
 

Lecture No.4  Flow of Compressible Fluids in Pipe 

Prof. Dr Thamer J.Mohammed 

If the pressure of the gas does change in pipe by more than about 10 per cent, it is 
usually satisfactory to treat the gas as an compressible fluid with consider change in 
temperature &  density or specific volume due to change in pressure. When 
compressibility is taken into account, the equations of flow become very much more 
complex than they are for an incompressible fluid, even if the simplest possible 
equation of state (the ideal gas law)𝑝𝑝𝑝𝑝 = 𝑛𝑛𝑛𝑛𝑛𝑛 is used to describe their behaviour. 
Two limiting cases of particular interest of flow in pipe are:  

i. Isothermal and 
ii.  Adiabatic condition. 

 
Sonic Velocity in Fluids 
 
The speed uw

 

 with which a small pressure wave propagates through a fluid can be 
shown [Shapiro (1953) to be related to the compressibility (ε) of the fluid 𝑑𝑑𝑑𝑑/𝑑𝑑𝑝𝑝 by 
the following Eq. 

 
 
Assuming that the pressure wave propagates through the fluid polytropically, then the 
equation of state is 
 
 
But v=1/ρ then  
 
  
 
 
 
The propagation speed uw
 

 of the pressure wave is therefore given by  

 
 
where P, V, are the local pressure and specific volume of the fluid through which the wave is 
propagating. Note that u, is relative to the gas. If the wave were to propagate isothermally, then 
k=1 and  velocity of sound or sonic velocity becomes: 𝑢𝑢𝑤𝑤 = √𝑃𝑃𝑃𝑃 
  
If isentropically or adiabatic conditions above Eq. becomes: 
 
                    𝑢𝑢𝑤𝑤 = �𝛾𝛾𝑃𝑃𝑃𝑃   where 𝛾𝛾 = 𝐶𝐶𝑝𝑝/𝐶𝐶𝑝𝑝 
It is common practice to state gas velocities relative to the sonic velocity as shown in: 
                                              𝑁𝑁𝑀𝑀 = 𝑈𝑈

𝑈𝑈𝑤𝑤
    

NM is defines as dimensionless Mach number and classified as NM >1  the fluid is 
called supersonic flow. If    NM < 1  the fluid is called subsonic flow and if NM

 

=1, 
 the fluid is called sonic flow.  

 



 

The general energy equation for the flow of any type of   fluid through a pipe (as 
shown in Fig.1) has been expressed in the form (see Ch. Incompressible fluid in 
Lecture):        

General Equation for Flow of Ideal Gas in pipes 
 

 

 
                                         -----------------------(1) 
 
Assume length dl of pipe of constant A                                                       
  WS

                                                               Fig.1 
Flow of Compressible fluid through pipe 

=0 

--------------(2) Sub. in Eq.(1) 
 

--------------(3) 
This equation (3) cannot be integrated directly because the velocity u increases as the 
pressure falls and is, therefore, a function of / (Figure 1). It is, therefore, convenient to 
work in terms of the mass velocity flow G=m/A or =ρu which remains constant 
throughout the length of pipe. Hence Eq.3 becomes (for turbulent flow) α=1: 
 
               𝐺𝐺2𝑝𝑝𝑑𝑑𝑝𝑝 + 𝑔𝑔𝑑𝑑𝑔𝑔 + 𝑝𝑝𝑑𝑑𝑃𝑃 + 4𝐽𝐽𝑓𝑓𝐺𝐺2𝑝𝑝2 𝑑𝑑𝑑𝑑

𝑑𝑑
= 0 −−−−− (4)𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑔𝑔 𝑏𝑏𝑏𝑏 𝑝𝑝2 

                
               𝐺𝐺2 𝑑𝑑𝑝𝑝

𝑝𝑝
++ 𝑑𝑑𝑃𝑃

𝑝𝑝
+ 4𝐽𝐽𝑓𝑓𝐺𝐺2 𝑑𝑑𝑑𝑑

𝑑𝑑
= 0 −−−−−−−−(5) 

Now the friction factor Jf

 Then      R

 a function of the Reynolds number Re and the relative 
roughness e/d of the pipe surface which will normally be constant along a given pipe. 

e

J

=Gd/µ . Since G is constant over the length of the pipe, Re varies only as a result of 
changes in the viscosity µ. Although ^ is a function of temperature, and to some extent of 
pressure, it is not likely to vary widely over the length of the pipe. Furthermore, the friction factor 

f

 

 is only a weak function of Reynolds number when Re is high, and little error will therefore arise 
from regarding it as constant. 

Thus the integration Eq. 5 over a length l of pipe to give general Eq.  for compressible fluid flow: 
 
 
                            𝐺𝐺2𝑑𝑑𝑛𝑛 𝑝𝑝2

𝑝𝑝1
+ ∫ 𝑑𝑑𝑃𝑃

𝑝𝑝
𝑃𝑃2
𝑃𝑃1

+ 4𝐽𝐽𝑓𝑓𝐺𝐺2 𝑑𝑑
𝑑𝑑

= 0 −−−−(6)  
                                                            This term will be defined by Isothermal or Adiabatic 
 
The integral will depend on the P-v relationship during the expansion of the gas in the 
pipe, and several cases are now considered (Isothermal or Adiabatic flow): 
 

 
For Isothermal Flow of an Ideal Gas in Horizontal pipe: 

For isothermal changes in an ideal gas: ∫ 𝑑𝑑𝑃𝑃
𝑝𝑝

𝑃𝑃2
𝑃𝑃1

= 𝑃𝑃2
2−𝑃𝑃1

2

2𝑃𝑃1𝑃𝑃1
−−−−(7)  Sub in Eq.6 



 

                             𝐺𝐺2𝑑𝑑𝑛𝑛 𝑃𝑃1
𝑃𝑃2

+ 𝑃𝑃2
2−𝑃𝑃1

2

2𝑃𝑃1𝑃𝑃1
+ 4𝐽𝐽𝑓𝑓𝐺𝐺2 𝑑𝑑

𝑑𝑑
= 0----------------(8) 

Eq.8 can be written in term vm

 

, the specific volume at the mean pressure in the pipe, 
is given as: 

 
 
                                        𝐺𝐺2𝑑𝑑𝑛𝑛 𝑃𝑃1

𝑃𝑃2
+ 𝑃𝑃2−𝑃𝑃1

𝑝𝑝𝑚𝑚
+ 4𝐽𝐽𝑓𝑓𝐺𝐺2 𝑑𝑑

𝑑𝑑
= 0------------------------(9) 

Eq.9 used if the if the pressure drop in the pipe is a small proportion of the inlet pressure, the 
first term is negligible and the fluid may be treated as an incompressible fluid at the mean pressure 
in the pipe. 
 
Note
 

𝐺𝐺2𝑑𝑑𝑛𝑛
𝑃𝑃1

𝑃𝑃2
+
𝑃𝑃2

2 − 𝑃𝑃1
2

2𝑛𝑛𝑛𝑛/𝑀𝑀
+ 4𝐽𝐽𝑓𝑓𝐺𝐺2 𝑑𝑑

𝑑𝑑
= 0 −−−−− (10) 

:1- It is sometimes convenient to substitute RT/M for P\v\ in equation 8 to give: 

 
2-Equations 8 and 10 are the most convenient for the calculation of gas flowrate as a 
function of P1 and P2

 

 under isothermal conditions. Some additional refinement can be 
added if a compressibility factor is introduced as defined by the relation Pv = ZRT/M, 
for conditions where there are significant deviations from the ideal gas law. 

EX.1Over a 30 m length of a 150 mm vacuum line carrying air at 295 K, the pressure 
falls from 0.4 kN/m2 to 0.13 kN/m2

 

. If the relative roughness e/d is 0.003 what is the 
approximate flowrate? (See sol. P.144 Vol.1 5ed.). 

EX.2 A flow of 50 m3/s methane, measured at 288 K and 101.3 kN/m2, has to be 
delivered along a 0.6 m diameter line, 3.0 km long with a relative roughness of 
0.0001, linking a compressor and a processing unit. The methane is to be discharged 
at the plant at 288 K and 170 kN/m2

 

 and it leaves the compressor at 297 K. What 
pressure must be developed at the compressor in order to achieve this flowrate? (see 
sol. P.145 Vol.1 5ed). 

Problems: 4.1,2,3,4,5,9,10,11,12 
 

 
Maximum flow for Isothermal condition: 

Equation 8 P2 the down stream pressure for given upstream pressure  P1, if 
P1=P2 , gives G=0 , also if P2=0, gives G=0..Thus for intermediate value assume 
P2=Pw, where 0<Pw<P1
 

 , the flowrate or G must be maximum. 

Eq.8 dividing by G2

Differentiating w.r.t P
 to give the following: −ln(𝑃𝑃2

𝑃𝑃1
) + 𝑃𝑃2

2−𝑃𝑃1
2

2𝑃𝑃1𝑃𝑃1𝐺𝐺2 + 4𝐽𝐽𝑓𝑓
𝑑𝑑
𝑑𝑑

= 0-------(11) 

2 for constant value of P1
 

𝑃𝑃2

𝑃𝑃1𝑝𝑝1𝐺𝐺2 −
2
𝐺𝐺3 �

𝑑𝑑𝐺𝐺
𝑑𝑑𝑃𝑃2

� �
𝑃𝑃2

2 − 𝑃𝑃1
2

2𝑃𝑃1𝑝𝑝1
� −

1
𝑃𝑃2

= 0 −−− (12) 

: 

 
The rate of flow is a maximum when d G2/d P2=0 , denoting conditions at the 
downstream end of the pipe by suffix w, when the flow is a maximum: 



 

For this case Eq.12 can be written as:𝐺𝐺𝑤𝑤2 = 𝑃𝑃𝑤𝑤2

𝑃𝑃1𝑝𝑝1
−−−−(12) 

Since the maximum mass flowrate  Gs or Gw=ρsus=us/vs

Supersonic velocities cannot be attained in a pipe of constant cross-sectional flow 
area. 

  and for isothermal 
conditions:  
 

𝑃𝑃1𝑃𝑃1 = 𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠 − − − −(13) 
Eq.12 can be written as: 
                                                  𝑢𝑢𝑠𝑠 = �𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠---------(14) 
Since for isothermal conditions: 
𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠 − − − −(15), 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏𝑑𝑑𝑛𝑛𝑒𝑒 𝐸𝐸𝐸𝐸. 14 & 15 𝑡𝑡𝑐𝑐 𝑔𝑔𝑑𝑑𝑝𝑝𝑒𝑒 the sonic velocity as  
                𝑢𝑢𝑠𝑠 = √𝑃𝑃𝑃𝑃 − − − −(17)𝑠𝑠𝑐𝑐𝑛𝑛𝑑𝑑𝑐𝑐 𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑐𝑐𝑑𝑑𝑡𝑡𝑏𝑏 𝑓𝑓𝑐𝑐𝑓𝑓 𝑑𝑑𝑠𝑠𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑚𝑚𝑒𝑒𝑑𝑑 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑐𝑐𝑛𝑛𝑠𝑠 
 

 
 
 
 
 
                  Fig. Maximum flow conditions (see notes in vol.1 p. 139) 
 
 
NOTE: In Figure 4.9 P.163 Vol.1 values of P/Pw and wc are plotted against 
8(/f/pu2)(l/d). This curve gives the limiting value of P1/P2

 

 for which the whole of the 
expansion of the gas can take place within the pipe. 

 
 

 
 
 
 
EX.3 (Holland 2ed. P.198) Hydrogen is to be pumped from one vessel through a pipe 
of length 400 m to a second vessel, which is at a pressure of 20 bar absolute. The 
required flow rate is 0.2 kg/s and the allowable pressure at the pipe inlet is 25 bar. The 
flow conditions are isothermal and the gas temperature is 25°C. If the friction factor 
may be assumed to have a value of 0.005, what diameter of pipe is required? 
 
 



 

 
Adiabatic flow of an Ideal Gas in a Horizontal pipe: 
 
For a fluid flowing under turbulent conditions in a pipe, Ws
 

=0 and : 

                                             ------------(1) 

In an adiabatic process, 8q = 0, and the equation may then be written for the flow in 
a pipe of constant cross-sectional area A to give: 

𝐺𝐺2𝑝𝑝𝑑𝑑𝑝𝑝 + 𝑔𝑔𝑑𝑑𝑔𝑔 + 𝑑𝑑𝑑𝑑 = 0 −−−−− (2) 

Now   𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑈𝑈 + 𝑑𝑑(𝑃𝑃𝑝𝑝) = 𝐶𝐶𝑝𝑝𝑑𝑑𝑛𝑛 + 𝑑𝑑(𝑃𝑃𝑝𝑝)𝑓𝑓𝑐𝑐𝑓𝑓 𝑒𝑒𝑛𝑛 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑 𝑔𝑔𝑒𝑒𝑠𝑠 

𝐶𝐶𝑝𝑝𝑑𝑑𝑛𝑛 = 𝐶𝐶𝑝𝑝𝑑𝑑𝑛𝑛 + 𝑑𝑑(𝑃𝑃𝑝𝑝)𝑓𝑓𝑐𝑐𝑓𝑓 𝑒𝑒𝑛𝑛 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑 𝑔𝑔𝑒𝑒𝑠𝑠 

                                   

                            

 
Substituting 

this value of dH in equation 2 and writing g dz = 0 for a horizontal pipe: 
 

𝐺𝐺2𝑝𝑝𝑑𝑑𝑝𝑝 +
𝛾𝛾

𝛾𝛾 − 1
𝑑𝑑(𝑃𝑃𝑝𝑝) = 0 −−−−(3) 

Integrating, a relation between P and v for adiabatic flow in a horizontal pipe obtained 
to give the following Eq. calculate downstream pressure P2
 

𝐺𝐺2𝑝𝑝2

2
+

𝛾𝛾
𝛾𝛾 − 1

𝑃𝑃𝑝𝑝 =
𝐺𝐺2𝑝𝑝1

2

2
+

𝛾𝛾
𝛾𝛾 − 1

𝑃𝑃1𝑝𝑝1 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡𝑒𝑒𝑛𝑛𝑡𝑡 𝐾𝐾 − − −−(4) 

: 

This Eq.4 it is used to  calculate downstream pressure P2

 
𝛾𝛾

𝛾𝛾 − 1
(𝑃𝑃2𝑃𝑃2 − 𝑃𝑃1𝑃𝑃1) +

(𝑢𝑢2
2 − 𝑢𝑢1

2)
2

= 0 −−− (5) 

 in term of G, it can be 
written in term velocities u as following: 

Eq. 4 or 5 can be derived to calculate v2

 

8𝐽𝐽𝑓𝑓
𝑑𝑑
𝑑𝑑

= �
𝛾𝛾 − 1

2𝛾𝛾
+

𝑃𝑃1

𝑝𝑝1𝐺𝐺2� �1 − (
𝑝𝑝1

𝑝𝑝2
)2� −

𝛾𝛾 + 1
𝛾𝛾

𝑑𝑑𝑛𝑛
𝑝𝑝2

𝑝𝑝1
−−− (6) 

 downstream specific volume at the end 
of the pipe, (Note see derivation in Vol.1 p.147 5ed.) , then written as following: 

 
For adiabatic conditions, sonic velocity calculate as shown above equation (uw or us
 

𝑢𝑢𝑤𝑤 = �𝛾𝛾𝑃𝑃𝑃𝑃 

): 

 
Ex. Problem 4.6 (vol.1) Nitrogen at 12 MN/m2 pressure is fed through a 25 mm 
diameter mild steel pipe to a synthetic ammonia plant at the rate of 0.4 kg/s. What will 
be the drop in pressure over a 30 m length of pipe assuming isothermal expansion of 



 

the gas at 300 K? What is the average quantity of heat per unit area of pipe surface 
that must pass through the walls in order to maintain isothermal conditions? What 
would be the pressure drop in the pipe if it were perfectly lagged? 
 
Note: see problems in Vol.1 5ed. 4.7 
 
 
Converging-Diverging Nozzles for Gas Flow (Laval Nozzles): 
 
Converging-diverging nozzles, as shown in Figure, sometimes known as Laval 
nozzles

 

, are used for the expansion of gases where the pressure drop is large. Because 
the flow rate is large for high-pressure differentials, there is little time for heat transfer 
to take place between the gas and surroundings and the expansion is effectively 
isentropic. The specific volume V2 at a downstream pressure P2, is given by: 

 

If gas flows under turbulent conditions from a reservoir at a pressure PI, through a 
horizontal nozzle, the velocity of flow u-2, at the pressure PI is given by: 
 

 

 

 

Since :𝑚𝑚 = 𝑑𝑑𝑢𝑢𝜌𝜌 (𝐶𝐶𝑐𝑐𝑛𝑛𝑡𝑡.𝐸𝐸𝐸𝐸)  𝑑𝑑𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒 𝜌𝜌2 = 𝑚𝑚  
𝑑𝑑2𝑢𝑢2

  𝑡𝑡ℎ𝑑𝑑𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑒𝑒𝐸𝐸𝑢𝑢𝑑𝑑𝑓𝑓𝑒𝑒𝑑𝑑 𝑐𝑐𝑓𝑓𝑐𝑐𝑠𝑠𝑠𝑠 −

𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑑𝑑𝑐𝑐𝑛𝑛𝑒𝑒𝑑𝑑 𝑒𝑒𝑓𝑓𝑒𝑒𝑒𝑒 𝑓𝑓𝑐𝑐𝑓𝑓 𝑓𝑓𝑑𝑑𝑐𝑐𝑤𝑤 𝑤𝑤ℎ𝑒𝑒𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠𝑢𝑢𝑓𝑓𝑒𝑒 ℎ𝑒𝑒𝑠𝑠 𝑓𝑓𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑛𝑛 𝑡𝑡𝑐𝑐 𝑃𝑃2 𝑐𝑐𝑒𝑒𝑛𝑛 𝑏𝑏𝑒𝑒 𝑓𝑓𝑐𝑐𝑢𝑢𝑛𝑛𝑑𝑑 

 

 

 

 

                Sonic 

Subsonic 

  Supersonic flow          

 

 

 



 

Note: See notes in Vol.1 p.132 more explanation for this flow. 

 

The pressure and area for flow: 

The area required at any point depends upon the ratio of the downstream to the 
upstream pressure P2/P1 and it is helpful to establish the minimum value of A2. A2 
may be expressed in terms of P2 and w[= (P2/P1)] using above  equations.  
 
 

                                        𝜌𝜌2
2=𝐺𝐺

2𝑃𝑃1(𝛾𝛾−1)
2𝑃𝑃1𝑃𝑃1

𝑊𝑊
−2
𝛾𝛾

1−𝑊𝑊
𝛾𝛾−1
𝛾𝛾

 

For a given rate of flow m, A2 decreases from an effectively infinite value at pressure 
p1

                                            

 at the inlet a minimum value given by: 
  

 

Eqn. of A2

     

 can be written in terms as following: 

 G2

 

  

And the value of flowrate can be shown to have a maximum value of  Gmax.=�𝛾𝛾𝑝𝑝2𝑝𝑝2 

Ex.(se Holland Textbook p.125) Nitrogen contained in a large tank at a pressure P = 200000 
Pa and atemperature of 300 K flows steadily under adiabatic conditions into a second tank 
through a converging nozzle with a throat diameter of 15 mm. The pressure in the second tank 
and at the throat of the nozzle is P, = 140000 Pa. Calculate the mass flow rate, M, of nitrogen 
assuming frictionless flow and ideal gas behaviour. Also calculate the gas speed at the nozzle and 
establish that the flow is subsonic. The relative molecular mass of nitrogen is 28.02 and the ratio 
of the specific heat capacities y is 1.39. 
 
 

UGas Compression and Compressors: 

Compressors are devices for supplying energy or pressure head to a gas. For the most 
part, compressors like pumps can be classified into: 
 UCentrifugal  



 

and Positive displacement types.  
Centrifugal compressors impart a high velocity to the gas and the resultant 
kinetic

the shaft work of compression W required to compress unit mass of gas from pressure 
P1 to pressure P2 

 energy provides the work for compression. Positive displacement compressors 
include rotary and reciprocating compressors although the latter are the most 
important for high pressure applications. 
 

        

 

When ideal gases are compressed under reversible adiabatic conditions they obey 
equation 6.32, which can be written as        

                                                

𝑃𝑃1𝑃𝑃1
𝛾𝛾 = 𝑃𝑃𝑃𝑃𝛾𝛾                                             

 

 

This Eqn gives theoretical adiabatic work of compression from pressures P1 to P2

 

. 

Compression is often done in several stages with the gas being cooled between stages. 
For two-stage compression from P1 to Pz to P3, with the gas cooled to the initial 
temperature T1 at constant pressure, above Eqn Becomes: 
 

 
 

 

In the case of compression from pressure P1 to pressure Pz through n stages each 
having the same pressure ratio (P2/Pl)1/n

 
, the compression work is given by 

 
 

 

When ideal gases are compressed under reversible adiabatic conditions the temperature rise from 
T1 to T2 is given by equation 
 
 
 



 

 

 

Note: If the compression gas under isothermal condition for an ideal, then the 
work done per cycle is given as following: 

𝑾𝑾 = 𝑷𝑷𝟏𝟏𝒗𝒗𝟏𝟏𝒍𝒍𝒍𝒍
𝑷𝑷𝟐𝟐
𝑷𝑷𝟏𝟏

 

The relation between pressure and volume of gas under compression for single stage 
as shown in following 
Figures (Note Ch.8 in vol.1 
p.312): 

 

 

 

 

 

 

 

 

Point 1 represents the initial condition of the gas (P\ and V\). 
Line 1-2 represents the compression of gas to pressure P2, volume V2. 
Line 2-3 represents the expulsion of the gas at a constant pressure P2. 
Line 3-4 represents a sudden reduction in the pressure in the cylinder from PI to 
PI. As the whole of the gas has been expelled, this can be regarded as taking 
place instantaneously. 
Line 4-1 represents the suction stroke of the piston, during which a volume V\ of gas 
is admitted at constant pressure, .P1

Clearance volume through Compression Gas & Find Work:  

. 

The theoretical work of compressor is less than actual work, because clearance of gas. In practice, 
it is not possible to expel the whole of the gas from the cylinder at the end of the 



 

compression; the volume remaining in the cylinder after the forward stroke of the 
piston is termed the clearance volume. The volume displaced by the piston is termed 
the swept volume, and therefore the total volume of the cylinder is made up of the 
clearance volume plus the swept volume. The clearance c is 

 

defined as the ratio of the 
clearance volume to the swept volume. A typical cycle for a compressor with 
clearance is shown in Fig. 

 
 
 
 
 

 

 

 

 

 

Line 1 -2 represents the compression of the gas to a pressure P2 and volume V2. 
Line 2-3 represents the expulsion of gas at constant pressure PI, so that the volume 
remaining in the cylinder is V3. 
Line 3-4 represents an expansion of this residual gas to the lower pressure P1 and 
volume V4 during the return stroke. 

Line 4-1 represents the introduction of fresh gas into the cylinder at constant pressure 
P1

 

The total work done during the cycle is equal to the sum of these four 
components, is given as following: 

 The work done on the gas during each stage of the cycle is as follows. 

 

W 

 
Thus, theoretically, the clearance volume does not affect the work done per unit mass 
of gas, since V1 — V4 is the volume admitted per cycle.V4 can be calculated in terms 
V3
 

  as following: 



 

 

 

 

Now (V1 — V3) is the swept volume, Vs, say; and V3/(V1 — V3) is the clearance c. 

 

 

Therefore the total work done on the fluid per cycle is: 

 

 

 
The factor [1 + c — c(P2/P1)1/γ

 

 is called the theoretical volumetric efficiency and is 
a measure of the effect of the clearance on an isentropic compression. The actual 
volumetric efficiency will be affected, in addition, by the inertia of the valves and 
leakage past the piston. 
 
Temperature  increase through compression gas, therefore it is required cooling 
between stages as shown in Fig.(see Vol.1 p.317, 5ed): 
 

 

 

 

 

 

 

 

 

 

 

Ex.(Holland p.130) 



 

 

 

 

 

 

 



 

 

Compressor efficiencies 

The efficiency quoted for a compressor is usually either an isothermal efficiency 
or an isentropic efficiency
1-The isothermal efficiency is the ratio of the work required for an ideal 
isothermal compression to the energy actually expended in the compressor.  

.  

2-The isentropic efficiency is defined in a corresponding manner on the 
assumption that the whole compression is carried out in a single cylinder.  
Since the energy expended in an isentropic compression is greater than that for an 
isothermal compression, the isentropic efficiency is always the greater of the two. 
Clearly the efficiencies will depend on the heat transfer between the gas undergoing 
compression and the surroundings and on how closely the process approaches a 
reversible compression. 
 
Ex. (Vol.1 P.319) 

 
Ex (Vol.1 P.320) 

 



 

Tutorial No.4 

Flow of Compressible Fluids in Pipe 

Vol.1 5ed ( Ch.4+Ch.8) 

 



 

 

 

 

 

 

 


