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Numerical Solution of Differential Equations 

 

1. Ordinary Differential Equation 
 

Ordinary differential equations are equations of the form 

 

0( , )  with  (0)= =
dx

f x t x x
dt

                                                                                     (1) 

                

On the left hand side is the derivative of the dependent variable x with respect to the 

independent variable t. On the right hand side, there is a function that may depend on both 

x and t. The independent variable t often represents time. In contrast to discrete time 

equations of the form
1 ( )+ =t tx f x , where time t is discrete ( 1,2,...=t ), the independent 

variable t in Equation (1) is a continuous variable, that is, it takes on real values, for 

instance, t ∋ [0, ∞]. In addition, we prescribe the initial value at time 0, namely x0. (The 

initial condition could be stated for some other time but time 0 is quite commonly used). A 

differential equation is called ordinary if it involves only one independent variable. 

 

Many differential equations cannot be solved exactly. Numerical methods have been 

developed to approximate solutions. Numerical analysis is a field in mathematics that is 

concerned with developing approximate numerical methods and assessing their accuracy, 

for instance for solving differential equations. We will discuss the most basic method such 

Taylor and Euler methods. 

 

 
1.1  Euler’s Method 

 

To find numerical solution to the initial value problem  

0y)0(y)y,x(f
dx

dy
==                                                                                         (4) 

                                                               

Using Euler’s method we have the following consideration: 
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Exercise 1:  
Apply Euler’s method to approximate the solution of the initial value problem 

 

5)0(with2 == yy
dx

dy
                                                                                               (5) 

                                                                                       

We know what the solution of equation (5) is, namely )2exp(5 xy = . We numerically 

solve equation (5) using Euler’s method with h=0.1 in the time interval [0, 0.5], and then 

check how well this method performs. We have yyf 2)( = . Then 
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And 

 


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We summarize this in the following table. If h=0.1, then 

 

x y Exact Difference 

0 5 5 0 

0.1 6 6.107014 0.107014 

0.2 7.2 7.459123 0.259123 

0.3 8.64 9.110594 0.470594 

0.4 10.368 11.1277 0.759705 

0.5 12.4416 13.59141 1.149809 

 

The third column contains the exact values, )2exp(5 xy = . The last error contains the 

absolute error after each step, computed as |y-Exact|. We see that when h=0.1, the 

numerical approximation is not very good after five steps. If we repeat the same 

approximation with a smaller value for h, say h=0.01, the following table results for the 

first five steps: 
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X y Exact Difference 

0 5 5 0 

0.01 5.1 5.101007 0.001007 

0.02 5.202 5.204054 0.002054 

0.03 5.30604 5.309183 0.003143 

0.04 5.412161 5.416435 0.004275 

0.05 5.520404 5.525855 0.005451 

 

Doing five steps only gets us to x=0.05. We can do more steps until we reach x=0.5. 

We find that the final point will be: 

X y Exact Difference 

0.5 13.45794 13.59141 0.133469 

 

Choosing a smaller value for h resulted in a better approximation at x=0.5 but also 

required more steps. One source of error in the approximation comes from the 

approximation itself. Another source comes from rounding errors when we implement the 

approximation on a computer. It is therefore not necessarily the case that smaller values of 

h always improve the approximation. 

 

 

 

Exercise 1: Simple first order ODE  

Consider the following initial value problem:  

tt
dt

dx 2 +=    With the initial condition: x (0) = 0.5 

Solution: 

t_in=0; 
t_fin=2; 
nsteps=10; 
dt=(t_fin-t_in)/nsteps;  
t(1)=t_in; 
x(1)= 0.5;  
for n=1:nsteps 
t(n+1)=t(n)+dt  
x(n+1)=x(n)+dt*(t(n)^2+t(n)) 
end 
plot(t,x),xlabel('Time (t)'),ylabel('x(t)') 

 

 

The result is in Figure (1) 
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Figure 1: Euler method used to solve exercise1 

This ODE can be analytically integrated to get the true solution:  
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Applying the explicit Euler's scheme with a step size h = 0.2 we get: 

  (0) 0.2f  x(0)  x(0.2) +=  

That is 

  0.5  0  0.5  x(0.2) =+=   

The true solution from is  0.52267  x(0.2)=   

The relative error (er) expressed in percent is 
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The calculations results are plotted in Figure 2 showing the true and the approximate 

value for h=0.2. Although the general trend of the true and the approximate values is the 

same, the error is large. One way to reduce this error is by choosing a smaller step size. 

Figure 2 shows the solution when the step size is halved i.e. h=0.1. Since the Euler's 

method is first order, the global error is halved O (h /2) while the local error is quartered O 

(h2/4). To get acceptable levels of errors the step size has to be further reduced to very low 

values. This will however considerably increase the computational time since it will take a 

larger number of iterations for each step. Nevertheless the Euler's method because of its 

simplicity and easiness for implementation is still attractive for many engineering 

problems. 
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Figure 2: Euler method used to solve exercise 1 

Exercise 2:  

Write a program using Euler’s method to solve the differential equation 

75.0h5.0
dt

dh
−=        Given the initial condition ho = 2.5 m 

In order to solve a particular differential equation, we need to define the step size dt 

from the initial and final t values t_in and t_fin, and the number of steps nsteps. 

The solution is returned in an array h. 

 

 

 

 

 

 

 

 

The result is in Figure (3)  
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Euler (h = 0.2)

Euler (h = 0.1)

True

t_in=0; t_fin=5; 
nsteps=10; 
dt=(t_fin-t_in)/nsteps;  
h0=2.5; t(1)=t_in;  
h(1)=h0;  
for n=1:nsteps 
t(n+1)=t(n)+dt  
h(n+1)=h(n)+dt*(0.5-h(n)^0.75) 
end 
plot(t,h,'k-'),xlabel('t'),ylabel('h') 
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Figure 3: Euler method used to solve Exercise 2 
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