: at the end of the semester the student should be able to:-

- 1. Solve sets of linear and nonlinear equations using numerical methods as well as in-built MATLAB functions.
- 2. Apply numerical methods and MATLAB functions to differentiate and integrate a function or a set of discrete points.
- 3. Apply explicit and implicit numerical methods and MATLAB functions to integrate single and multiple sets of initial value problems

No.	Contents	Duration
1	Two-Dimensional Plots : The plot command , The f-plot command , Plotting multiple graphs in the same plot , Formatting a plot, Plots with logarithmic axes, Plots with error bars, Plots with special graphics , Histograms, Plotting multiple plots on the same page , Multiple figure windows Graphics.	4 hr
2	Three-Dimensional Plots : Line plots, Mesh and surface plots, Plots with special graphics, The view command.	2hr
3	Using Script Files: The MATLAB workspace and the workspace window, Input to a script file, Output commands, The save and load commands, Importing and exporting data.	1 hr
4	Functions And Function Files: Creating a function file, Structure of a function file, Local and global variables , Saving a function file, Using a user-defined function, Examples of simple user-defined functions, Comparison between script files and function files , Function functions, Sub-functions	4 hr
5	Numerical Analysis: Solving an equation with one variable, Finding a minimum or a maximum of a function, Numerical integration, Ordinary differential equations.	4 hr

ENGINEERING

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.224	Credits hr				
Course Title	Material Eng. (II)					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	0.1105
Prerequisite(s)	general chemistry	2	2	1	5	3

Course Description

Imperfection in solid. diffusion and atomic movement in solid. Solid solution and phase diagram for different alloys. Ceramic materials and composite materials.

Course Text

- 1-Donaled R. Askeland, The science and engineering of materials, international student edition, 2006.
- 2-William D. Callister, Jr., Materials science and engineering, Fifth edition, 2000.
- 3-Lawrence H. Vanvlack, Elements of materials science and engineering, Fifth edition, 1987.

Course Objectives : at the end of the semester the student should be able to :-

- 1. Describe the geometry of imperfections
- 2. Calculate the extent of diffusion- driving composition changes based upon composition, time and temperature.
- 3. Predict the equilibrium microstructure of a material given the binary phase diagram, thermal history of the materials.

4. Describe the types and properties of ceramic and composite materials.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Imperfections in solids: Point defects, line defects, interfacial imperfections, Macroscopic defects	6hr
2	Atomic and ion movements in materials: Stability of atoms and ions, mechanisms for diffusion, rate of diffusion (Fick's first law), factors affecting diffusion, non-steady state diffusion (Fick's second law).	6hr
3	Solid solutions and phase diagrams: Basic concepts, solubility and solid solution, phase and phase diagram, unary phase diagram, binary Iso-morphous system, binary eutectic system.	6hr
4	The Iron-Carbon system: The Iron-Iron carbide phase diagram, development of microstructures in Iron-carbon alloys	6hr

	Ceramic materials:	
5	Crystal structure, mechanical properties of ceramic, classification of ceramic materials on the basis of its application	2hr
6	Composites: Material combination, Reinforced composites, structural composites.	4hr

Practical Material Eng. (II)

IC AL

No.	Exp. Name.
1	Tension test
2	Hardness Testing
3	Bending Test
4	Creep Test
5	Abrasion Test
6	Impact Test
7	Moisture Measurement in Engineering Materials
8	Determination of Linear Thermal Expansion for a Solid
9	Microstructure Examination of pb-Sn alloys using the metallurgical microscope

TY OF TECH

ENGINEERING

DEPT

Program	Industrial and Petroleum Pollution Engineering.					
Course Code	CES.E.238	Credits hr				
Course Title	Fundamental of Environmental Engineering					Units
Term	2 ^{ndt} Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Physics for Environment.	2	0	0	2	2

Course Description

This course involves:

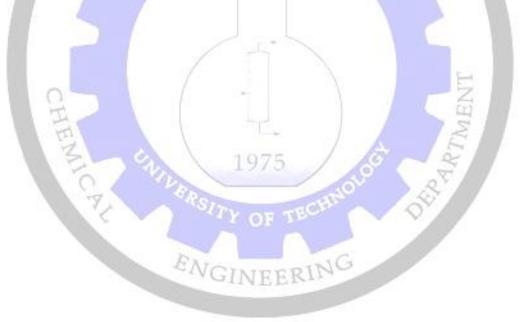
Define of environment pollution and pollutants, type of pollutants and the pollutants allowable limits in the environment. Source of water, Utilization, and definition of water and wastewater treatment. Classification of air pollutants, Sources and type of air pollution, Greenhouse effect and global warming, Acid rain. Air pollution control equipment: types of equipment, Classification of solid waste, source of solid waste and solid waste disposal. Hazardous waste, classification and waste minimization.

Course Text

- C.S.Rao, "Environmental Pollution Control Engineering", 2ndEdition, New Age International(P) Limited, Published, 2006, Reprint 2007.
- R. K. Sinnott, Chemical Engineering Design, Vol. 6. 4th edition, Chemical Engineering Design, 2005, pp. 450-457.
- M.L.Davies and D.A.Cornwell "Introduction to Environmental Engineering", 4th Edition, 2009, ppublished by McGRAW.Hill companies, Inc., New York.

Course Objectives : at the end of the semester the student should be able to :-

- 1- Understand the concept of the environment and environmental pollution and global problems resultingfrom environmental pollution, such as global warming and the depletion of the ozone layer.
- 2- Provide the students with basic information about the air water pollution such as type of pollutants and their effects on the environment and control these pollutants. Also solid waste treatment and disposal
- 3- Provider information about the devices that are used in the control of air pollution
- 4- Provide information about the solid and hazardous-waste treatment and disposal.


Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction: Definition: Environment, Human and Environment, Environmental Engineering, Environment and ecology, Environmental pollution, Pollutant, Particulate, Environmental pollution of petroleum industry, Pollutants allowable limits in the environment	2hr
2	Water Pollution: Sources of water pollution, Utilization of water, Major water pollutants	4hr

3	Wastewater Treatment: Source of wastewater, Wastewater pollutants, Wastewater treatment: Primary secondary and advanced treatment, Sludge treatment and disposal.	4hr
4	Air Pollution : Type of air pollutants (Gaseous and Particulates pollutants), Source of air pollution and its effect. Atmosphere: The earth's atmosphere and its important layers, Ozone layer formation and depletion, Greenhouse gases, Climate change and greenhouse effects, Acid rain, Air pollution Control Equipment and design.	8hr
5	Air Pollution Control : Control of particulate pollutants (Settling Chamber, Cyclone, Fabric filter, Electrostatic precipitator, Wet scrubbers) and Control of gaseous pollutants, Control of sulfur oxides	6hr
6	Solid and Hazardous Waste : Definition of solid and hazardous waste, classification of solid waste, Disposal methods, Pollution prevention and waste minimization.	4hr

Progr	^{rogram} Industrial and Petroleum Pollution Engineering							
Cours	se Code	CES.E.2 25		Credi				
Cours	se Title	Eng.Statistics	Statistics					
Term		2 nd Semester	Theoretical	Practical	Tutorial	Total	Units	
Prere	quisite(s)	Mathematics I, Mathematics II	2	2	1	5	3	
Course Description								
		ons, deferent methods	calculation, s	ample desc	riptive stati	stics and gr	aphical	
	sentation of o	data.			2.2			
	rse Text							
	•	Spiegel, Statistics, Mo	and the second second		-			
2-		ullivan III, Statistics i	nformed deci	sion using o	lata 3rd add	lition, pears	on	
~		international 2010.	- Andrews		2			
		rument technology.		1007				
	10.00	th and co. (publishers				6		
		es: at the end of the s						
		ethods of statistical ca	alculations to	solve probl	ems in chei	mical engin	eering	
	nd others ap			_				
	pics Covered (Syllabus)/Eng. Statistics							
No.	Intro du atio	n. Ctatistica, nonulatio	Contents	deceninties	a and in dua		Duration	
1	Introduction: Statistics, population and sample descriptive and inductive statistics and graphical representation of datas						2hr	
					auonoios	1		
2		distribution table, raw	1.00		equencies.	- Z	2hr	
3		representation of frequ	ency distribu	tion table		L LL	2hr	
4		of central tendency.		- 1		2	2hr	
5		of dispersion	107	m /	A	5	2hr	
6	Curve fitting, Least squares method, Straight line forms, polynomial regression, variance and correlation coefficient.4hr							
7	Multiple and partial correlation: regression equation, normal equations for the							
8	Probability distribution, continuous and discrete probability distribution, normal distribution.							
9	The binomial distribution, the poisson probability distribution, approximation of standard distributions.							
10	The chi-square test, confidence intervals, degree of significant, test of hypothesis, test for goodness of fit of probability distributions test of4hrindependence.4hr						4hr	
11	Companing	g three or more means its of ANOVA test, A	· · ·	•	,		4hr	

DEPA

PracticalEng. Statistics

MICRE

No.	Contents
1	The concept of statistical analysis, the important statistics to life, about the most important statistical programmes
2	Install Statistical ,About statistical analysis software, interfaces and quibbles
3	Working environment and Statistical data entry program
4	Using Statistica in statistical analysis with examples
5	Regression And Correlation (Curve Fitting) with Examples
6	 How to finds With examples 1- Find minimum and maximum and variance. 2- Find standard deviation, mean, mode. 3- Find second max frequency. 4- Find max class mark and its frequency? 5- Find max frequency. 6- Find second class mark and its frequency.
7	Ways to validate the equation imposed with examples
8	Line (45) Method with examples
9	Correlation Coefficient Method with examples
10	Residual Plot Method with examples
11	Multiple Linear Regression liner model with examples
12	Multiple Linear Regression Non liner model with examples

1975

ENGINEERING

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.331	Credits hr				
Course Title	Thermodynamics I					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Material &Energy Balance, Physical Chemistry,Fluid Flow	2	2	1	5	3

Course Description

The course of chemical engineering thermodynamics I comprises the study of volumetric properties of pure fluids; Entropy and second law analysis of engineering systems; Thermodynamic properties of fluids; Applications of thermodynamics to flow processes.

Course Text

1- J. M. Smith, H.C. Van Ness, Introduction to chemical engineering thermodynamics, 6th edition (International Edition), Mc-Graw Hall, 2008.

Other support books :-

1-K.V.Narayanan, Atext book of chemical engineering thermodynamics, prentice Hall of India, New Delhi, 2011.

2- B.G.Kyle, Chemical and process thermodynamics ,(3rd Edition), prentice Hall Inc.New Jersey, 1984.

3-J. Rayner, Basic engineering thermodynamics inSI units, printed in great Britain, 1971

Course Objectives : at the end of the semester the student should be able to :-

- 1- To familiarize the students with basic concepts of the first and second laws of thermodynamics and their applications in engineering problems.
- 2- Develop a practical ability to solve energy balance problems, minimum work.

3-Students will demonstrate basic understanding of basics and definitions of thermodynamics and properties of pure substances.

4-Describe the reversible and irreversible processes (macroscopic description of an ideal and real processes).

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Volumetric properties of pure fluids Review on virile equation of state, cubic equation of state, generalized correlations for gases and for liquids.	6 hr
2	The 2nd law of thermodynamics Review on the 2nd law and Carnot heat engine, entropy balance for open system, calculation of ideal work, lost work.	9 hr
3	Thermodynamic properties of fluids Review on the property relations (Δ H, Δ S, Δ Uand Δ G) residual properties, two phase systems, thermodynamic diagrams and tables, generalized property correlations for gases.	6 hr
4	Applications of thermodynamics to flow processes Duct flow of compressible fluids, pipe flow, nozzles, throttling process, turbines, compression processes compressors, ejectors.	9 hr

Practical Thermodynamics I

No.	Exp. Name.
1	Measurement of the solar irradiation
2	Alternating current solar installation
3	Refrigeration
4	Hydrolysis of methyl acetate
5	Pressure and Temperature relationship for steam
6	Liquid -vapor equilibrium Isotropic Mixtures
7	Boyles' law
8	Regulating and charging battery
9	Measurement of the solar irradiation

Program	Industrial and Petroleum Pollution Engineering						
Course Code	CES.E.321	Credits hr					
Course Title	Numerical Analysis					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Computer Programming II, III	2	2	1	5	3	

Course Description

This course introduces students to: Error analysis; Finding roots of a non-linear function; Approximation and interpolation; Numerical integration and differentiation; direct and indirect solution of systems of linear equations; Solution of systems of nonlinear equation; solving ordinary differential equations and partial differential equations. All examples within the course concerning with principles of chemical engineering.

Course Text

- 1- "Numerical Methods for Engineers", Steven C. Chapra, Raymond P. Canale, McGraw Hill, 6th edition, 2010.
- 2- "Numerical Methods for Engineers and Scientists", Joe Hoffman, McGraw-Hill Book Company,1993.
- 3- "Applied Numerical Analysis", Gerald, C.F. and Wheatley, P.O., 6th Edition, Pearson Education, 2006.
- 4- "Numerical Methods for Chemical Engineers with MATLAB Applications", Alkis Constantinides, Navid Mostoufi, Prentice Hall, 1999.

Course Objectives: at the end of the semester the student should be able to:-

To solve chemical engineering problems with numerical analysis techniques.

Topics Covered (Syllabus)/Numerical Analysis

No.	Contents	Duration
1	Introduction to Numerical Analysis: Numerical Solution, type of errors; relative error, absolute error, percentage error, truncation error, round off error. Floating point.	2hr
2	Root Finding: Roots of polynomials, Bisection method, Secant method, Newton-Raphson method.	4hr
3	Interpolation and Polynomials Approximation: Lagrangian Polynomials, Divided differences, Cubic spline interpolating polynomials, Newton's forward and backward difference formulas.	4hr
4	Numerical Differentiation and Numerical Integration: Forward, backward and central difference approximation. Numerical integration by Trapezoidal and Simpson's 1/3 and 3/8 rules. Double integrals using trapezoidal and Simpson's rules.	6hr

	Solving System of Equations:	
5	Solution of linear system of equations by direct methods (Gaussian elimination and Gauss-Jordon). Solution of linear system of equations by Iterative methods (Jacobi and Gauss-Seidel). Solution of non-linear system of equations by Newton-raphson.	4hr
6	Solution of ordinary Differential Equations: Initial value problems. Solution of first-order ordinary differential equations using Taylor', Eular, Runge-Kutta and Predictor-corrector methods. Solution	4hr
	of simultaneous ordinary differential equations. Solution of Partial Differential Equations:	
7	Types of Partial Differential Equations: Elliptic (Poisson) equation, Parabolic (heat) equation, Hyperbolic (wave) equation. Finite difference solution of Partial Differential Equations. Numerical solution of partial differential equations using explicit, implicit and Crank-Nicolson methods elliptic (Laplace) equation.	6hr

Practical Numerical Analysis

No.	Contents
1	Review of properties of Matlab programming language.
2	Bisection method and Secant method.
3	Newton-raphson method.
4	Lagrange interpolation.
5	Newton's forward and backward difference formulas.
6	Trapezoidal rule.
7	Simpson's 1/3 and 3/8 rules.
0	Solution of linear system of equations by direct methods (Gaussian elimination and
8	Gauss-Jordon).
9	Solution of linear system of equations by Iterative methods (Gauss-Seidel and
9	Jacobi).
10	Solution of differential equation using Euler's method.
11	Solution of differential equation using Runge-Kutta method.
12	Solution of partial differential equations using explicit and implicit methods.
13	Solution of partial differential equations using Crank-Nicolson method.
14	Solution of steady state diffusion through catalyst
15	Solution of un-steady state diffusion through catalyst

Program	Industrial and Petroleum Pollution Engineering						
Course Code	CES.E.333		Credi	ts hr			
Course Title	Mass Transfer					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Chemical engineering principles, thermodynamics, fluid flow	2	2	1	5	3	

Course Description

This course covers diffusion and mass transfer in binary& multi-components, molecular diffusion in fluids, convective mass transfer, mass transfer coefficients, mass transfer correlations, interphase mass transfer, mass transfer theories.

Course Text

- Coulson, J. M & Richardson J. F. (2006). "Chemical engineering, Volume 1", 3rd Edition, Robert Maxwell. M. C.
- 2- Dutta Binary K. (2007), "Principles of Mass Transfer & Separation Process", Bvt. Ltd. Prentice Hall, ISPN 8-1203-2990-2.

111-

Other support books:-

- 1- Treybal Robert E. (1975), "Mass transfer Operation" 2ed Edition, Mc-Graw-Hill Book.
- 2- McCabe, W., Smith, J., Harriott, P. (2004), "Unit Operations of Chemical Engineering", Mc-Graw-Hill Co., 7th Edition, ISBN0072848235.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Understand the basics of diffusion as applicable to mass transfer phenomena.
- 2- Estimate Molar fluxes in convective and inter phase mass transfer.
- 3- Explain the concept of diffusion theories.
- 4- Applying the convective mass transfer correlations to calculate mass transfer rates in many units operation.

Topics Covered (Syllabus)/ Mass transfer

No.	Contents	Duration
1	Introduction	2 hrs
	Fundamentals of mass transfer processes, concentrations, velocities, mass & molar fluxes.	

2	Diffusion in binary gaseous Fick's first law of diffusion. Diffusion in gas mixtures, Equimolecular diffusion, diffusion in stationary layer. Correlations to calculate diffusivity, correcting diffusivity	6 hrs
3	Diffusion in multi component mixtures Multi-component gas phase systems, effective diffusivity. Maxwell's law of diffusion	4 hrs
4	Diffusion in liquids.	2 hrs
5	Diffusion in solids.	2 hrs
6	Diffusion theories Diffusion across phase boundary, Film theory, two film theory, Mass transfer coefficients (individual & overall) in laminar and turbulent flow.	4 hrs
7	Diffusion resistances Calculating the resistance to mass transfer in both phases. Calculating intermediate concentrations.	4 hrs
8	Unsteady state mass transfer Introduction to unsteady state mass transfer, mass transfer accompanied by a chemical reaction.	6 hrs

Practical Mass Transfer

No.	Experiment Name
1	Liquid-Liquid diffusion
2	Absorption
3	Batch Distillation Column
4	Fluid Mechanics of Packed Bed
5	Sieve Analysis
6	Gas Solid Fluidization

Program	Industrial and Petroleum Pollution Engineering						
Course Code	CES.E.335		Credi	ts hr			
Course Title	Chemical reaction kinetics					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Physical chemistry	2	-	-	2	2	

Course Description

Theory, Kinetic parameters and rate law, multiple reactions, yield and selectivity, stoichiometric considerations and collection and analysis of rate data

Course Text

1-Octave Levenspiel (1999), *CHEMICAL REACTOR ENGINEERING*, 3rd edition, John Wiley & Sons Inc., USA ISBN: 9780471254249.

2-J.M. Smith (1987), *CHEMICAL ENGINEERING KINETICS*, 3rd edition, McGraw-Hill International Editions, Singapore. ISBN: 9780070587106

Other support books :-

1-Ronald W. Missen; Charles A. Mims; Bradley A. Saville (1999), *INTRODUCTION TO CHEMICAL REACTION ENGINEERING AND KINETICS*,1stedition, John Wiley & Sons Inc.,USA.

Course Objectives : at the end of the semester the student should be able to :-

This course aims to establish fundamental knowledge for the students in chemical reaction kinetics. At the end of this course, students should be able to:

(i) interpret and analyse chemical reaction kinetics data.

(ii) apply reaction kinetics principles in chemical reaction.

(iii) identify and formulate problems in chemical reaction kinetics and find appropriate solutions.

No.	Contents	Duration
1	 Kinetic parameters and rate law L1: Definition in terms of reacting compounds and reaction extent; irreversible and reversible reactions, homogeneous catalyticreactions L2: Symbols and relationships between concentration and conversion L3: Introduction to rate laws, stoichiometry. L4: Reaction order and elementary reactions. L5: Reaction rate constants, Arrhenius equation, Van't Hoff equation L6: Temperature and pressure effects on reaction rates. L7: Thermal effects due to heat of reaction. 	10hr
2	Multiple reactions, yield and selectivity L8: Types of multiple reactions. L9: Definitions of yield and selectivity. L10: Analysis of parallel, series, consecutive reactions. L11: Effect of pressure and temperature on multiple reactions L12: The Denbigh reaction and its special cases	10hr
3	Stoichiometric considerations L13: Stoichiometric considerations in batch systems (constant and variable density). L14: Stoichiometric considerations in flow systems (constant and variable density). L15: Examples: batch, semi-batch reactors, flow reactors, and Industrial reactors.	6hr
4	Collection and Analysis of rate data L16: Differential and integral methods. L17: Initial rate and half-life methods.	4hr

Program	Industrial and Petroleum Pollution Engineering						
Course Code	CES.E.337	Credits hr					
Course Title	Heat transfer I					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Fluid flow & Math	2	0	1	3	2	

Course Description

To introduce and develop an understanding the modes of heat Transfer (conduction, convection and radiation).Derive and discusses all types of equation in these modes of heat transfer. Analyze heat transfer rate data in different modes. Derive the necessary equations for hydrodynamics and thermal boundary layer. Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Course Text

- 1- J.P.Holman, Heat Transfer, Ninth edition.
- 2- Frank P. Incropera & David P. Dewitt, Fundamentals of Heat and Mass Transfer, Fifth Edition.

Other support books :-

• Coulson ,J.M and Richardson J.F. "Chemical Engineering , volume 1",3rd edition.

Course Objectives: at the end of the semester the student should be able to:-

- 1. Develop a deep understanding of issues related to the heat and energy balance for different chemical process
- 2. Define and solve problems in heat transfer mechanism in various engineering applications.

OINFER

3. Explain and derive heat equations for the conduction and convection heat transfer.

4. Apply the analytical equations and correlations in convection heat transfer problems.

Topics Covered (Syllabus)/ Course Title

IC PL

No.	Contents	Duration
1	Modes of Heat Transfer Conduction, Convection and Radiation.	4 hrs
2	Steady State Heat Conduction in One Dimension General heat conduction equation in different coordinates, Plane wall, Radial systems, heat source systems, Boundary surrounded by fluids, Overall heat transfer coefficient, Conduction convection systems and fins.	10 hrs
3	Unsteady State Heat Transfer Temperature as a function of time, lumped capacity system, quenching of small bodies and heating of tank.	4 hrs
3	Principles of Convection Transport equations, Fluid mechanism aspect of convection, laminar boundary layer, The turbulent portion of boundary layer, The laminar sub-layer. Thermal boundary layer, Empirical and practical relations for pipe and tube flow and flow normal to single and tube banks. Reynolds analogy.	12 hrs

1975

ENGINEERING

OFOR

Program	Industrial and Petroleum Pollution Engineering						
Course Code-	CES.E.339		Credits hr				
Title	Air Pollution Control Engineering		Units				
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	General Chemistry, Fundamental of Environmental Eng.	2	-	-	2	2	
Course Description							

Course Description

Introduction to sources of air pollution, basic meteorological processes, air quality modeling. Technology for air pollution control (Equipment of unit operation). Understanding of air pollution control and health problems, risk assessment, and global atmospheric changes.

Course Text

Textbook:-

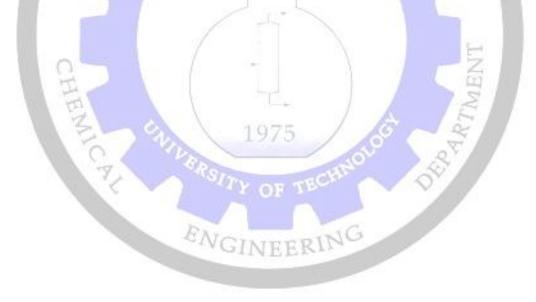
K. Wark, C.F. Warner & W.T. Davis,"Air Pollution Control: its Origin and Control. Addition-Wesley, (1998)

Other support books :-

- 1. De Vevers, N., "Air Pollution Control Engineering", MC, Graw-Hill, Inc. (200)
- 2. D. Vallero, "A fundamental of Air Pollution "Amesterdam, 4th edition, (2008).
- 3. L. Theodore, "Air Pollution Control Equipment Calculation" Willy, (228).

Course Objectives : at the end of the semester the student should be able to :-

- 1- To apply your knowledge of mathematic engineering, science and unit operation to identify and to solve air pollution problems.
- 2- To describe effect of air pollution on environment and dispersion..
- 3- To present group project report in the class in order to develop communication skills.


Topics Covered (Syllabus)

No.	Contents	Duration
1	IntroductionAir pollution definition, Effect on human beings and environmental, Classification of air pOollutants, Sources of air pollutants, Particulate, Air born particulate, The atmosphere, Atmosphere structure, greenhouse	2hr
2	gases.Regional and Global IssueGlobal warming and greenhouse effects, Stratospheric Ozone layer depletion. Hazardous, Hazardous air pollution, Urban smog, Acid rain.	2hr

3	Meteorological Factors Influencing Dispersion of Air PollutantsIntroduction, wind direction and speed, Atmospheric stability, Dry adiabatic lapse rates, Temperature inversion. Plume behavior, The Gaussian plume model, Estimation of plume rise. Stack height.	6hr
4	Particulate Control Methods and Equipment Collection efficiency, Mechanisms to remove particulates from gas stream, Gravitational settling chamber, Centrifugal separators (cyclone separators). Wet scrubbers, Fabric filters, Electrostatic precipitators, Selection of particulate collector.	8hr
5	Control of Gaseous Emission Mechanisms to remove gaseous contamination from gas stream, Absorption by liquids, Adsorption by solids, Combustion.	8hr
6	Control of Specific Gaseous Pollutants Control of sulfur dioxide emission, Control of nitrogen oxide, Control of carbon monoxide, Mobile source.	4hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.3311	Credits hr				
Course Title	Industrial Safety	Un				
Term	1 st semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemistry, equipment design, Fluid flow	2	-	-	2	2

Course Description

Introduction to industrial safety, Risk Assessment & Hazard IdentificationFire and explosion, Toxicology, Leaks and leakage, Safety in process design

11.

Course Text

- <u>1</u>- Crowl D.A. and Louvar J.F., "Chemical Process Safety: Fundamentals with Applications", 2nd Ed., Prentice Hall.2001.
- 2. Fawcett, H. and Wood, "Safety and Accident Prevention in Chemical Operations" Wiley inters, Second Edition.
- 3. David B., "Engineering Safety", McGraw-Hill UK, Copyright 1992.

Course Objectives : at the end of the semester the student should be able to :-

- 1. The course attainted to give the student the knowledge about the risk of chemical processes
- 2. The student be capable to use safety policy to eliminate accidents

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Introduction to industrial safety Important of industrial safety, History and development of safety movement, Need for safety, Safety legislation: Acts and rules, Safety standards and codes, Safety policy: safety organization and responsibilities and authorities of different levels. Accident sequence theory, Causes of accidents, Accident prevention and control techniques, Plant.	6hr
2	Risk Assessment & Hazard Identification Risk definition, Risk analysis, Major hazard control, Identification of hazard, Categorization methods for elimination of hazard, Mechanical hazards, machine guarding, Pressure vessel hazards and their control, Safety in material handling: hazards and safe Practices, safety with storage of materials, Electrical hazards: classification, safe work practices, Chemical hazards: laboratory safety, bulk handling of chemicals,	4hr

3	Fire and explosion Introduction-Industrial processes and hazards potential, mechanical electrical, thermal and process hazards. Safety and hazards regulations, Industrial hygiene. Shock wave propagation, vapour cloud and boiling liquid expanding vapours explosion , mechanical and chemical explosion, multiphase reactions, transport effects and global rates. Fire and explosion hazards, Fire detection, Prevention ,control, and extinguishments, Industrial layout, Industrial waste management.	6hr
4	Toxicology Hazards identification-toxicity, fire, static electricity, noise and dust concentration; Material safety data sheet, hazards indices- Dow and Mond indices, hazard operability (HAZOP) and hazard analysis (HAZAN).	4hr
5	Leaks and leakage Spill and leakage of liquids, vapors, gases and their mixture from storage tanks and equipment; Estimation of leakage/spill rate through hole, pipes and vessel burst; Isothermal and adiabatic flows of gases, spillage and leakage of flashing liquids, pool evaporation and boiling; Release of toxics and dispersion.	4hr
6	Safety in process design and pressure system design Design process, conceptual design and detail design, assessment, inherently safer design chemical reactor, types, batch reactors, reaction hazard evaluation, assessment, reactor safety, operating conditions, unit operations and equipments, utilities. Pressure system, pressure vessel design, standards and codes- pipe works and valves- heat exchangers- process machinery- over pressure protection, pressure relief devices and design, fire relief, vacuum and thermal relief, special situations, disposal- flare and vent systems failures in pressure system.	6hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.3313	Credits hr				
Course Title	Equipment Design					
Term	1st Semester	Theoretical	Practical	Tutorial	Total	Units
Prerequisite(s)	Basic Principles of chemical ,fluid flow,	2	-	1	3	2

Course Description

.The course content process planning, piping and pumps network , gas-gad separation ,solid handling, hear and mass transfer equipments

1151

Course Text

.Sinnott R. and Towler C; 2013 " chemical Engineering Design" 5th edition Butterworth-Heinemann

Coke,A.K ;2007''Ludwig s Applied Process Design of Chemical and petrochemical Plant'' vol. 1 4th edition Gulf professional Publisher

Course Objectives : at the end of the semester the student should be able to :-

The ability to apply the design equation and equipments specifications as practical

To prepare students to be able to read and understand chemical engineering plants drawing

1075

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Process planning: Introduction, Nature of design ,the organization of a chemical engineering projects Scheduling .Standards and codes. Flow sheet design, flow sheet types and designation .Block diagram .Process flow sheet .Piping and instrumentation diagram .Utilities, Computer aided drafting ,process simulation programs .Layout and plot plan .Project evaluation and cost estimation	6hr
2	Piping network and Pumps Valves selection . Piping design standards and codes . Pipe size selection .Mechanical design of piping system. Pump type, pump specifications, and pump data sheet	4hr

3	Vessels and tanks Types of vessels. Criteria in vessel design ,stress considerations . Materials of construction commonly used in vessels tanks. Design of tall vertical vessels . Pressure vessels Design. Vessels supports and foundations	4hr
4	Solid Handling Screening Classification with Streams of Air or Water Air Classifiers . Size Reduction. Equipment for Size Reduction Particle Size Enlargement Extrusion Processes	4hr
	Heat Transfer Equipments Heat exchanger types and applications. Basic design procedure and theory. Overall heat transfer coefficient. Heat exchanger data sheet. Furnaces convection and radiation zone. Steam boilers	6hr
	Mass Transfer Equipments Columns types . Plate Types. Packing types . Pressure drops in columns . Column data sheets	6hr

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.332	Credits hr				
Course Title	Thermodynamics II					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mass Transfer,Unit Operation I ,Equipment Design	2	-	1	3	2

Course Description

The course discuss the study of Power cycles; Refrigeration and liquefaction process; Theory and application of solution thermodynamics ;Vapor/liquid equilibrium in both: binary and multicomponents; Ideal and non-ideal solutions are discussed using Raoult's and modified Raoult's law; Fugacity and fugacity coefficient definitions; Chemical reaction equilibriumandThermodynamic analysis of processes.

Course Text

1- J. M.Smith,H.C.Van Ness, Introduction to chemical engineering thermodynamics, 6th edition (International Edition), Mc-Graw Hall, 2008.

Other support books :-

1-K.V.Narayanan, Atext book of chemical engineering thermodynamics, prentice Hall of India, New Delhi, 2011.

2- B.G.Kyle, Chemical and process thermodynamics ,(3rd Edition), prentice Hall Inc.New Jersey, 1984.

3-J. Rayner, Basic engineering thermodynamicsinSI units, printed in great Britain, 1971.

Course Objectives : at the end of the semester the student should be able to :-

6-Apply the laws of thermodynamics to power, refrigeration and liquefaction cycle.

7-Establish thermodynamic constraint that apply to VLE, and explain qualitatively the VLE diagram.

3. Apply thermodynamics to VLE of pure components and solutions in terms of fugacity and fugacity coefficients.

4. Apply equilibrium criteria to chemical reactions and evaluate the effect of temperature.

5. Revision for thermodynamic analysis of processes.

No.	Contents	Duration
1	Production of power from heat The steam power plant, Rankin cycle, the regenerative cycle, internal combustion engines Otto engine, diesel engine, gas turbine engine.	4 hr
2	Refrigeration and liquefaction The Carnot refrigerator, the vapor compression cycle, the choice of refrigerant, absorption refrigeration, the heat pump, liquefaction processes.	6 hr
3	Vapor\liquid equilibrium; introduction The nature of equilibrium, the phase rule, Duhem,s theorem, diagrams for vapor liquid equilibrium, simple models for VL equilibrium: Rault,s law, dew point and bubble point calculations, Henrys law, VLE by modified Raults law, VLE from K value correlations, flash calculations.	9 hr
4	Solution thermodynamics: theory Fundamental property relations, the chemical potential and phase equilibrium, ideal gas mixtures, fugacity and fugacity coefficient, the fundamental residual property relations, the ideal solutions.	2 hr
5	Chemical Reaction equilibrium The reaction coordinate, standard Gibbs energy change and equilibrium constant, effect of temperature on equilibrium constant, evaluation of equilibrium constant, liquid phase reactions, equilibrium conversion for single reactions.	6 hr
6	Thermodynamic analysis of processes Second law relation for steady state flow processes, calculation of ideal work, thermodynamic analysis of steady state flow processes.	3 hr

ENGINEERING

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E.322		Credits hr			
Course Title	Applied					
	Mathematicsin					
	Environmental					Units
	Engineering					
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics I, II	2	-	1	3	2

Course Description

This course introduces students to: Solve ordinary differential equations: apply Laplace transform to solve various systems of ordinary differential equations: Solve different types of partial differential equations. At the end of the course students should be able to apply these methods to tackle all kinds of problems that appear in chemical engineering.

Course Text

- 1- "Mathematical Methods in Chemical Engineering", Jenson. V.J. and Jeffereys, G.V, 2nd Edition, Academic Press New York, 1977.
- 2- "Applied Mathematics and Modeling for Chemical Engineers", Rice R G. and. Do, D. D., John Wiley and Sons, New York, 1995.
- 3- "Applied Mathematical Methods for Chemical Engineers", Loney, Norman W., 2nd edition, CRC Press Taylor & Francis Group, Boca Raton, 2007.

Course Objectives: at the end of the semester the student should be able to:-

Apply different analytical methods to solve chemical engineering problems.

Topics Covered (Syllabus)/Applied Mathematics in Environmental Engineering

No.	Contents	Duration
<u>No.</u>	Ordinary Differential Equations First-order differential equations, Linear and nonlinear first-order equations, Formation of differential equations, Solutions of linear differential equations, Initial and Boundary value problems, Separable first-order ode's, Exact differential equations, Differential operator, Integrating factors, Solutions of second order linear homogenous equations, Coupled first order equations, Method of reduction of higher order differential equations, Solutions of higher order homogenous linear	Duration 10 hr
	equations. Chemical engineering applications: Application of the law of conservation	
	of mass, First-order chemical reaction in a batch reactor, Heating a closed	

 Laplace transform: Laplace transforms, Laplace transform of the derivatives, Laplace transform of Integral, Laplace Transform of t.f (t) (multiplication by t), Properties of Laplace transform, Laplace transform of special functions (step, pulse, Impulse, ramp and periodic functions), Convolution theorem, Initial value problems (multiplication by s), Final value problems (division of s), First shifting properties, second shifting properties, Inverse of Laplace transform, Inverse Laplace transform of derivatives, Inverse Laplace Transform of Integrals, Partial Fraction, Solution of differential aquations 	
 transform of Integral, Laplace Transform of t.f (t) (multiplication by t), Properties of Laplace transform, Laplace transform of special functions (step, pulse, Impulse, ramp and periodic functions), Convolution theorem, Initial value problems (multiplication by s), Final value problems (division of s), First shifting properties, second shifting properties, Inverse of Laplace transform, Inverse Laplace transform of derivatives, Inverse Laplace Transform of Integrals, Partial Fraction, Solution of differential 	
equations, Solution of simultaneous ordinary differential equations, Application of Laplace transform to solve chemical engineering problems.	hr
 Partial differential equations Classification of partial differential equations, Formulation of partial differential equations, Continuity equation, Unsteady-state component mass transfer with axial symmetry, Unsteady-state heat conduction with axial symmetry, Boundary conditions, Solution of partial differential equation by direct Integration, General and particular solutions, superposition of solutions, Complementary solution, Particular solution, Solution using separation of variables method, Solution using Laplace transforms method, Solution using combination of variables method. Chemical engineering applications: i. Heat conduction in a semi-infinite slab. ii. Unsteady conduction/diffusion in one dimension. iii. Steady-state heat conduction in two-dimensions.) hr

Program	Industrial	& Petrole	eum Po	llution I	Enginee	ering
Course Code	CES.E.334		Credi	ts hr		
Course Title	Unit Operations I					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	0
Prerequisite(s)	Mass transfer	2	0	1	3	2

Course Description

This course covers two main operations, gas absorption, stripping and distillation for binary and multi component mixtures. Concepts to design mass transfer equipment.

Course Text

- Coulson, J. M & Richardson J. F. (2006). "Chemical engineering", Volume 2, 3rd Edition, Robert Maxwell. M. C.
- Dutta Binary K. (2007), "Principles of Mass Transfer & Separation Process", Bvt. Ltd. Prentice Hall, ISPN 8-1203-2990-2.

Other support books:-

- Treybal Robert E. (1975), "Mass transfer Operation" 2nd Edition, Mc-Graw-Hill Book.
- McCabe, W., Smith, J., Harriott, P. (2004), "Unit Operations of Chemical Engineering", M Graw-Hill Co., 7th Edition, ISBN0072848235.

Course Objectives: at the end of the semester the student should be able to:-

- 1- Understand the basics of gas absorption, stripping and distillation.
- 2- Design absorbers, strippers and distillation columns.
- 3- Find Operating lines, feed line and No. of trays or amounts of packing required.

GINFERD

4- Calculate columns efficiency.

Topics Covered (Syllabus)/ Unit Operation I

No.	Contents	Duration
	Introduction to separation processes	
1	General separation techniques. The mechanism of absorption and stripping processes. Flow regimes.	4 hrs
	Absorption in packed bed columns	
2	Constructions, mass transfer coefficients & specific area, capacity, height of columns based on gas film, liquid film, and based on overall conditions, operating line, the transfer units, the importance of gas and liquid flow rates.	4 hrs
	Absorption in Tray towers	
3	Types of trays, number of trays analytically and graphically. How to calculate the tray and column efficiency.	4 hrs
	Introduction to distillation process	
4	Partial pressure, Dalton's, Raoult's & Henry's laws. Relative volatility, non ideal systems. Method of diffusion, binary mixtures, batch distillation, flash distillation, steam distillation. Fractionating column.	3 hrs
	Fractionating process	
5	Number of plates required importance of reflux ratio, location of feed point, multiple feeds and side streams.	3 hrs
	Multi-component Distillation	
6	Key components. Components distributions, equilibrium data, feed & product compositions, minimum reflux ratio, calculation number of trays required, relation between reflux ratio & number of plates.	4 hrs
	Plate & packed distillation columns	
7	General designed methods, column efficiency	4 hrs
	Reynolds Analogy	
8	Mass transfer with bulk flow, flow over a plane surface, flow in a pipe.	4 hrs

Program	Industrial	& Petrole	eum Po	llution I	Enginee	ring
Course Code	CES.E.336		Credi	ts hr		
Course Title	BioChemical					
	Reaction Eng.					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Chemical Reaction Kinitics	2	-	-	-	2

Course Description

To introduce and develop an understanding of reaction rate kinetics and apply this understanding to design a Fermenter(Batch, CSTR,PFR,) for a certain duty either single or multiple once.

Course Text

4- Octave Levenspiel (1999), *CHEMICAL REACTOR ENGINEERING*, 3rd edition, John Wiley & Sons Inc., USA ISBN: 9780471254249.

Other support books :-

1- Smith, J. Chemical Engineering Kinetics. 3rd ed. New York, NY: McGraw-Hill, 1981. ISBN: 9780070587106

2- H. S. Fogler, Elements of Chemical Reaction Engineering, 4th Ed (2006), Prentice Hall, New YorK.

Course Objectives : at the end of the semester the student should be able to :----

This course aims to establish fundamental knowledge for the students in biochemical reactor engineering. At the end of this course, students should be able to:

(i) Develop a deep understanding of issues related to the reaction step(s) in a chemical process and important role it plays in the success of the process both economically and environmentally.

(ii) Apply quantitative methods to Specify and size reactors for simple chemical reaction schemes (isothermal, non-isothermal and adiabatic operation) to achieve production goals for processes involving homogeneous or heterogeneous reaction systems.

(iii)Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Topics Covered (Syllabus)/ Course TitleNo.Contents

No.	Contents	Duration
1	Introduction : The reaction rate and reaction mechanisms: Definition in terms of reacting compounds and reaction extent; rate laws, Arrhenius equation, elementary, reversible, non-elementary, catalytic reactions.Reaction mechanisms and rate laws: Reactive intermediates and steady state approximation in reaction mechanisms. Rate-limiting step.Chainreactions.Pyrolysis reactions. Reaction stoichiometry, lumped stoichiometries in complex systems such as bioconversions and cell growth (yields); extent of reaction, independence of reactions, measures of concentration. Single reactions and reaction networks, bioreaction pathways.	6hr
2	Enzyme Fermentation: MICHAELIS-MENTEN KINETICS (M-M KINETICS), Batch or Plug Flow Fermenter, Mixed Flow Fermenter, INHIBITION BY A FOREIGN SUBSTANCE-COMPETITIVE AND NONCOMPETITIVE INHIBITIO	6hr
3	Isothermal reactors for homogeneous reactions: Design procedure: Batch reactor (constant volume and constant pressure) Design procedure: Continuous stirred-tank reactors (Single and multiple reactions) Design procedure: Tubular-flow reactors Comparison of stirred-tank and tubular-flow reactors.	6hr
4	Non-isothermal reactors: L11: Energy conservation equations L12: Batch stirred-tank reactors L13: Continuous stirred-tank reactors	6hr
5	Multiple reactor System: L14: Plug flow reactors in series and/or parallel L15: Equal- size mixed flow reactors in series (first order and second order reactions) L16: Mixed Flow Reactors of different sizes in series. L17: Best arrangement of a set of ideal reactors	6hr

Program	Industrial	& Petrole	eum Po	llution I	Enginee	ring
Course Code	CES.E.338		Credi	ts hr		
Course Title	Heat transfer II					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Heat transfer I	2	2	1	5	3

Course Description

Characterization the design procedures for different heat transfer equipments as heat exchanger. Discuss the heat transfer in boiling and condensation processes .Characterization the design procedures for furnace. Give a new knowledge in renewable energy systems. Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Course Text

- 1- J.P.Holman ,Heat Transfer, Ninth edition.
- 2- Frank P. Incropera & David P. Dewitt, Fundamentals of Heat and Mass Transfer, Fifth Edition.

Other support books :-

 Coulson, J.M., Richardson, J.F., Backhurst, J.R.and Harker, J.H., "Chemical Engineering" Volume(1) 6thEdition.

ENGINEERING

Course Objectives: at the end of the semester the student should be able to:-

1. Design heat exchanger equipments.

- 2. Define and solve problems in boiling and condensation heat transfer.
- 3. Design the furnace and understand the radiation heat transfer.
- 4. Solve problems in heat transfer applications.

Topics Covered (Syllabus)/ Course Title

No.	Contents	Duration
1	Heat Exchangers Various types and their general characteristics, Overall heat transfer coefficient, fouling factor, Heat exchangers mean temperature differences and Co-current and counter current flow.	10 hrs
2	Shell and Tube Exchanger Types and various specifications, design calculations by conventional and by effectiveness (NTU) methods and optimum design calculation.	6 hrs
3	Condensation and Boiling Heat Transfer Condensation of single vapors, Laminar film condensation Design calculations for condenser, Pool and flow boiling, Boiling regime, General aspects, Boiling correlations.	6 hrs
4	Radiation and Furnace design Radiation properties, shape factor, heat exchange for non black bodies, parallel planes, shields, gas tradition.	4 hrs
5	Renewable Energy Solar radiation, Solar water heater, Solar air heaters, Heat exchangers for ocean thermal energy, Heat storage and transmits.	4 hrs

Practical: Heat Transfer II

No.	Experiment Name
1	Conductive Heat Transfer in Steady State.
2	Coil Heat Exchanger.
3	Determination of Overall Heat Transfer Coefficient on Air Velocity
4	Performance of Cooling Tower
5	Graphite Heat Exchanger
6	Extended Surface Heat Transfer

Program	Industrial &	& Petrole	um Pol	lution	Engin	eering
Course Code	CES.E.3310		Credits	hr		
Course Title	Solid WasteTreatment					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Fundamental of Env. Engineering	2	:211	-	2	2

Course Description

Solid wastes arising from all kind of industrial and human activities, their impacts on human health and environment, their classification and handling, as well as international concerns on solid wastes will be elaborated.

Course Text

Srinivasan D; Environmental Engineering " PHI learning 2012

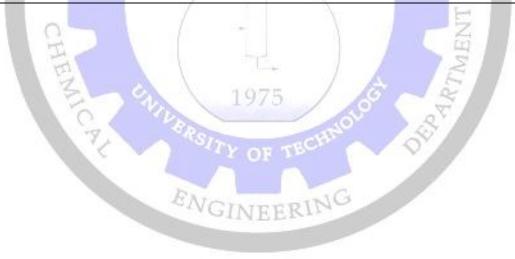
Ramachaudra T V " Management of Municipal Solid Waste ' Commonwealth of learning Canada 2006 .

Course Objectives : at the end of the semester the student should be able to :-

1. Under stands waste classification that involve students in the management and treatment of waste for disposal ,take in consider the environmental and human health risks.

2. .Provide steps for effective new applications technology to reduce waste disposal **Topics Covered (Syllabus)/ Course Title**

I opics	s Covered (Syllabus)/ Course Title	
No.	Contents	Duration
1	Solid Waste Generation and resources Definition ,composition ,and classification of solid waste .The physical chemical and biological properties of solid waste	6hr
2	Treatment and Disposal of SolidWastes from Industry	6hr
3	Source Reduction Product Recovery and Recycling Basic source reduction .significance of recycling ,planning of recycling program, commonly recycled materials and processing	4hr
4	Land filling with solid waste design and operation	4hr
5	Incineration and Energy Recovery Planning of Incineration facility, Incineration technology, energy recovery	8hr
6	Hazardous waste characterization and treatment Identification and classification ,hazardous waste treatment ,pollution presentation and waste minimization	۲hr


Ι	Program	Industrial & H				Succe	ing
Cours	se Code	CES.E. 3312		Credits			~
Cours	se Ti	Environmental instrumentation&					Units
tle		Analysis			[
Term	L	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prere	quisite(s)	Fundamental of Env. Engineering	2	2	-	4	3
Cour	se Descriptio	n					
Brief	introduction	to the treatment of an	alytical data, s	spectroscop	ic methods	s , chro	matography
metho	ods , Electro a	nd radio analytical meth	od, continuun	n monitorin	g instrume:	nts .	
Cour	se Text	ra			~		
		itt, L, Dean, D.A. and	Settle, F.A, "	instrument	al method	l of analy	vsis" 7th ed.
	ls, 2004	- 9: AN		Ad			
		tal method of analysis"				Cai L	
	-	Jay H. Lehr, "Environ	mental instru	mentation	and analys	sis Handl	ook" ,John
	and Sene ,Inc	2005					
		s: at the end of the sen					
1- To	o find out acc	s: at the end of the sen curacy the nearness of a	a measuremei	nt to the st	andard or	true valu	
1- To /si	o find out acc ignal. To und	s: at the end of the sen	a measuremei	nt to the st	andard or	true valu	
1- To /si wa	o find out acc ignal. To und ater.	s: at the end of the sen curacy the nearness of a erstand the measureme	a measuremennt methods of	nt to the st f physical,	andard or chemical a	true valu and biolo	gical of
1- To /si wa 2- To	o find out acc ignal. To und ater. o provide ar	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m	a measuremennt methods of	nt to the st f physical,	andard or chemical a	true valu and biolo	gical of
1- To /si wa 2- To CO	o find out acc ignal. To und ater. o provide ar O2,NOX,SOX	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m X.	a measurement nt methods of nonitoring in	nt to the st f physical,	andard or chemical a	true valu and biolo	gical of
1- To /si wa 2- To CO Topio	o find out acc ignal. To und ater. o provide ar O2,NOX,SOX	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m ζ. Syllabus)/ Course Title	a measurement nt methods of nonitoring in	nt to the st f physical,	andard or chemical a	true valu and biolo	egical of ses like
1- To /si 2- To CO Topio No.	o find out acc ignal. To und ater. o provide ar O2,NOX,SOZ cs Covered (S	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m X. Syllabus)/ Course Title	a measurement nt methods of nonitoring in Contents	nt to the st f physical, strument	andard or chemical a	true valu and biolo	gical of ses like Duration
1- To /si 2- To CO Topio No.	o find out acc ignal. To und ater. o provide ar O2,NOX,SOZ cs Covered (S	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m ζ. Syllabus)/ Course Title	a measurement nt methods of nonitoring in Contents	nt to the st f physical, strument	andard or chemical a	true valu and biolo	egical of ses like
1- To /si 2- To CO Topio No.	o find out acc ignal. To und ater. o provide ar O2,NOX,SOX cs Covered (S Brief intro	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m ζ. Syllabus)/ Course Title oduction to treatment of	a measurement nt methods of nonitoring in Contents of analysis da	nt to the st f physical, strument v	andard or t chemical a which ana	true valu and biolo lyze gas	gical of ses like Duration
1- To /si 2- To CO Topio No.	o find out acc ignal. To und ater. o provide ar O2,NOX,SO2 cs Covered (S Brief intro Instrument	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m X. Syllabus)/ Course Title oduction to treatment of al methods, Precision an	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e	nt to the st f physical, strument v	andard or t chemical a which ana	true valu and biolo lyze gas	gical of ses like Duration
1- Tc /si wa 2- Tc CC Topic No. 1	o find out acc ignal. To und ater. o provide ar O2,NOX,SOX cs Covered (S Brief intro Instrument ,noise/sign	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m ζ. Syllabus)/ Course Title oduction to treatment of al methods, Precision an al, baseline drifty indus	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e	nt to the st f physical, strument v	andard or t chemical a which ana	true valu and biolo lyze gas	gical of ses like Duration
1- Tc /si wa 2- Tc CC Topic No. 1	o find out acc ignal. To und ater. o provide ar O2,NOX,SO2 cs Covered (§ Brief intro Instrument ,noise/sign	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m X. Syllabus)/ Course Title oduction to treatment of al methods, Precision at al, baseline drifty indus copic methods	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes	nt to the st f physical, strument v	andard or t chemical a which ana	true valu and biolo lyze gas	gical of ses like Duration 2hr
1- Tc /si wa 2- Tc CC Topic No. 1	 find out acc ignal. To und ater. provide ar O2,NOX,SO2 cs Covered (§ Brief intro Instrument ,noise/signa Spectrosa Electromage 	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m X. Syllabus)/ Course Title oduction to treatment of al methods, Precision an al, baseline drifty indus copic methods gne ticradiation, color in	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes	nt to the st f physical, strument v nta errors in me	andard or the chemical and	true valu and biolo lyze gas gnals	gical of ses like Duration 2hr
1- Tc /si wa 2- Tc CC Topic No. 1	 find out acc ignal. To und ater. provide ar O2,NOX,SOZ Covered (S Brief intro Instrument ,noise/signa Electromag electrometric 	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m ζ. Syllabus)/ Course Title oduction to treatment of al methods, Precision at al, baseline drifty indus copic methods gne ticradiation,color in ric,fluorimeter,nephelor	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes netricand metry and Tu	nt to the st f physical, strument v nta errors in me rbidimetry,	andard or the chemical a chemical	true valu and biolo lyze gas gnals	gical of ses like Duration 2hr
1- Tc /si wa 2- Tc <u>CC</u> Topic No. 1	 find out acc ignal. To und ater. provide ar O2,NOX,SO2 Cs Covered (S Brief intro Instrument ,noise/signa Spectrose electromag electrometri , atomic ab 	s: at the end of the sen curacy the nearness of a erstand the measureme n understanding of m <u>X</u> . Syllabus)/ Course Title oduction to treatment of al methods, Precision and al, baseline drifty indus copic methods gne ticradiation, color im ric, fluorimeter, nephelor sorption spectrometry (a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes netricand metry and Tu	nt to the st f physical, strument v nta errors in me rbidimetry,	andard or the chemical a chemical	true valu and biolo lyze gas gnals	gical of ses like Duration 2hr
1- Tc /si wa 2- Tc <u>CC</u> Topic No. 1	 find out acc ignal. To und ater. provide ar O2,NOX,SOX Covered (S Brief intro Instrument ,noise/signa Spectrose electrometri , atomic ab Chromat 	s: at the end of the sen curacy the nearness of a erstand the measureme in understanding of m X. Syllabus)/ Course Title oduction to treatment of al methods, Precision and al, baseline drifty indus copic methods gne ticradiation, color im ric, fluorimeter, nephelor sorption spectrometry (tography methods	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes netricand metry and Tur AAS) ,Mass s	nt to the st f physical, strument w nta errors in me rbidimetry, spectrometr	andard or t chemical a which ana easuring sig flame phot y (MS).	true valu and biolo lyze gas gnals	gical of ses like Duration 2hr 8hr
1- Tc /si wa 2- Tc CC Topic No. 1 2	 find out acc ignal. To und ater. provide ar O2,NOX,SO2 cs Covered (S Brief intro Instrument ,noise/signa Spectrose Electromage electrometri , atomic ab Chromatical n 	s: at the end of the sen curacy the nearness of a erstand the measureme in understanding of m <u>X</u> . Syllabus)/ Course Title oduction to treatment of al methods, Precision and al, baseline drifty indus copic methods gne ticradiation,color im ric,fluorimeter,nephelor sorption spectrometry (tography methods nethods, column, paper	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes netricand netry and Tur AAS) ,Mass s	nt to the st f physical, strument v nta errors in me rbidimetry, spectrometric r chromato	andard or chemical a which ana easuring sig flame phot y (MS).	true valu and biolo lyze gas gnals	gical of ses like Duration 2hr 8hr
1- Tc /si wa 2- Tc CC Topic No. 1 2	 find out acc ignal. To und ater. provide ar O2,NOX,SOX cs Covered (S Brief intro Instrument ,noise/signa Spectrose electromage electromaticab Chromaticab Chromaticab Classical m gas chromaticab 	s: at the end of the sen curacy the nearness of a erstand the measureme in understanding of m C. Syllabus)/ Course Title oduction to treatment of al methods, Precision an al, baseline drifty indus copic methods gne ticradiation,color im ric,fluorimeter,nephelor sorption spectrometry (tography methods nethods , column, paper atography (GC),GC- MS	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes netricand metry and Tur AAS) ,Mass s and thin laye S ,high perform	nt to the st f physical, strument v nta errors in me rbidimetry, spectrometr r chromate mance liqu	andard or chemical a which ana easuring sig flame phot y (MS).	true valu and biolo lyze gas gnals	gical of ses like Duration 2hr 8hr
1- To /si wa 2- To CO Topio No. 1 2 3	 find out acc ignal. To und ater. provide ar O2,NOX,SO2 Cs Covered (S Brief intro Instrument ,noise/signa Spectrose Electromage electrometri , atomic ab Chromat Classical m gas chromat 	s: at the end of the sen curacy the nearness of a erstand the measureme in understanding of m <u>X</u> . Syllabus)/ Course Title oduction to treatment of al methods, Precision and al, baseline drifty indus copic methods gne ticradiation,color im ric,fluorimeter,nephelor sorption spectrometry (tography methods nethods, column, paper	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes netricand metry and Tur AAS) ,Mass s and thin laye S ,high performonatography	nt to the st f physical, strument v nta errors in me rbidimetry, spectrometr r chromate mance liqu	andard or chemical a which ana easuring sig flame phot y (MS).	true valu and biolo lyze gas gnals	gical of ses like Duration 2hr 8hr
1- To /si wa 2- To CO	 find out acc ignal. To und ater. provide ar O2,NOX,SO2 cs Covered (S Brief intro Instrument ,noise/signa Spectrosa Electromage electromatoga Chromatoga Chromatoga Electro an 	s: at the end of the sen curacy the nearness of a erstand the measureme in understanding of m ζ. Syllabus)/ Course Title oduction to treatment of al methods, Precision at al, baseline drifty indus copic methods gne ticradiation, color im ric, fluorimeter, nephelor sorption spectrometry (tography methods nethods, column, paper atography (GC), GC- MS raphy (HPLC), ion chr d radio analytical met	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes netricand metry and Tur (AAS) ,Mass s and thin laye S ,high perfor comatography hods.	nt to the st f physical, strument v nta errors in me rbidimetry, spectrometr r chromate mance liqu	andard or chemical a which ana easuring sig flame phot y (MS).	true valu and biolo lyze gas gnals	gical of ses like Duration 2hr 8hr 8hr
1- Tc /si wa 2- Tc CC Topic No. 1 2 3	 a find out acc a provide ar 02,NOX,SOX cs Covered (s Brief intro Brief intro Instrument ,noise/signa Spectrose Electromage electromate chromatoge Electro an chromatoge chromatoge chromatoge 	s: at the end of the sen curacy the nearness of a erstand the measureme in understanding of m C. Syllabus)/ Course Title oduction to treatment of al methods, Precision at al, baseline drifty indus copic methods gne ticradiation, color in ric, fluorimeter, nephelor sorption spectrometry (tography methods nethods , column, paper atography (GC), GC- MS raphy (HPLC) , ion chr	a measurement nt methods of nonitoring in Contents of analysis da nd accuracy ,e trial tubes netricand metry and Tur (AAS) ,Mass s r and thin laye S ,high perform comatography chods.	nt to the st f physical, strument v nta errors in me rbidimetry, spectrometr r chromate mance liqu (IC).	andard or the chemical a shemical a shemical a she chemical a she	true valu and biolo lyze gas gnals tometry LC)	gical of ses like Duration 2hr 8hr 8hr 8hr

Laboratory of Experiments

No.	Experiment Name			
1	Determination of a mixture of heavy metals such as cobalt and nickel(UV/V is Spec.)			
2	IR absorption spectra(study of aldehydes and ketones).			
3	Determination of calcium,Iron and copper in for example food by atomic absorption.			
4	Determination of solid in wastewater such as TS,TSS and TDS.			
5	Determination of some physical properties in river water: conductivity, PH, Turbidity.			
6	Quantitative analysis of mixture by carbon tetrachloride.			
7	Determination of caffeine in beverages by HPLC.			
8	Carbon test by TOC.			
9	Determination ions by selective electrode such as <i>NH</i> ₄ , <i>CL</i> , NO ₃ .			
10	Determination of sulfonateSO ⁻² 4 by UV-Spectrophotometer.			

Program	Industrial & Petroleum Pollution Engineering						
Course Code	CES.E.3314		Credi	ts hr			
Course Title	Equipment						
	Designin						
	Environmental	ivironmental			Units		
	Engineering						
	Using CAD						
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Thermodynamics, heat and mass transfer	2	2	1	5	3	

Course Description

. The aim of the subject is to engaged students with chemical plants by explain to them the main items of plant design and teach them procedures to design different equipments with computer programs

Course Text

.Sinnott R. and Towler C; 2013 " chemical Engineering Design" 5th edition Butterworth-Heinemann

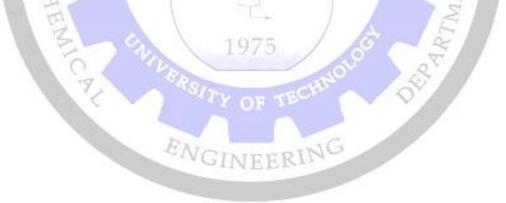
Coke,A.K ;2007"Ludwig s Applied Process Design of Chemical and petrochemical Plant" vol. 1 4th edition Gulf professional Publisher

Course Objectives : at the end of the semester the student should be able to :-

- 1- 1-Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.
- 2- The student be able to use computer software packages to perform design activity beside the conventional methods

3- 3- The student should have the necessary skills to design equipments

<u>'opics Covered (Syllabus)/ Course Title</u>
--


No.	Contents	Duration
1	Applied Design for Pressure vessels ,pumps and compressors flash drum, gas-liquid separator, liquid-liquid separator, gas movers and compressors manually and with computer aided	12 hr
2	 Applied Design for heat equipments (shell And tube heat exchanger, plate heat exchanger , coil type exchanger, condenser, vaporizer, air cooleretc) manually and with computer aided 	12 hr
3	Applied Design for mass transfer equipments (distillation column, absorber column, leaching equipment, scrubberetc) manually and with computer aided	6 hr

Laboratories

No.	Experiment Name
1	Introduction
2	Equation of state & stream
3	Rotating Equipment (3.1 Compressor, 3.2 Expander, 3.3 pump)
4	Separation Operations (Separator , 3-Phases Separator , 4.3 Tank)
5	Heat Transfer Equipment (Heater & Cooler, Heat Exchanger, LNG,Air Cooler)
6	Column distillation (Column Installation, Column Property View, Column-Specific Operations and Running the Column)
7	Reactors(CSTR, General Reactor, Gibbs, Equilibrium, conversion)
8	Logical Operations (Adjust, Balance, Recycle, Set)
9	process plant involving reaction and separation
10	Examination lab

Program	Industrial & Petroleum Pollution Engineering						
Course Code	CES.E.421		Credits l	ır			
Course Title	Project I					Units	
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	 19. Basic Principles of chemical engineering I 20. Basic Principles of chemical engineering II 21. Material & Energy Balance. 22. Thermodynamics I & II 		2		3	2	

Course Description

The course includes the design aspects and design considerations for plant of chemical industry.

Course Text

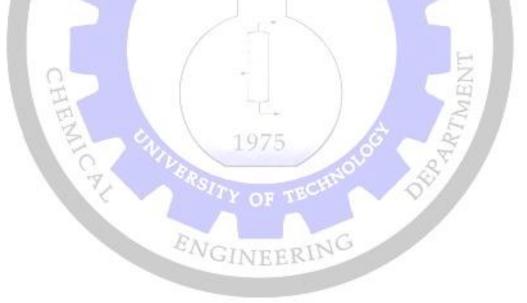
Sinnott R.K. "Chemical Engineering Design", Coulson and Richardson's. Chemical Engineering, Volume 6, Fourth edition, (2005).

Other support books :-

1-Peters M. S., Timmerhaus K.D. and West R.E. Plant Design and Economics for Chemical Engineering, Fifth edition, (2003).

Course Objectives: at the end of the semester the student should be able to:-

To learn the students the basic information's of designing the chemical plants and the economic and engineering aspects


No.	Contents	Duration
1	Introduction to Design The anatomy of chemical manufacturing process, general overall design considerations, development of design data base, process creation, types of process design.	5 hr
2	Design Information and Data Source of information of physical properties , predication of physical properties (density, viscosity, thermal conductivity, etc)	5 hr
3	Material and Energy Balance Review of material and energy balance, flow sheet symbols, PFD information in flow diagram	5 hr

Project Requirements

No.	Contents	Duration
1	Chapter OneIntroduction, Historical Profile, Physical and Chemical Properties,Applications for chemical material production.	4 hr
2	Chapter Two Production Methods, Comparison between Processes, Selected the optimum Process, Physical properties of raw materials and by products, Production Capacity.	4 hr
3	Chapter Three Material balance for the plant process.	10 hr
4	Chapter Four Energy balance for the plant process, Process flow diagram (PFD).	10 hr
5	Poster and Oral Presentation	2 hr

Program	Industrial & Petroleum Pollution Engine					
Course Code-	CES.E. 431		Credi	ts hr		
Course title	Unit Operation II					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Mathematics II , Engineering Mathematics I , II, Numerical Analysis, Energy Balance, Material & Energy Balance, Fluid FlowI, II, Thermodynamics I , II , Mass Transfer, unit operation I , II , Heat treansfear I , II ,		2		5	3

Course Description

Theory, applications and design of unit operations which are mostly employed in the chemical industry, drying of solid, humidification, dehumidification and cooling tower and liquid evaporation and crystallization.

Course Text

- 1- Coulson ,J.M and Richardson J.F. "Chemical Engineering , Volume 1, 3rd edition ,Robert Maxwell.M.C.
- 2- Coulson J.M, and Richardson J.F. "Chemical Engineering, Volume 2, 3rd edition, Robert Maxwell.M.C.

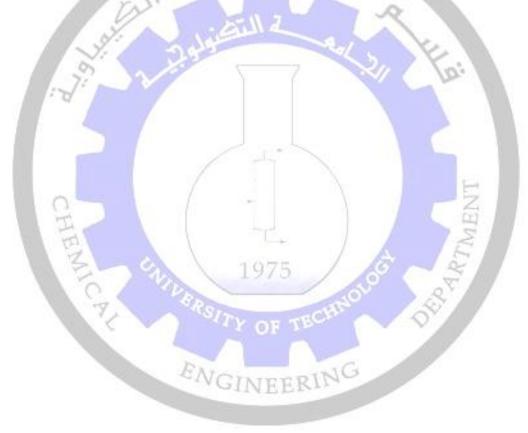
Other support books :-

- Perry, J.H, "Chemical engineering handbook ", Mc-Graw Hill Bookcom. 1975.
- Binay.K.Dutta "Mass transfer and separation process" 2007.
- Trebal Robert E., "Mass transfer operation"2nd edition, Mc-Graw –Hill Book com.1975.

Course Objectives: at the end of the semester the student should be able to:-

- 1- To provide an understanding of the general principles of separation processes to allow students to make sensible options given a separation task (Humidification, Dehumidification and Cooling tower, Evaporation, crystallization, and Wet Solid Drying).
- 2- A comprehensive understanding of the transport processes related to chemical engineering operations, with focus on both theory and applications.
- 3- Ability to select of appropriate equipment for the separation of materials in process plant.
- 4- Provide practice at developing critical thinking skills, solving open ended problems and to work in teams.

Topics Covered (Syllabus)


No.	Contents	Duration
1	Drying of Solids Introduction Drying of SolidsGeneral Principles. Wet Solid Group.Terminology and Definitions. Humidity Measurement. Humidity Data for Air – Water system. Temperature –Humidity Chart (Psychometric Chart). Uses of Humidity Chart. Rate of Drying. Calculation method of Drying Rate and Time. Drying Rate. Drying Time. Mechanism of Moisture Movement in Wet Solid. Material and Heat Balance for Continuous Dryers. Rate of Drying for continuous Direct Heat Driers. Drying at High Temperature. Drying at Low Temperature. Drying Equipment.	6 hrs
2	Humidification, dehumidification and Cooling towers Introduction. Humidification Operations. Adiabatic Operations. Non- Adiabatic Operations. Mixing of Humid Streams. Mixing of Two Stream of Humid Gas. Addition of Liquid or Vapor to a Gas. Humidification Processes Theory. Cooling Tower Principles and Operations. Cooling Tower Classification. Design Cooling Tower. Adiabatic Humidification — Cooling. Dehumidification Tower	9 hrs
3	Evaporation Introduction, Types of Evaporations, Evaporation Equipment, Heat transfer in Evaporation Process, single, double and Multi effect Evaporators, Design of evaporators, Comparison of Forward, backward and Parallel effect evaporators, boiling Point rise.	9 hrs
4	Crystallization Crystallization fundamentals, cooling crystallizer, Evaporating crystallizer, Batch and continuous crystallization Crystallizer selection.	6 hrs

Practical Unit Operation II

No.	Experiment Name
1	Tray Dryer
2	Plate and Frame Filtration
3	Rotary Drum Filtration
4	Design of Cooling Tower
5	Sedimentation
6	Liquid - Liquid Extraction

Program	Industrial & Petroleum Pollution Engineering							
Course Code	CES.E. 433							
Course Title	Process Dynamics					Units		
Term	1 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	1.Heat and Material balance 2.Applied Mathematics	2	_	1	3	2		

Course Description

Study of dynamics characteristics of open-loop Chemical Engineering processes to formulate transfer function and analysis response of the system to design and select closed-loop controlscheme.

Course Text

1. D.R. Coughanowr and S. LeBlanc, Process Systems Analysis and Control, McGraw-Hill, 3nd edition, 2008.

2. Stephanopoulos G., "Chemical Process Control-An Introduction to Theory and Practice, "Prentice -Hall, New Jersey, 1984.

Other support books :-

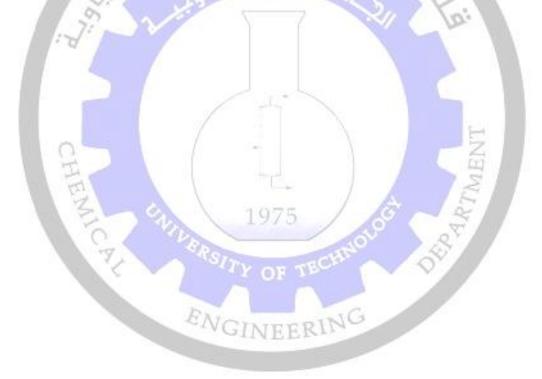
1. Luyben W. L., "Process Modeling, Simulation and Control for Chemical Engineers," McGraw-Hill, New York, 2nd Ed., 1990.

2. Process Dynamics: Modeling, Analysis and Simulation, by Wayne Bequette.

Course Objectives : at the end of the semester the student should be able to :-

1. Study of dynamic analysis of chemical processes to allow students to identify the system under different operating conditions.

VGINEERI


- 2. Understanding of formulate transfer function of the system.
- 3. Testing and selecting of critical process variables.
- 4. Developing of skills, solving open ended problems and to work in teams.

Topics Covered (Syllabus)/ Process Dynamic

No.	Contents	Duration
1	Linear Open-Loop Systems Transfer function, Transient Response,Forcing Functions:Step Response ,Impulse Response Ramp Response Sinusoidal Response.	10hr
2	Applications of First Order Systems Liquid –level system, heating system, Mass transfer system, Reactors, absorber, pressure vessel, Linearization.	8hr
3	Response of First-Order Systems in Series Non-interacting System, Interacting System.	4hr
4	Higher-Order Systems Second-Order: Under-damped, Critical and over-damped, Transportation Lag	8hr

Program	Industrial &	Petroleu	m Polli	ution E	ngine	ering
Course Code	CES.E 435		Credits	hr		
Course Title	Water and wastewater treatment Eng.I					Units
Term	1 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Air Pollution Control Eng.	2	-	1	2	2

Course Description

- 1- Classification, significance and concentration ranges of impurities in water and wastewater.
- 2- Physical and chemical treatment methods.

Course Text

1. Metcalf & Eddy, "Wastewater Engineering, Treatment & Reuse" McGraw-Hill, 4th Ed. 2003.

Other Support Boks:

- 1. Vesilind, P.A., & Jeffrey, J.P., "Environmental Engineering" Ann Arbor As. Publishers, 1982.
- 2. Hammer, M. J., "Water& Wastewater Technology", John Wiley & Sons, 1977.
- 3. Mackenzie, L.D., "Water & Wastewater Engineering, Desighn Principles & Practice", McGraw-Hill INTERNATIONAL Ed., 2011.

Course Objectives : at the end of the semester the student should be able to :-

- 8- Understand the nature of impurities in water and wastewater, their concentrations.
- 9- Understand the basic principle of conventional chemical and physical treatment processes.

No.	Contents	Duration
1	Introduction: terminology inwastewater,constituents'wastewater,characteristics of wastewater,component of wastewater flow.	6hr
2	Physical treatment principle of physical treatment screening and grit removal, sedimentation and filtration, flotation, aeration system.	12hr
3	Chemical treatment: principle of chemical treatment, precipitation, coagulation and flocculation, chemical oxidation, disinfection.	12hr

Program	Industrial & Petroleum Pollution Engineering						
Course Code	CES.E 4 23		Cred	its hr			
Course Title	Industrial and Petroleum Pollution Control					Units	
Term	1 st Semester	Theor etical	Practical	Tutorial	Total		
Prerequisite(s)	Fundamentals of Environmental Engineering, Environmental Engineering Management, Air Pollution Control Engineering	2	211	1	3	2	

Course Description

The course contents Petroleum refinery and petrochemicals, Soap and detergents, Paint and dyes, Soap and detergents, Pesticide

Course Text

- 1. Nanley , N., and Bhatia, S.C.,"Pollution control in Chemical and Allied Industries", CBS Publisher and Distributors Pvt. Ltd. 1st ed. 2010.
- 2. Rao C.S.," Environmental Pollution and Control engineering", Willy Eastern Limited 1993.

Course Objectives : at the end of the semester the student should be able to :-

- 1. The course attainted to give the student the knowledge about the different chemical processes flow sheets
- 2. The student be capable to eliminate or reduce the negative environmental effects of chemical process

No.	Contents	Duration
1	Petroleum refinery and petrochemicals: Refining of petroleum, Waste generation in petroleum refinery, Wastewater from refinery, Control of air emissions in refinery, Petrochemical and allied products, Solid waste pollution in petrochemical industries, Control of air emission in petrochemicals.	10hr
2	Soap and detergents: Classification of surfactants, Source of detergent in water and	4hr

	wastewater, Impact on wastewater treatment processes, Industrial operation and wastewater, Soap manufacture and processing, detergent manufacture and waste stream, wastewater control and treatment, Airemissions	
	Paint and dyes:	
3	Manufacture process, Air pollution, Wastewater generation, Dye and dye intermediates.	4hr
	Sugar, Distiller and Fermentation products:	
4	Sugar, Distillery industry, Fermentation products.	4hr
	Textile:	
	Water pollution from Boilers, Water pollution from water treatment plants, Operations involved in finishing characteristics of texture wastewater treatment of textile wastewaters.	4hr
	Pesticide:	
6	Classification of pesticides, Pollution prevention and control, wastewater generation and treatment technique.	4hr
	1975	
	To the second set	

ENGINEERING

Program	Industrial & Petroleum Pollution Engineering						
Course Code	CES.P. 4 <mark>37</mark>	Credits hr					
Course Title	CatalysisandCatalytic Engineering					Units	
Term	1st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Chemical reaction kinetics, Reactor Design	2	-	-	2	2	

Course Description

Theory, Heterogeneous catalysis (Classification of solid catalyst, types of catalyst carrier, physical properties of solid catalyst (solid density, bed density, macro-pore, micro-pore, phase holdups, types of diffusivity), Overview of transport and reaction steps, Rate equations for fluid-solid catalytic reactions, External transport process in heterogeneous reactions, Internal transport processes-reaction and diffusion in porous catalysts (Thiele module and effectiveness factor), Isothermal and adiabatic heterogeneous catalytic reactors, Isothermal reactors with multiphase system

TTL.

Course Text

1-Levenspiel, O. Chemical Reaction Engineering. 3rd edition, New York, NY: Wiley, 1999. ISBN: 9780471254249.

2-Smith, J. Chemical Engineering Kinetics. 3rd edition, New York, NY: McGraw-Hill, 1981. ISBN: 9780070587106

Other support books :-

1-Fogler, H.S., Elements of Chemical Reaction Engineering, 3rd edition, Prentice-Hall of India, New Delhi, 1997

ENGINEERING

Course Objectives : at the end of the semester the student should be able to :-

This course aims to establish fundamental knowledge for the students in Heterogeneous Reactors and Catalysis. At the end of this course, students should be able to:

(1) gain fundamental knowledge on solid catalysts and transport phenomena.

(2) apply reaction kinetics principles in Heterogeneous Reactors.

(3) identify and formulate problems in Heterogeneous Reactors and Catalysis and find appropriate solutions.

(4) Specify and size the most common industrial chemical reactors to achieve production goals for processes involving heterogeneous reaction systems.

No.	Contents	Duration
1	Heterogeneous CatalysisL1: Classification of solid catalyst, types of catalyst carrier, physical properties of solid catalyst (solid density, bed density, macro-pore, micro- pore, phase holdups, types of diffusivity- bulk, Knudsen and effective-) L2: Overview of transport and reaction steps, L3: Rate equations for fluid-solid catalytic reactions L4: External transport process in heterogeneous reactions L5: Internal transport processes-reaction and diffusion in porous catalysts (Thiele module and effectiveness factor) L6: Catalyst deactivation: definition, types, and simple rate equation	15hr
2	Isothermal and adiabatic heterogeneous catalytic reactorsL7: Classification, Performance equation for isothermal fixed bedreactorreactors containing porous catalystL8: Design of a single adiabatic packed bed reactor	7hr
3	Isothermal reactors with multiphase system L9: Design of a slurry reactor L10: Design of a trickle bed reactor	8 hr

Program	Industrial & Petroleum Pollution Engineering						
Course Code	CES.E 438	Credits hr					
Course Title	Environmental						
	Engineering						
	Management and		Units				
	Ethics						
Term	1 st Semester	Theoretical	Practical	Tutorial	Total		
Prerequisite(s)	Equipment design	2	-	1	3	2	

Course Description

The course contents the important environmental national and international laws and legislations, engineering ethics ,environment audits and the course contents plant economy

Course Text

1-Dhamaja S; 'Environment Engineering and Management " 2000 1st edition S.K,Kataria& Sons

2-Bnhatia S C "Environmental pollution in Chemical process Industries " 2012 2nd edition Khama publication

3-Towler G. and Sinnott R " Chemical Engineering Design " 2nd edition 2013 Elesvier 4- Peters M., Timmerhaus D. and West R. " Plant Design and Economics for chemical Engineers " 5th edition 2005 McGraw-Hill

Course Objectives: at the end of the semester the student should be able to :-

- 1. Provide knowledge to the concept of environment management laws and national obligations
- 2. Understand the characterization of ISO 1400 fundamental basics ,and EIA

3. How to prepare feasibility study and methods to estimate project cost

No.	Contents	Duration
1	National and international Laws and Legislation Explain the main national and international laws which concern with environment and international protocols.	4hr
2	Environmental Audit Defines environmental audit and concept of ISO, ISO 14000.	4hr
3	Engineering Ethics Explain the basic concepts and obligations of ethics	4hr
4	Environmental Impact Assessment Define the basic concept and principle of (EIA)	6hr
5	Sustainable development Engineering Introduction to sustainable development, Social dimensions	4hr
6	The basic principles of plant economy Fixed and working investment Planning and preparation, economic feasibility study, plant layout, cost (fixed cost, working cost, cost index, project cash flow diagram, tax, budgetary control	8hr

Program	Industrial & Petroleum Pollution Engineering						
Course Code	CES.E. 4 22						
Course Title	Project II	-					
Term	2 nd Semester	Theoretical Practical Tutorial To		Total			
Prerequisite(s)	 23. Mass Transfer 24. Unit OperationI and II 25. Heat Transfer I and II 26. Equipment Design 27. Catalysis Eng. AndReactor Design 	1	2		3	2	

Course Description

The course includes the design aspects and design considerations for plant of chemical industry.

Course Text

Sinnott R.K. "Chemical Engineering Design", Coulson and Richardson's. Chemical Engineering, Volume 6, Fourth edition, (2005).

Other support books :-

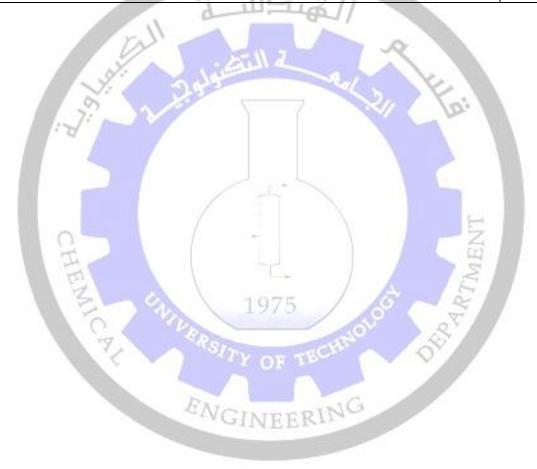
3. Peters M. S., Timmerhaus K.D. and West R.E. Plant Design and Economics for Chemical Engineering, Fifth edition, (2003).

1975

yay /

Course Objectives: at the end of the semester the student should be able to:-

To learn the students the basic information's of designing the chemical plants and the economic and engineering aspects


No.	Contents	Duration
1	Choice of Plant Location and Layout Standard	3 hr
2	Piping and Instrumentation	41
2	Pipes, valves, Pumps, Mechanical design and control	4hr
3	Cost and Project Evaluation	3hr
4	Safety and Loss Prevention	2 hr
5	Design with Computer Aided	3 hr

Project Requirements

No.	Contents	Duration
1	Chapter Five Design main equipment by design equation with mechanical design, cost evaluation, control and computer aided using Hysys software	14hr
2	Design supported equipment with mechanical design, cost evaluation and control.	6 hr
3	Chapter Six Environmental effect for raw materials, products and by products	6hr
3	Poster and Oral Presentation	4hr

Program	Industrial	Industrial & Petroleum Pollution Engineer						
Course Code-	CES.E. 432		Credi	ts hr				
Course title	Unit Operation III					Units		
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Mathematics II , Engineering Mathematics I , II, Numerical Analysis, Energy Balance, Material &Energy Balance, Fluid FlowI, II, Thermodynamics I, II, Mass Transfer, unit operation I, II, Heat treansfearI, II,	2	0	1	3	2		

Course Description

A comprehensive understanding of the transport processes related to chemical engineering operations with focus on theory, design and applications of Solid–liquid filtration, Sedimentation, liquid - liquid extraction, Leaching and Washing.

Course Text

- Coulson ,J.M and Richardson J.F. "Chemical Engineering", Volume 1, 3rd edition, Robert Maxwell.M.C.
- Coulson, J.M and Richardson J.F. "Chemical Engineering", Volume 2, 3rd edition, Robert Maxwell.M.C.

Other support books :-

- De Sinha and Parameswar De "Mass Transfer: Principles and Operations", Parameswar De, New Delhi, 2012
- Binay.K.Dutta "Mass transfer and separation process" 2007.
- Trebal Robert E., "Mass transfer operation"2nd edition, Mc-Graw –Hill Book com.1975.

Course Objectives: at the end of the semester the student should be able to :-

- 1- Basic information, concepts and terminology of the general principles of separation processes of Solid –liquid filtration, Sedimentation, liquid liquid extraction, Leaching and Washing.
- 2- Demonstrating a broad and integrated knowledge and a deep understanding of issues related to separation processes in a chemical process and important role it plays in the success of the process both economically and environmentally.
- 3- Ability to select of appropriate equipment for the separation of materials in process plant.
- 4- An ability to apply effective, creative and innovative solutions, both independently and cooperatively, to current and future problems in separation processes and transport phenomena.

Topics Covered (Syllabus)

No.	Contents	Duration			
1	Filtration Type of Filters, Filtration theory, Plate and frame filter press, leaf filter, filtration at Constant ΔP , Filtration at Constant rate, washing Time, centrifugal filtration	9 hrs			
2	Sedimentation Introduction, Settling and Sedimentation in particle fluid separation, Sedimentation and thickening design, equipment for settling and Sedimentation.	6 hrs			
3	Liquid - Liquid Extraction Definition, Extraction process, Equilateral Triangular coordinates (Ternary Diagram), system of three liquid _ one pair partially soluble, choice of solvent, Equipment in extraction cross _ current extraction, multi stage Cross Current extracting cross current for insoluble Liquid , Continuous Counter current extraction , Continuous Counter Current in Soluble , Liquid , Minimum Solvent .				
4	Leaching General principles, Equipment for leaching, Mass transfer in leaching, continuous operation, Equilibrium-stage model for leaching and washing.	3 hrs			
	THE CHINERSITY OF TECHNOLOGY OF				

ENGINEERING

Program	Industrial &	Industrial & Petroleum Pollution Engineering						
Course Code	CES.E. 434	Credits hr						
Course Title	Process Control and Instruments					Units		
Term	2 st Semester	Theoretical	Practical	Tutorial	Total			
Prerequisite(s)	Process Dynamic	2	2	1	5	3		

Course Description

Analysis of closed-loop Chemical Engineering processes system to design and select closed-loop controlscheme that will operate the plant with stable conditions.

Course Text

1. D.R. Coughanowr and S. LeBlanc, Process Systems Analysis and Control, McGraw-Hill, 3nd edition, 2008.

2. Stephanopoulos G., "Chemical Process Control-An Introduction to Theory and Practice, "Prentice -Hall, New Jersey, 1984.

Other support books :-

1. Luyben W. L., "Process Modeling, Simulation and Control for Chemical Engineers," McGraw-Hill, New York, 2nd Ed., 1990.

2. Process Dynamics: Modeling, Analysis and Simulation, by Wayne Bequette.

Course Objectives : at the end of the semester the student should be able to :-

- 1- To enhancement the ability of students for the analysis of closed-loop system and response of controlled system under different operating conditions.
- 2- Construction of transfer function of the closed system for different schemes.
- 3- Provide practice of tuning of controller parameters and limiting of stable operating conditions.
- 4- Motivation and encourage the students for solving open ended problems.

Topics Covered (Syllabus)/ Process Control and Instrumentation

No.	Contents	Duration
1	Instrumentation Sensors: pressure, temperature, level, flow and concentration. Control valve. Dynamics characteristics of Instruments.	6hr
2	Linear Closed-Loop Systems The Control System, Controllers and Final Control Elements, Block Diagram of Controlled System, Overall Closed-Loop Transfer Functions.	4hr
3	Characteristics of the Closed Loop System Transient Response of Simple Control Systems, Stability	7hr
4	Frequency Response Methods Introduction to Frequency Response Bode Diagrams, Control System Design by Frequency Response, Ziegler-Nichols Controller Settings.	7hr
5	Computer Control of Chemical process Analog Computer, Digital Computer, Computer Control Loops.	3hr
6	Control of Complex Processes Distillation Column, Absorber, Chemical Reactor.	3hr

Practical Process Control and Instrumentation

eedback Control ynamic Behavior of Second order under Damped System (Orifice) low rate Control evel Control in the Tank
low rate Control
evel Control in the Tank
ressure Control
ynamic Behavior of Second order over Damped System (Stirred Tanks)
ynamic Behavior of Second order over Damped System (Stirred Tanks Heater)
emperature Control
H Control
Control of Water Treatment Unit
)y)y 'e H

Program	Industrial & Petroleum Pollution Engineering					
Course Code	CES.E436		Credits	hr		
Course Title	Water and wastewater treatment Eng. II.					Units
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Water and wastewater treatment Eng. I	1	2	1	4	2

Course Description

- 3- Biological processes for wastewater treatment.
- 4- Examples of flow sheet in treatment plants.

Course Text

1-Metcalf & Eddy, "Wastewater Engineering, Treatment & Reuse" McGraw-Hill, 4th Ed. 2003.

Other Support Books:

1-Vesilind, P.A., & Jeffrey, J.P., "Environmental Engineering" Ann Arbor As. Publishers, 1982.

2-Hammer, M. J., "Water & Wastewater Technology", John Wiley & Sons, 1977. 3-Mackenzie, L.D., "Water & Wastewater Engineering, Design Principles & Practice", McGraw-Hill International Ed., 2011.

Course Objectives : at the end of the semester the student should be able to :-

1-Understand the basic principle of biologicaltreatment methods.

2-Understand the advanced wastewater treatment methods.

3-Select appropriate process, depending in nature of the impurities to be removal.

No.	Contents	Duration
1	Biological treatment: principle of biological treatment, both aerobic and anaerobic, activated sludge treatment, trickling filter and sludge digestion.	
2	Advanced wastewater treatment: membrane, adsorption, ion exchange, advanced oxidation process.	
3	Examples of flow sheet and unit operation used in treatment plants	2hr

Laboratory of Experiments

No.	Experiment Name
1	Coagulation, Flocculation and sedimentation of river water treatment by jar-test
2	Sedimentation of suspended solid
3	Wastewater treatment
4	Ion -Exchange
5	Removal heavy metals by adsorption
6	Flotation
7	Desalination by membrane
8	Sludge- treatment
	CHEMIC PL UNIVERSITY OF TECHNOLOGY DIPART 1975 PL ENGINEERING

Program	Industrial and Petroleum Pollution Engineering					
Course Code	CES.E424	Credits hr				
Course Title	Optimization			Units		
Term	2 st Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Eng.Mathematics1,2 ,Unit Operation.	2	-	1	3	2

Course Description

The subject is to be given in one semester. studying the formulation of objective the theory of optimization of single variable using analytical and numerical methods. Determination in the solution of multi variables problems .studying and solving the linear programming problems(LP).

Course Text

1) Optimization, Greirg D.M. Longmangroup limited London.

2) Optimization, converse A.O ,Holt, Reinhart, and Winston.

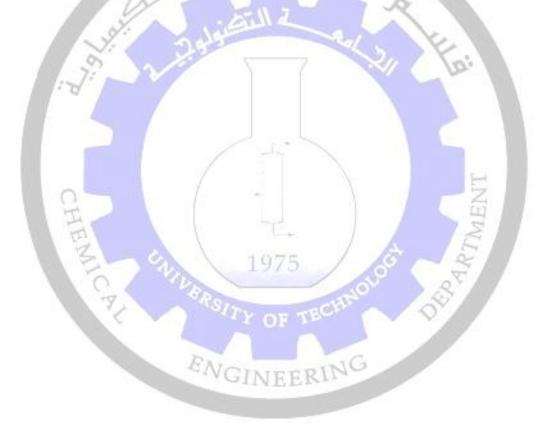
Other support books :-

1) Numerical methods for unconstrained optimization, Murrayw. Academic press.

2) Constrained optimization by direct search Swann, W.H. Gill and Murray.

Course Objectives : at the end of the semester the student should be able to :-

- 1- To formulate many problems arising in widely different situations.
- 2- Ability for finding optimum. Minimum, or maximum in unconstrained or constrained single or multi variables functions..
- 3- Deals with the special case of linear programing (functions and constraints are linear).
- 4- Provide practice to deal with industrial optimization problems.


Topics Covered (Syllabus)/Optimization

No.	Contents	Duration
1	Introduction to optimization.	2hr
2	 Recognizing an optimization problems and their solution. Formulation of optimization problems. Unconstrained and constrained problems. 	6hr
3	 Unconstrained and constrained problems. Optimization methods for single variable problems. Analytical methods; constrained and unconstrained. Graphical method. Numerical methods. e- Unconstrained functions; fixed step method, DSC method, Newton method. f- Constrained functions; sequential search, Dichotomous search; Fibonacci search, Golden ratio search. 	
4	Determining the solution to multivariable optimization problems. g- Unconstrained minimization and maximization strategy.	10hr

- Solving linear and non linear equations using matrices.
- Optimality conditions for unconstrained problems.
- Lagrangian criteria.
- Simplex method direction step length calculation.
- h- Solution of constrained multivariable problems.
 - Analytical solution.
 - Lagrangian duality.
 - Linearization of nonlinear optimization problems.
 - Simplex method.
 - Pivot table formulation.
- i- Linear programming (LP) formulation.
 - Solving linear system.
 - Basic solution of an (LP) problems.
 - Graphical interpretation.

Program	Industrial & Petroleum Pollution Engineering					
Course Code	CES.E439					
Course Title	Corrosion and	Credits hr Un				
Course Thie	Degradation					
Term	2 nd Semester	Theoretical	Practical	Tutorial	Total	
Prerequisite(s)	Material Engineering	2	-	-	2	2

Course Description

Definition of corrosion ,why metal corrode, classification of corrosion ,forms of corrosion ,polarization ,measurement of corrosion rate, protection methods.

Course Text

- 1. Principles and Prevention of Corrosion (2nd Edition) By Denny A. Jones Prentice Hall, 1995.
- 2. Environmental Degradation of Materials, R Balasubramaniam, Cengage International, 2010.
- 3. Corrosion and Corrosion Control, H.H. Uhlig and W. Revie, Wiley, New York, 2007.
- 4. Corrosion Science and Technology, By David Talbot, James Talbot, CRC Press, 1998.
- 5. Corrosion Engineering By Mars. G. Fontana, Third ed., TMH.
- 6. Corrosion Basics: An Introduction By Pierre R. Roberge, 2nd Edition, NACE Press Book, 2 2006.

Additionalreadings

- 1. Electrochemical Techniques in Corrosion Science and Engineering By R. G. Kelly, CRC Press, 2002.
- 2. ASM Handbook Volume 13A: Corrosion: Fundamentals, Testing, and Protection, ASM International 2003

Course Objectives : at the end of the semester the student should be able to :-

- 1. To introduce and develop and understanding the material that are precious resources, how these resources are destroyed by corrosion and how they must be preserved by applying corrosion protection technology.
- 2. Inspect the corrosion process, and the form of corrosion.
- 3. Determine the corrosion rate, and electrochemical behavior of the metals.
- 4. Applying the corrosion prevention technology.

No.	Contents	Duration	
1	Introduction: Definitions, Different forms of environmental degradation, Cost of corrosion, Electrochemical consideration.	2 hr	
2	Thermodynamics: Process at interface, Free energy and electrode potential, EMF series, Nernst relationship, Cell potential, Reference electrodes, Advanced thermodynamics (E-pH) diagrams.		
3	Kinetics of aqueous corrosion: Current density and corrosion rate, Corrosion rate expressions, Exchange current density, Polarization, Experimental techniques.	4 hr	
4	Mixed potential theory: Postulates, Applications to active metals.	2 hr	
5	Passivity: Polarization behavior, Application of mixed potential theory environmental effects.		
6	Forms of corrosion different factors: Metal purity, Crystal defects, Grain structure, Concentration cells, Velocity, Temperature, Humidity, Stress, Microbial effect, Liquid metal effect.		
7	Forms of corrosion: Uniform, Galvanic, Intergranular, Crevice, Pitting, Dealloying, Erosion, Stress related corrosion.		
8	Corrosion control: Material selection, Coating, inhibitors, Cathodic protection, Anodic protection.	4 hr	
9	High temperature oxidation: Reactions, Thermodynamics, Oxide structure, Oxide growth, Hot corrosion	2 hr	
10	Degradation of Polymeric materials: Swelling and dissolution, Bond rupture, Weathering, Other processes, Polymer cycling and degradation		
11	Pourbaix diagram Equilibrium diagram, Advantage and Disadvantage of Pourbaix diagram.	2 hr	
12	Corrosion of composite materials: Galvanic effects, Matrix nature, Reinforcement nature, Prevention	2 hr	

	ممليات الكيمياوية		
فصل الثاني	1	الفصل الاول	ت
غة الانكليزية	IIالآ	اللغة الانكليزية	١
ارياضيات	I	ار یاضیات	۲
الهندسة الكيمياوية	∏مبادئ	[مبادئ الهندسة الكيمياوية	٣
اا لکیمیاء		Iالكيمياء	٤
هندسي ومقاومة المواد	الميكانيك ال	الفيزياء	٥
الاوتوكاد	i III	الرسم الهندسي	٦
لوجيا الكهرباء	تكنو	ابرمجة الحاسبات	٧
[[المعامل	W]المعامل	٨
قوق الانسان			٩
	لرير النفط والغاز		
فصل الثاني	ונ	الفصل الاول	ت
غة الانكليزية	ШП	I اللغة الانكليزية	,
ارياضيات	Π	اریاضیا ت	۲
الهندسة الكيمياوية	∏مبادئ	Iمبادئ الهندسة الكيمياوية	٣
مياء البترول	کړ	الكيمياء	٤
بندسي ومقاومة المواد	الميكانيك ال	5 💋 الفيزياء	٥
الاوتوكاد		🔯 🛛 الرسم الهندسي	٦
لوجيا الكهرباء	تكنو	ابر مجة الحاسبات	۷
[المعامل		المعامل	٨
قوق الانسان			٩

المرحلة الاولى فرع هندسة العمارات الكسيامية

فرع هندسة التلوث الصناعي والنفطي

الفصل الثاني	الفصل الأول	ت
II اللغة الانكليزية	I اللغة الانكليزية	Ŋ
II ریاضیات	I ریاضیات INEERI	۲
II مبادئ الهندسة الكيمياوية	I مبادئ الهندسة الكيمياوية	٣
الكيمياء الاحيائية	الكيمياء	٤
الميكانيك الهندسي ومقاومة المواد	فيزياء هندسة البيئة	0
الاوتوكاد	الرسم الهندسي	٦
تكنولوجيا الكهرباء	I بر مجة الحاسبات	٧
II المعامل	I المعامل	~
حقوق الانسان		٩

٨

الديمقراطية

<u>المرحلة الثانية</u> فرع هندسة العمليات الكيمياوية

الفصل الثاني	الفصل الاول	ت
II الرياضيات الهندسية	الرياضيات الهندسية	١
موازنة المادة والطاقة	موازنة الطاقة	۲
IIجريان الموائع	ا جريان الموائع	٣
∏الكيمياء الفيزياوية	[الكيمياء الفيزياوية	٤
الجاسبات	اابر مجة الحاسبات	0
∏هندسة المواد	[هندسة المواد	٦
الطاقة المتجددة	تكنولوجيا الوقود	٧
الاحصاء الهندسي	الديمقر اطية	٨
النفط والغاز	فرع هندسة تكرير	-
الفصل الثاني	الفصل الاول	ت
II الرياضيات الهندسية	الرياضيات الهندسية	Ŋ
موازنة المادة والطاقة	موازنة الطاقة	۲
IIجريان الموائع	اجريان الموائع	٣
II الكيمياء الفيزياوية	الكيمياء الفيزياوية	٤
المابر مجة الحاسبات	IIبرمجة الحاسبات	0
∐هندسة المواد	مراجع معندسة المواد المواد	٦
خواص منتجات البترول	جو اص الوقود البتر ولي <u>خو اص</u> الوقود البتر ولي	٧
الاحصاء الهندسي	الديمقر اطية	~
	فرع هندسة التلوث الم	
الفصل الثاني	الفصل الاول	ت
II الرياضيات الهندسية	الرياضيات الهندسية	١
موازنة المادة والطاقة	موازنة الطاقة	۲
IIجريان الموائع	إجريان الموائع	٣
الكيمياء الفيزياوية	الكيمياء الفيزياوية وعلم الغرويات	٤
ا البرمجة الحاسبات]]بر مجة الحاسبات	0
II هندسة المواد	[هندسة المواد	٦
اساسيات هندسة البيئة	تكنولوجيا الوقود	٧

الاحصاء الهندسي

<u>المرحلة الثالثة</u> فرع هندسة العمليات الكيمياوية

الفصل الثاني	الفصل الاول	ت
∏ديناميك الحرارة	[ديناميك الحرارة	١
الرياضيات التطبيقية في الهندسة الكيمياوية	التحليلات العددية	۲
ا و حدات التشغيل	انتقال الكتلة	٣
تصميم المفاعل	حركية التفاعل الكيميائي	٤
IIانتقال الحرارة	انتقال الحرارة	٥
العمليات الصناعية الكيميائية	العمليات الصناعية الكيميائية	٦
الدقائق وتكنولوجيا النانو	الهندسة الكيميائية الاحيائية	٧
CAD(تصميم المعدات باستخدام الكاد (تصميم المعدات	٨

فرع هندسة تكرير النفط والغاز

الفصل الثاني	الفصل الاول	ت
■اديناميك الحرارة	[ديناميك الحرارة	١
الرياضيات التطبيقية في الهندسة الكيمياوية	التحليلات العددية	۲
او حدات التشغیل	انتقال الكتلة	٣
تصميم المفاعل	حركية التفاعل الكيميائي	٤
II انتقال الحرارة	I انتقال الحرارة	٥
عمليات معالجة النفط والغاز	الاحتراق	٦
I هندسة تصفية البترول	المواد الكيمياوية من البترول	٧
تصميم المعدات والخزانات باستخدام الكاد	تصميم المعدات	٨
ناعي والنفطي	فرع هندسة التلوث الصن	

المراجع المستعمر المناعي والنفطي المستعم والنفطي المستعمر ا

الفصل الثاني	الفصل الاول	ت
][ديناميك الحرارة	[ديناميك الحرارة	١
الرياضيات التطبيقية في الهندسة البيئية	التحليلات العددية	۲
اوحدات التشغيل	انتقال الكتلة	٣
هندسة التفاعلات الكيميائية الاحيائية	حركية التفاعل الكيميائي	٤
IIانتقال الحرارة	النتقال الحرارة	0
معالجة المخلفات الصلبة	هندسة السيطرة على تلوث الهواء	٦
اجهزة التحليل البيئي	السلامة الصناعية	v
تصميم المعدات في هندسة البيئة باستخدام الكاد	تصميم المعدات	^

المرحلة الرابعة فرع هندسة العمليات الكيمياوية

الفصل الثاني	الفصل الأول	ت
IIالمشروع	[المشروع	١
IIIو حدات تشغيل	IIوحدات تشغيل	۲
السيطرة على العمليات واجهزتها	حركية العمليات	٣
هندسة الصناعات البتروكيمياوية	عمليات تصفية البترول	٤
طرق الاختيار الافضل	المفاعلات الغير متجانسة والعوامل المساعدة	٥
هندسة التأكل	الادارة الصناعية واخلاقيات المهنة	٦
	هندسة البيئة والسلامة الصناعية	٧

فرع هندسة تكرير النفط والغاز

V .

./

الفصل الثاني	الفصل الاول	ت
IIالمشروع	<u>ا</u> المشروع	١
IIIوحدات تشغيل	الوحدات تشغيل	۲
السيطرة على العمليات والاجهزة في <mark>مص</mark> افي البترول	دينامية العمليات	٣
اقتصاديات مصافي البترول	الهندسة تصفية البترول	٤
طرق الاختيار الافضل	ادارة المصافي واخلاقيات المهنة	٥
هندسة التأكل في مصافي البترول	المفاعلات الغير متجانسة والعوامل المساعدة	٦
	التلوث البيئي والسلامة في مصافي النفط	٧

فرع هندسة التلوث الصناعي والنفطي

الفصل الثاني	القصل الأول	ت
II المشروع	I المشروع	ſ
اا]وحدات تشغيل	II وحدات تشغيل	۲
السيطرة على العمليات واجهزتها	حركية العمليات	٣
II هندسة معالجة المياه	[هندسة معالجة المياه	٤
طرق الاختيار الافضل	السيطرة على التلوث البترولي والصناعي	٥
التأكل والتحلل	هندسة العوامل المساعدة	٦
	الادارة واخلاقيات المهنة في الهندسة البيئية	٧