Matrix Algebra

1. Introduction

There are a number of common situations in chemical engineering where systems of linear equations appear. There are at least three ways in MATLAB for solving this system of equations;

- (1) Using matrix **algebra commands** (Also called matrix inverse or Gaussian Elimination method)
- (2) Using the **solve** command (have been discussed).
- (3) Using the **numerical** equation solver.

The first method is the preferred; therefore we will explain and demonstrate it. Remember, you always should work in an m-file.

2. Solving Linear Equations Using Matrix Algebra

One of the most common applications of matrix algebra occurs in the solution of linear simultaneous equations. Consider a set of n equations in which the unknowns are x_1 , x_2 , x_n .

 $\begin{array}{l} a_{11}x_1+a_{12}x_2+a_{13}x_3+\ldots a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+a_{23}x_3+\ldots a_{2n}x_n=b_2\\ a_{31}x_1+a_{32}x_2+a_{33}x_3+\ldots a_{3n}x_n=b_3\\ \vdots\\ a_{n1}x_1+a_{n2}x_2+a_{n3}x_3+\ldots a_{nn}x_n=b_n\\ \end{array}$

 x_j is the jth variable.

 a_{ij} is the constant coefficient of the jth variable in the ith equation.

b_i is constant "right-hand-side" coefficient for equation i.

The system of equations given above can be expressed in the matrix form as.

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} & \vdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \vdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$ Or AX = b Where

A =	a ₂₁	a ₂₂ :	a ₂₃ :	:	$\begin{vmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ \vdots \end{vmatrix}$	$\mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \\ \vdots \\ \mathbf{b}_n \end{bmatrix} \qquad \mathbf{X} =$	$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \end{bmatrix}$	
					a _{nn}	$\begin{bmatrix} \mathbf{b}_n \end{bmatrix}$	_ x _n _	

To determine the variables contained in the column vector 'x', complete the following steps.

(a) Create the coefficient matrix 'A'. Remember to include zeroes where an equation doesn't contain a variable.

(b) Create the right-hand-side column vector 'b' containing the constant terms from the equation. This must be a *column* vector, *not* a *row*.

(c) Calculate the values in the 'x' vector by left dividing 'b' by 'A', by typing $x = A \setminus b$. <u>Note</u>: this is different from x = b/A.

As an example of solving a system of equations using the matrix inverse method, consider the following system of three equations.

```
x_1 - 4x_2 + 3x_3 = -7

3x_1 + x_2 - 2x_3 = 14

2x_1 + x_2 + x_3 = 5

These equations can be written in matrix format as;

\begin{bmatrix} 1 & 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 7 \end{bmatrix}
```

1	-4	3	x_1		- /	
3	1	-2	<i>x</i> ₂	=	14	
2	1	1	_ x ₃ _		5	

To find the solution of the following system of equations type the code.

```
A =[1,-4, 3; 3, 1, -2; 2, 1, 1]

B = [ -7;14; 5]

x = A\B

the results will be results in

x = [ 3

1

-2 ]

In which x_1=3, x_2=1, x_3=-2

To extract the value of each of x_1, x_2, x_3 type the command:

x1=x(1)

x2=x(2)

x3=x(3)

The results will be:
```

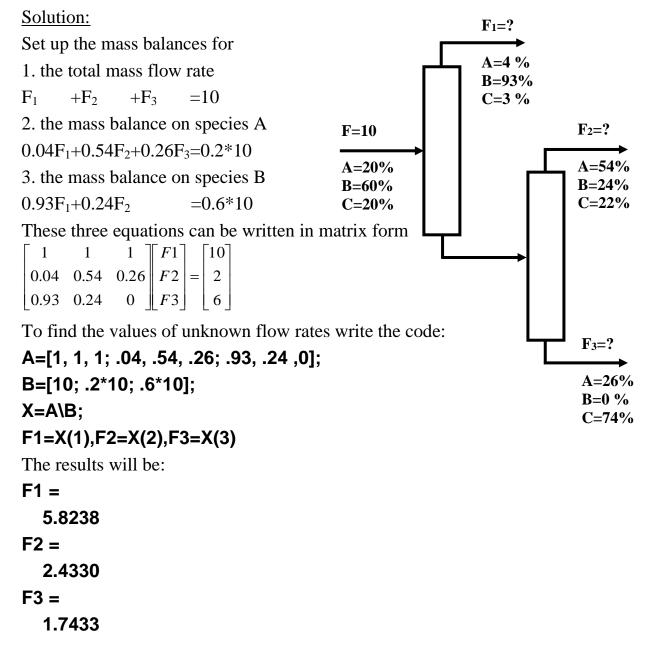
Second Class / Lec. 7

Computer Programming (II)

x1 = 3 x2 = 1 x3 = -2

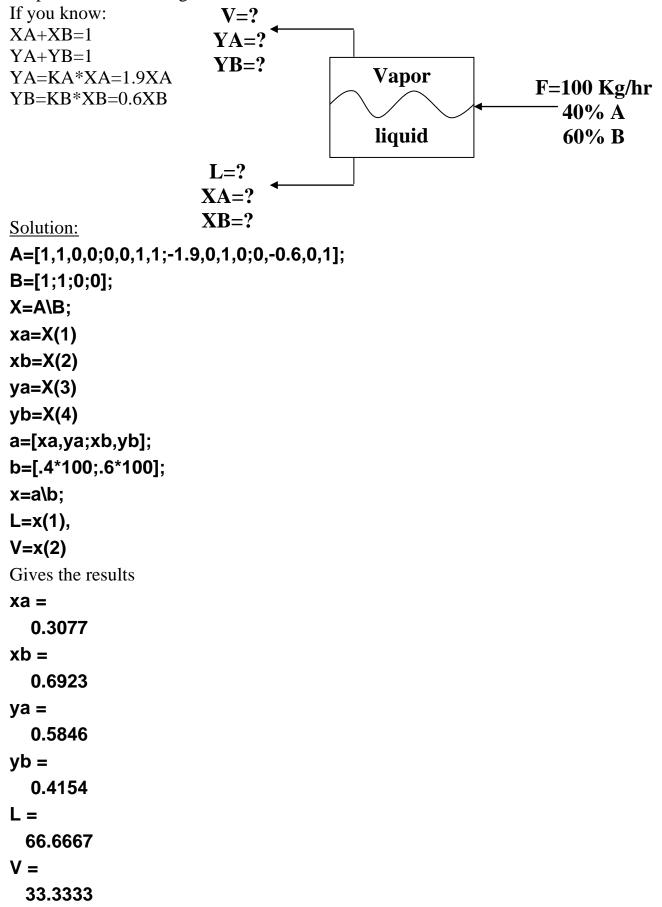
Exercise 1:

For the following separation system, we know the inlet mass flow rate (in Kg/hr) and the mass fractions of each species in the inlet flow (F) and each outlet flow (F_1 , F_2 and F_3). We want to calculate the unknown mass flow rates of each outlet stream.



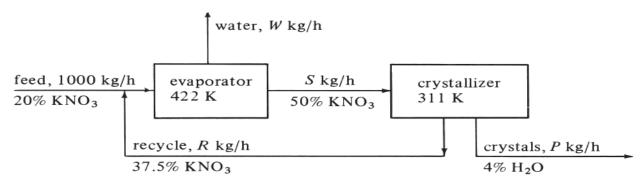
Exercise 2:

Write a program to calculate the values of XA, XB,YA, YB, L and V for the vapor liquid separator shown in fig.



Exercise 3:

In a process producing KNO₃ salt, 1000 kg/h of a feed solution containing 20 wt % KNO₃ is fed to an evaporator, which evaporates some water at 422 K to produce a 50 wt % KNO₃ solution. This is then fed to a crystallizer at 311 K, where crystals containing 96 wt % KNO₃ is removed. The saturated solution containing 37.5 wt % KNO₃ is recycled to the evaporator. Write a code to calculate the amount of recycle stream **R** in kg/h and the product stream of crystals **P** in kg/h.



Solution:

Set up the total mass balances for KNO_3 and water: 0.2*1000 = 0.96*P0.8*1000 = 0.04*P + W

Mass balances on crystallizer for KNO_3 and water: 0.5*S=0.375*R+0.96*P 0.5*S=0.625*R+0.04*P

To find the values of unknown W, S, R and P write the code:

```
A=[0.96, 0, 0, 0;-0.04,1,0,0;-0.96, 0, 0.5,-0.375;-0.04, 0,0.5,-0.625];
B=[200; 800;0;0];
X=A\B;
P=X(1),W=X(2),S=X(3), R=X(4),
The results will be:
P =
208.33
W =
808.33333
S =
975
R =
766.6667
```

Exercise 4:

Balance the following chemical equation:

```
x1 \text{ CH}_4 + x2 \text{ O}_2 \rightarrow x3 \text{ CO}_2 + x4 \text{ H}_2\text{O}
```

Solution:

There are three elements involved in this reaction: carbon (C), hydrogen (H), and oxygen (O). A balance equation can be written for each of these elements:

Carbon (C): $1 \cdot x1 + 0 \cdot x2 = 1 \cdot x3 + 0 \cdot x4$

Hydrogen (H): $4 \cdot x1 + 0 \cdot x2 = 0 \cdot x3 + 2 \cdot x4$

Oxygen (O): $0 \cdot x1 + 2 \cdot x2 = 2 \cdot x3 + 1 \cdot x4$

Re-write these as homogeneous equations, each having zero on its right hand side:

x1 - x3 = 0

4x1 - 2x4 = 0

 $2x^2 - 2x^3 - x^4 = 0$

At this point, there are three equations in four unknowns.

To complete the system, we define an auxiliary equation by arbitrarily choosing a value for one of the coefficients:

*x*4 = 1

To solve these four equations write the code:

```
A =[1,0,-1,0;4,0,0,-2;0,2,-2,-1;0,0,0,1];
```

```
B=[0;0;0;1];
```

X=A\B

The result will be

X =

- 0.5000
- 1.0000
- 0.5000
- 1.0000

Finally, the stoichiometric coefficients are usually chosen to be integers.

Divide the vector X by its smallest value:

X =X/min(X)

X = 1 2 1 2 Thus, the balanced equation is $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Exercise 5:

Balance the following chemical equation: $x1 P_2I_4 + x2 P_4 + x3 H_2O \rightarrow x4 PH_4I + x5 H_3PO_4$ Solution: We can easily balance this reaction using MATLAB: A = [2 4 0 -1 -1 400-10 002-4-3 0010-4 00001]; B= [0;0;0;0;1]; X = A B;X = 0.3125 0.4063 4.0000 1.2500 1.0000 We divide by the minimum value (first element) of **x** to obtain integral coefficients:

X=X/min(X)

X =

- 1.0000
- 1.3000
- 12.8000
- 4.0000
- 3.2000

This does not yield integral coefficients, but multiplying by 10 will do the trick:

x = x * 10 X = 10 13 128 40 32

The balanced equation is

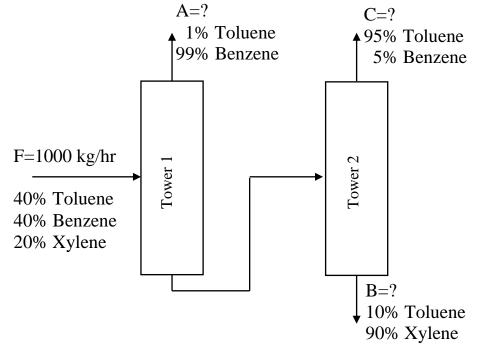
 $10 \text{ } \text{P}_2\text{I}_4 + 13 \text{ } \text{P}_4 + 128 \text{ } \text{H}_2\text{O} \rightarrow 40 \text{ } \text{P}\text{H}_4\text{I} + 32 \text{ } \text{H}_3\text{PO}_4$

Computer Programming (II)

Practice Problems

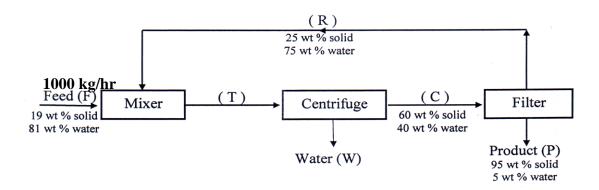
1) Solve each of these systems of equations by using the matrix inverse method.

- A) r + s + t + w = 4 2r - s + w = 2 3r + s - t - w = 2r - 2s - 3t + w = -3
- C) $5x_1+3x_2+7x_3-4=0$ $3x_1+26x_2-2x_3-9=0$ $7x_1+2x_2+10x_3-5=0$
- D) $2x_{1} + x_{2} 4x_{3} + 6x_{4} + 3x_{5} 2x_{6} = 16$ $-x_{1} + 2x_{2} + 3x_{3} + 5x_{4} 2x_{5} = -7$ $x_{1} 2x_{2} 5x_{3} + 3x_{4} + 2x_{5} + x_{6} = 1$ $4x_{1} + 3x_{2} 2x_{3} + 2x_{4} + x_{6} = -1$ $3x_{1} + x_{2} x_{3} + 4x_{4} + 3x_{5} + 6x_{6} = -11$ $5x_{1} + 2x_{2} 2x_{3} + 3x_{4} + x_{5} + x_{6} = 5$
- 2) For the following figure calculate the values of the unknown flow rates A, B, C by using matrix inverse method.



Computer Programming (II)

3) Write a program to calculate the flow rates of streams W, P, C, R and T in the following flow diagram using **matrix inverse method**.



- 4) Balance the following chemical equations using the matrix inverse method:
 - a) $Pb(NO_3)_2 \rightarrow PbO + NO_2 + O_2$
 - b) $MnO_2 + HCl \rightarrow MnCl_2 + H_2O + Cl_2$
 - c) $As + NaOH \rightarrow Na_3AsO_3 + H_2$
 - d) $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$
 - e) $BaCl_2 + Al_2(SO_4)_3 \rightarrow BaSO_4 + AlCl_3$