Introduction to Numerical Analysis

1.1 Analysis versus Numerical Analysis

The word analysis in mathematics usually means who to solve a problem through
equations. The solving procedures may include algebra, calculus, differential
equations, or the like.

Numerical analysis is similar in that problems solved, but the only procedures that
are used are arithmetic: add, subtract, multiply, divide and compare.
Differences between analytical solutions and numerical solutions:

1) An analytical solution is usually given in terms of mathematical functions. The
behavior and properties of the function are often apparent. However, a numerical
solution is always an approximation. It can be plotted to show some of the
behavior of the solution.

2) An analytical solution is not always meaningful by itself.
Example: /3 as one of the roots of x*—x?—3x+3=0.

3) While the numerical solution is an approximation, it can usually be evaluated as
accurate as we need. Actually, evaluating an analytic solution numerically is
subject to the same errors.

1.2 Computers and Numerical Analysis

Numerical Methods -+ Programs Computers

v

Numerical Analysis

e As you will learn enough about many numerical methods, you will be able to
write programs to implement them.

e Programs can be written in any computer language. In this course all programs
will be written in Matlab environment.

e Actually, writing programs is not always necessary. Numerical analysis is so
Important that extensive commercial software packages are available.
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1.3 Types of Equations
The equations is divided into three main categories such as in below figure:-

Problem Formulation & |________ Solution Techniques for
Parametric Analysis Mathematical Equations
Algebraic Ordinary Differential Partial Differential
Equations Equations (ODEs) Equations (PDEs)
Linear  Nonlinear Single Systems of First Order Higher Order

ﬂ ’\ Equations Egquations (single equations) (single equations)

Single Systemsof  Single Systems of
Equations Equations Equations FEquations

First ~ Higher
Order Order

Linear Nonlinear Linear Nonlinear

1.4 Kinds of Errors in Numerical Procedures

The total error comprises of:

1) Model Error: due to the mismatch between the physical situation and the
mathematical model.

2) Data Error: due to the measurements of doubtful accuracy.

3) Human Error: due to human blunders.

4)_Propagated Error: the error in the succeeding steps of a process due to an
occurrence of an earlier error.

5) Truncation Error: the notion of truncation error usually refers to errors introduced
when a more complicated mathematical expression is “replaced” with a more
elementary formula. This formula itself may only be approximated to the true values,
thus would not produce exact answers.
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Example 1.1:
Truncation of an infinite series to a finite series to a finite number of terms leads to
the truncation error. For example, the Taylor series of exponential function

. x* X X"
e =1+X+—+—+..+—
21 3 n!

If only four terms of the series are used, then
2 3
e 14+ X+—+—
21 3

. 1?2 13
e z1+1+§+§ = 2.66667

The truncation error would be the unused terms of the Taylor series, which then are

= 0.0516152

Check a few Taylor series approximations of the number ex, forx =1, n =2, 3 and 4.
Given that el = 2.718281.

Order of 1 Approximation Absolute error Percent relative
for ex error
2 2.500000 0.218281 8.030111%
3 2.666667 0.051614 1.898774%
4 2.708333 0.00995 0.365967%

6) Round-Off Error: A round-off error, also called rounding error, is the

difference between the calculated approximation of a number and its exact

mathematical value due to rounding

Example 1.2:

Numbers such as «, e, or /3 cannot be expressed by a fixed number of decimal

places. Therefore they cannot be represented exactly by the computer.

Consider the number w. It is irrational, i.e. it has infinitely many digits after the

period: m = 3.1415926535897932384626433832795.....

The round-off error computer representation of the number =« depends on how many

digits are left out.
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Let the true value for it is 3.141593.

Number of digits

Approximation

Absolute error

Percent relative

(Decimal digit) for ot error
1 3.1 0.041593 1.3239%
2 3.14 0.001593 0.0507%
3 3.142 0.000407 0.0130%

1.5 Errors in Numerical Procedures

Absolute error = | true value — approximate value |, which is usually used when the

magnitude of the true value is small.

| true value - approximate value |

Relative error =

While

Percent relative error, g,

| true value |

_|true value — approximate value|

n true value |

There are two common ways to express the size of the error in a computed result:
absolute error and relative error.

, Which is a desirable one.

x100%
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Interpolation and Approximation

What is interpolation?

Many times, data is given only at discrete points such as (Xi, Y1), (X2, ¥2), cvv ve. ... (Xn, Yn),
(Xn+1, Yn+1)- SO, how then does one find the value of y at any other value of x?

Well, a continuous function f(x) may be used to represent the n+1 data values with f(x)
passing through the n+1 point (Figure 2.1). Then we can find the value of y at any other
value of x. This is called interpolation.

Of course, if x falls outside the range of x for which the data is given, it is no longer
interpolation, but instead, is called extrapolation.

y

A

(%1 Yo)

v
>

Figure 2.1 Interpolation of discrete data

For n+1 data points, there is one and only one polynomial of order n that passes
through all the points. For example, there is only one straight line (that is, a
first-order polynomial) that connects two points. Similarly, only one parabola
connects a set of three points.

Polynomial Interpolation consists of determining the unique n" order polynomial that
fits n+l data points. This polynomial then provides a formula to compute
intermediate values.

One of the methods used to find this polynomial is called the Lagrange method of
interpolation. Other methods include Newton’s divided difference polynomial method
and the direct method.
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2.1 Lagrange Interpolating Polynomial

Consider a function f(x) that passes through the two distinct points (xo, f(Xo)) and (xq,
f(x1)) as shown in Figure 2.2. The first order polynomial that approximates the
function between these two points can be expressed as

f(x) =a + bx

Where a and b are constants. f(x) can also be written in Lagrangian form as

f(X) = Co(X — X1) + C1(X — Xo)

A f(x,) f(XZ)C

f(x) f(x)

f(x,) f(x,)

X, X, X X, X, X, X

Figure 2.2 First and second order polynomial approximation.

I. Linear
By weighting the average of the two values used to produce the coordinates of the

line the formula:

£,00=Lf(x)+L,f(x,) where: L, = ):__’;22 L, = X"z__x;l
Example 2.1

Compute a 4-decimal place value of In 9.2 from In 9.0 = 2.1972, In 9.5 = 2.2513 by
linear Lagrange interpolation and determine the error, using the exact value of In 9.2

=2.2192.

Solution:

Xx1=9.0,x,=95, f,=In9.0=2.1972, f,=1In9.5=2.2513; hence we get
L(x)=2 _0955 —2.0(x-9.5), L,(9.2) = -2.0(-0.3) = 0.6

L) =220 5 0(x—9.0), L,(9.2)=2x0.2=0.4

In9.2 ~ p; (9.2) = Ly (9.2)f; + L, (9.2)f, = 0.6x2.1972 + 0.4x2.2513 = 2.2188

The absolute error is |2.2192-2.2188|=0.0004
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I1. Quadratic
By weighting the average of the three points that produce the parabola we can derive
the formula:
0 =L100)+ L f(x)+ L f(x)
where:
L= (X=X )(X—Xs) L, - (X=X)(X=Xs) _ (x=x)(x=X,)
(% =% ) (% —X5) (G =X)(X; —X5) (X = X) (X3 —X,)

Example 2.2
Compute In 9.2 from the data in the previous example 2.1 and the additional third
value In 11.0 = 2.3979.
Solution:

(x—-9.5)(x -11.0)

L,(x) = =x?-205x+1045 = L,(9.2) =0.5400
(9.0-9.5)(9.0-11.0)

L= X=90=110) 1 o 50090 1 (92)= 04800
(95-9.0)(9.5-11.0)  0.75

L= X=90(=95) 1. 155 855 =1, (9.2)=-00200

© (11.0-9.0)(11.0-95) 3
In 9.2 ~ p,(9.2) =0.5400 x 2.1972 + 0.4800 x2.2513 — 0.0200%2.3979 = 2.2192.

The absolute error is [2.2192-2.2192 | = 0.0000

I11. General Lagrange Interpolating Polynomial
In general, the Lagrange polynomial can be represented as:

£,00=YLMf(x)  where Lx) =] 2=%
i=1 E X, — Xj
Example 2.3
Find the Lagrange interpolation polynomial that takes the values prescribed below
Xk 0 1 2 4
f(Xk) 1 1 2 5
Solution

Ps(x) = iL&k(x) f(X)
Py(X) = (x=D(x-2)(x-4) (1) + (x=0)(x—2)(x —4) 1)

(0-1)(0-2)(0—-4) 1-0@21-2)1-4)
+ (X=0(x=D(x-4) ) + (x=0)(x-1)(x—-2) 5)
2-0)(2-1(2-4) (4-0)(4-1)(4-2)
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When working with grids having large numbers of intervals one typically assigns a
set of low degree (n = 1, 2, or 3) basis functions to each adjacent set of n+1 =2, 3, or
4 nodes.

Example 2.4
The following table gives the value of density of saturated water for various
temperatures of saturated stream.
Temp°C (=T) 100 | 150 | 200 | 250
Density kg/m® (= d) 958 | 917 | 865 | 799
1) Use third order Lagrange interpolating polynomials to correlate density as a
function of temperature.
2) Find the densities when the temperatures are 130°C .
Solution

_ (T—150)(T —200)(T — 250)

* (100 —150)(100 — 200)(100 — 250)
_ (T—100)(T —200)(T — 250)

2~ (150 —100)(150 — 200)(150 — 250)
(T -100)(T —150)(T - 250)

* "~ (200-100)(200 —150)(200 — 250)
_ (T-100)(T —150)(T - 200)

‘"~ (250—100)(250 —150)(250 — 200)

=-1.3333x10°T° +4x10°T*-0.1566T +10

=4x10°T%-2.2x10°T? +0.38T - 20

=-4x10°T% +2x10°T*-0.31T +15

=1.3333x10°T? +6x10"T? - 0.08666 - 4

f,(%) = L (X)) + L,f (X,) + Lyf (x5) + L,F(X,) =-4x10°T® -4x10* T2 - 0.53T +1019

f,(130) = 934.5520

Example 2.5
Use Lagrange global interpolation by one polynomial and piecewise polynomial
interpolation with quadratic for the following nodes.

Xk 0 1 2 4 5

f(Xy) 0 16 48 88 0

Solution

Global interpolation by one polynomial: P(x) = iLA’k(x) f(Xk)
k=0

PA(X) = (X-1)(x-2)(x—4)(x-5) ) + (X —0)(x —2)(X —4)(x —5) (16)

(0-1)(0-2)(0-4)(0-5) (1-0)1-2)1-4)(1-5)
+ X=0(x=D(x-4)(x-5) (48) + (X=0)(x-1)(x-2)(x-5) (88) + 0
(2-0)(2-1)(2-4)(2-5) (4-0)(4-1)(4-3)(4-5)

=-4.6667x" +33.33x° - 59.3333x” + 46.6667x

Numerical Analysis /Lec. 2 -8-
Third Class



Piecewise polynomial interpolation with quadratic

pyx) = X=DX=2) () (X=0X=2) 1y 4 (X=OX=D) yqy. gy <o
(0-1)(0-2) (1-0)1-2) (2-0)(2-1)

=8x + 8x?

_ (x=4)(x-5) (x—=2)(x-=5) (x=2)(x—4) .
P,(X) = —(2_4)(2_5) (48) + —(4_2)(4_5) (88) + —(5_2)(5_4) (0); 2<x<5

= - 280 + 236X - 36X°

2.1 Newton Divided Difference Interpolating

The Lagrangian interpolation polynomials are useful in discussions on numerical
integration. An alternative in interpolation 1s ‘Newtons Divided Difference
Interpolation’. It involves fewer arithmetical operations.

Another advantage of Newton’s rests with the following scenario. Suppose we need to
improve the accuracy and increase the number of grid points. From the forms of
Lagrange interpolation polynomials, all the terms have to be evaluated once again,
and this is a huge amount of work if the number of points is large. Newton’s does not
suffer from this drawback, and just one additional term needs to be computed.

I. Linear Interpolation

Consider the diagram below in which a curve is modeled (poorly) by x.x, :

fix:)
fix) \
fixy)
X1 T X2

Using similar triangles the slopes are the same and hence:

fl(x)_ f(X1) _ f(xz)_ f(xl)
X=X B X, =X
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And thus the coordinate on the curve at x; can be approximated by rearranging the
above to become:

f(xz) — f (Xl)

2 Xl

f(x) = 10x)+

(X_ Xl)

Example 2.6
Estimate the common logarithm of 10 using linear Newton’s interpolation.
(@) Interpolate between log 8 = 0.9030900 and log 12 = 1.0791812.
(b) Interpolate between log 9 = 0.9542425 and log 11 = 1.0413927.
For each of the interpolations, compute the percent relative error based on the true
value.
Solution

a) f,(10)=0.90309+ 1'0791322_80'90309(10—8) ~0.991136

gt =%91136x100% _0.886%

b) f,(10)=0.9542425+ 1'04139? %’9542425(10—9) ~0.997818

b 2Z0TEI8 oo

I1. Quadratic Interpolation
To reduce the error, a quadratic interpolation that introduces some curvature into the
interpolation is used. The form:
f,(X)=b, +b,(Xx—%,) +b; (X=X, )(X—X,)
Let x = x; to produce:
by = f(x)
Let X = X, and use the previous identity to produce:

F(%;) =T (%) +b, (X, =X)) + By (X=X )(X=X%;) = bzz—f(xi):i(xl)

And again by substitution of b; and b, we derive that:

f(xs) =F(xp) _(x;) =T(x))
f(xp) —F(x

) X3 —X X, =X
L2 (X3 — X)) + by (X3 =X ) (X5 —X,) = b, = 3= %, » =X
X, — X, o x,

F(x) =F(x,) +

FO6) =) F(x)—f(x)

f0 = F(x)+ DI (o yy, XX %7 (x - x)(x— %)
X2—X1 X3_X1
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Example 2.7
Fit a second-order Newton’s Interpolating polynomial to estimate log 10 using the
data from Example 2.7 at x = 8, 9, and 11. Compute the true percent relative error.
Solution

First, order the points

X1 =9  f(xq) =0.9542425

X, =11 f(x;) = 1.0413927

X3 =8  f(x3) =0.9030900

by =0.9542425
~1.0413927 - 0.9542425

b, = 0.0435751
11-9
0.9030900 —1.0413927
—0.0435751
b, = 8-11 - _ 0.046100: - S(9).0435751  0.0025258

Substituting these values yields the quadratic formula
f,(x) = 0.9542425 + 0.0435751(x — 9) — 0.0025258(x — 9)(x —11)
which can be evaluated at x = 10 for
f,(10) = 0.9542425 +0.0435751(10 — 9) —0.0025258(10 — 9)(10 —11) =1.0003434

. M x100% = 0.03434%

I11. General form of Newton Divided Difference Interpolating Polynomial
In general, if we find the finite differences defined as:

fx,x,] =D )

X; —Xj
X, X, X, 1= f[xi’x)i]:i[xj’xk]
M 1

X X X T = FIX 0 X e X4
X, =X,

n

Then the general Newton Interpolating Polynomial of order n — 1with n data points is
defined as:

fn—l(x) = b1 +b2(X—X1)+b3(X—Xl)(X—X2)+....—|—bn (X_Xl)(x_xz)"'(x_xn—l)
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b, = 1[%,,%]
Where b, = f[X3,%,,%]
M

b,
X, F(X) b,

fIX, %]
X, f(x,) < >f[x X, x]\ b,
<f[x2 l]> /f[x3 Xy, Xgs %o ]
X, f(x,) f[X5, X,, X, ]

f[x X,]
X3 f(x,)

For an example of a third order polynomial, given (x,,y,), (x.,¥,), (X,,¥,),and (xs, y,),

f3(X) = f[xo]"‘ f[Xl,XO](X—XO)+ f[Xz,Xl,XO](X—XO)(X—Xl)
+ f[X3,X2,X1,X0](X—Xo)(X—Xl)(X—XZ)

Example 2.8
The following table gives the value of density of saturated water for various temperatures of saturated
stream.

Temp®C (=T) : 100 150 200 250 300

Density kg/m® (=d): 958 917 865 799 712
Using Newton divided difference interpolating find the densities when the temperatures are
130°C and 275°C respectively.
Solution

| T D [f[Xira, Xil| F[Xis2,Xie1,Xid {F[Xie3,Xi0 2, X0 1,Xi] [F[ Xia, Xieg, Xiv2, Xivn, Xi
11100 958
-0.8200
211501 917 -0.0022
-1.0400 -4x10°°
3/200| 865 -0.0028 -2.6667x10°
-1.3200 -9.333x10°
41250 799 -0.0042
-1.7400
51300 712
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P, = 958-0.8200x (T -100) - 0.0022x (T -100) * (T -150) - 4x10® x (T -100) * (T -150) * (T - 200)
-2.6667 x10° x (T -100) * (T -150) * (T - 200) * (T - 250)

P, =999-0.0167T -0.0051T? +1.4667x10° T* - 2.6667 x10° T*
P, (130) =934.6864 kg/m3

P,(275) = 758.7187 kg/m3

Or by direct substitution
P,(130) =934.6864 kg/m3
P(130)= 958-0.82x(130-100)-0.0022x(130-100)x(130-150) -4x10°x(130-100) x

(130-150) x(130-200) -2.6667x107x(130-100) x(130-150)x(130-200) x(130-250)
= 934.6864 kg/m®

P(275)=958-0.82(275-100)-0.0022% (275-100)x (275-150)-4x 10"°x(275-100)
x(275-150) (275-200) -2.6667x10°® x(275-100)x(275-150)x(275-200) x(275-250)
= 758.7188 kg/m®
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Curve Fitting

3.0 What is regression?

Regression analysis gives information on the relationship between a response variable
and one or more independent variables to the extent that information is contained in the
data. The goal of regression analysis is to express the response variable as a function of
the predictor variables.

Once regression analysis relationship is obtained, it can be used to predict values of the
response variable, identify variables that most affect response, or verify hypothesized
casual models of the response.

3.1 Linear regression

Linear regression is the most popular regression model. In this model we wish to
predict response to n data points (X¢,y1), (X2,¥2), ....., (Xn, Yn) data by a regression model
given by.

y=a,+aX
Where a, and a; are the constants of the regression model.

A measure of goodness of fit, that is, how a, +a,x predicts the response variable y is
the magnitude of the residual, & at each of the n data points.

g =Y; —(a, +aX)

Ideally, if all the residuals ¢, are zero, one may have found an equation in which all

the points lie on the model. Thus, minimization of the residual is an objective of
obtaining regression coefficients.

The most popular method to minimize the residual is the least squares method, where
the estimates of the constants of the models are chosen such that the sum of the squared

n
residuals is minimized, that is minimize > &°.

i=1

Let us use the least squares criterion where we minimize

n 2

S, = Zl:gizz Z(yi — & _aixi)

i=1

S, is called the sum of the square of the residuals.
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Xn1¥n

»
»

X

Figure 3.1 Linear regression of y vs. x data showing residuals at a typical point, x;.

To find ag and a;, we minimize S, with respect to a, and a;:

0S <
t=2> (y,—a,—ax \-1)=0
o 22— —ax)D

0S
L=2 —a,—a,X |—Xx )=0
2 ;(y. 8 —aX - x)
Giving
D Vit g+ ax =0
i=1 i=1 i=1
—Zn:yixi+zn:aoxi+zn:ale=0
i=1 i=1 i=1

Noting that ) a,=a, +a, +. . .+a, =na,

i=1

na, +alzn:xi :Zn: Y; (3.1)
i=1 i=1
aoixi +a1ixi2 =ixiyi (32)
i=1 i=1 i=1

Solving the above equations gives:

nz X Yi _Z Xiz Yi
_ =1

i=1 =l
n n 2
IDREEDY xij
i=1 i=1
Z Xi2 Z Yi — Z X;
= -

n
i=1 i=1 i
a. = i i
0

n
=1
n n 2
Ny x: > xi)
i=1 i=1

Or from equation (3.2)

1

X Yi
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Z Yi aiz X;
== —

i=1

a‘o = n n = y - al)_(
Example 3.1
The following y vs. x data is given
X 1 7 13 19 25
y 1 49 169 361 625
Y VS X
8007
600’ ¢
Y 400] .
2001 .
N L 4
O @ T
0 5 10 15 20 25 30
X

Figure 3.1 Data points of the y vs x data

Although y = X* is an exact fit to the data, a scientist thinks that y=a, +ax can

explain the data. Find constants of the model, a,, anda,,

Solution

First find the constants of the assumed model
y=a,+aXx

5
fo = lez =1% + 7% +13% +19% + 252 =1205
i=1 i=1
n 5

DY =Dy, =1+49+169 + 361+ 625 =1205

i=1 i=1
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Zn:xi =ZS:Xi 1+7+13+19+25=65

n2_ XY, _inzyi
i1

i=1 i=1

5(25025)— (65)(1205)

5(1205) - (65)*

a,=y—ax =$—26% =(241)-26(13) =-97

1

This gives
y=a,+aX
y =—-97 + 26X

Example 3.2
The following table gives the value of density of saturated water for various
temperatures of saturated stream.

Temp°C (=T) 100 150 200 250 300

Density kg/m® (= D) 958 917 865 799 712

a) Use curve fitting to fit the results to a first-order polynomialD = A+ BT.

b) Find the densities when the temperatures are 130°C and 275°C respectively.
Solution:

2o and a; can be computed by constructing the following table:

T, D; T | TiD
100 958 | 10000 | 95800
150 917 | 22500 | 137550
200 865 | 40000 | 173000
250 799 | 62500 | 199750
300 712 | 90000 | 213600

>1000 | 4251 | 225000 | 819700
5x 819700 -1000 x 4251
= =122
5% 225000 — (1000)

a, =%51_31$=1094,2

D=1094.2-1.22xT
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To compare the predicted values to the experimental values:

T D; Di(estimated)
D=1094.2-1.22xT
100 958 972.2
150 917 911.2
200 865 850.2
250 799 789.2
300 712 728.2

D(130)= 1094.2-1.22x130=935.6
D(175)= 1094.2-1.22x175=880.7

3.2 Polynomial Models
Given N data points (X, Y1), (X2, ¥2).

the data to an n" order polynomial.
In the development, we use n as the degree of the polynomial and N as the number of

data pairs (X;, y;). We will always have N >n+1 in the following.
Assume the functional relationship for fitting
Y(X)=a,+ax+ax’+L +a x"

with errors defined by

e =Y, -Y(x)=Yy,—a,—ax—ax’—L —ax",

inwhich i=1,2,3,...,N.

We minimize the sum of error squares,

N N
S= Zeiz = Z(yi —a,—a,X —a,x’ —L —a,x")*.
i1 i1

At the minimum, all the first partial derivatives with respect to a,’s vanish. We have

, (X, Yn) Use least squares method to regress

N
é =0= ZZ(yi — 8 A _azxi2 -L —a,x")(-1),
0a, =)

0S

N
—=0=2) (y—a,- Xi_axiz_L —a,%")(=%) ,
% 2 0i—2—ax -2,

N
é =0= ZZ(Yi — X _azxi2 -L _anxin)(_xiz) 1
da, =)

\Y

N
aaaS =0= ZZ(Yi — 8 —aX _a2Xi2 -L _anxin)(_xin) 1
n i=1

Rearrange them to get

a,N +a1§1:xi +a2§:xi2 +L +an%:xi” :Zi:yi :
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N N N N N
2 3 n+l
Y X +a . xi+a, > x +L +a, > x" =Y xy,,
i=1 =] =] i=1 i1

N N N N N
2 3 4 n+2 2
a Y x +a > x*+a, > x* +L +a, > x"r=>"xy,
i1 i1 i1 i1 i1
Y
N N L N 5 N , N
n n+ n+. n n
Y X" +a > X" +a, > X" +L +a,> %" => %"y,
i1 i1 i1 i1 i1

or, in matrix form,

N N N N
N in inz L in” ZYi
. oa
Yx o Xkt Xkt LYk P | Sxy
i=1 i=1 i-1 i=1 a i1
ixiz ixis ixi4 L iximz a|\2/|: ixizyl (33)
i=1 i=1 i=1 i=1 i=1
M a M

NXin iximl iximz L iXiZn innyi
-1 i i ;

Equations (3.3) represent a linear system. However, this system is usually
ill-conditioned and round-off errors can distort the solution of a,’s. Up to degree-3 or

4, the problem is not too great. It is very infrequent to use a degree higher than 4.

Example 3.3

Rotameter calibration data (flow rate versus Rotameter reading) are as follows:
Rotameter Reading R 10 30 50 70 90
Flow rate V(L/min) 20 52.1 84.6 118.3 151

a) Using curve fitting to fit the calibration data to second order polynomial.
b) Calculate the flowrate (V) at rotameter reading R=73.
Solution:

a) 2" order polynomial

S, :Zn‘,giz :ZH:(Yi —a, — X _a‘ZXi)2
i1 i1

9, = Zzn:(yi —a, —aX —a% ) x(-1) =0

da, 43

ds, C 2

q ZZZ(yi_aO_alxi —a,% )% (=x)=0 (1)
a i1

ds,

= ZZ(yi —a, —aX — azxiz) x (_Xiz) =0
da, i1

Re arranging above equations
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n n n
a,n +a12 X, + aZfo = Z Y
i=1 i=1 i=1

aozn:XiJraiZn:Xiszazzn:X?:Zn:Xiyi (2)
i=1 i=1 i=1 i
aozn: X; +a12n: x; +azzn:xi4 = Zn:xfyi
i=1 i=1 i=1 i=1
Making required table
R Vv R? R R* RV R%y
10 20 100 1000 | 10000 200 2000
30 52.1 900 27000 | 810000 | 1563 | 46890
50 84.6 2500 | 125000 (6250000{ 4230 | 211500
70 118.3 4900 | 343000 [2401000( 8281 |579670
90 151 8100 | 729000 |6561000( 13590 |1223100
> 250 426 16500 [1225000({9669000| 27864 [2063160

By substitution in equation 2
5a, +250a, +16500a, = 426

250a, +16500a, +1225000a, = 27864
16500a, +1225000a, +96690000a, = 2063160

Solving above equation simultaneously gives;
a2 = 4.2857x10™

a0 =3.8786
then

al =1.5981 ,

V =3.8786 +1.5981x R +4.2857 x10* x R?

B)

V (73) =3.8786 +1.5981x 73+ 4.2857 x10™ x 73° =122.83

Numerical Analysis /Lec. 3
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3.3 Nonlinear Data

Whenever data from experimental tests are not linear, we need to fit to them some
function other than a first-degree polynomial. Popular forms that are tried are the
power form

y =ax’

or the exponential form

y =ae™.

Since such nonlinear equations are much more difficult to solve than linear equations,
they are usually linearized by taking logarithms before determining the parameters:
Iny=Ina+blnx,

or

Iny=Ina+bx.

X o....o'..o. .D"X
linear non-linear
Figure 3.2 Linear vs non-linear data

In cases when such linearization of the function is not desirable, or when no method
of linearization can be discovered, graphical methods are frequently used; one merely
plots the experimental values and sketches in a curve that seems to fit well.

Example 3.4
The progress of a homogeneous chemical reaction is followed and it is desired to
evaluate the rate constant and the order of the reaction. The rate law expression for
the reaction is known to follow the power function form —r =kcC"

Use the data provided in the table to obtain N and k.

C ,(gmol/l) 4 2.25 1.45 1.0 0.65 0.25 0.006

—ry,(gmoll-s) 1 0.398 |0.298 |0.238 |0.198 |0.158 |0.098 |0.048

Solution
Taking the natural log of both sides of Equation, we obtain
In(=r )=In(k)+nIn(C )
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Let

z=|n(—r)
w =In(C )

a, =In(k) implying that

a, =n

We get

z=a, +a,w

k =e%

This is a linear relation between z and W, where

n n n
Ny Wz, — > w7
— i i=1 i=1

al n n 2
ny w’— [Z wij
i=1 i=1
n n
D7 2w,
a. = i=1 —a i=1
0 n 'n

Table: Kinetics rate law using power function

2

i C -r w Z WX Z w
1 4 0.398 |1.3863 |-0.92130 |-1.2772|1.9218
2 2.25 10.298 [0.8109 |-1.2107 |-0.9818|0.65761
3 145 |0.238 |0.3716 |-1.4355 |-0.5334|0.13806
4 1 0.198 |0.0000 |-1.6195 |0.0000 |0.00000
5 0.65 |0.158 |[-0.4308 |-1.8452 |0.7949 |0.18557
6 0.25 10.098 |-1.3863 |-2.3228 |3.2201 |1.9218
7 0.006 | 0.048 |-5.1160 |-3.0366 |15.535 |26.173
7
> -4.3643 |-12.391 |16.758 |30.998
i=1

n=7

iwi:—4.3643

i=1

izi=—12.391

i=1

iwizi =16.758

i=1

iwf=30.998

i=1

From above equations
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7% (16.758)— (— 4.3643)x (~12.391)
7x(30.998) - (- 4.3643)°
=0.31943
. 12391 (

0

1

31043)~ 43643

=-1.5711
Then

k=gt
=0.20782
n=a,
=0.31941
Finally, the model of progress of that chemical reaction is

—r =0.20782x C***

0.4 [}

035

o [a]

— o . o

o ) 3] w
T T T

o
=

Chemical Reaction Rate, y (gmol/l-s)

o
=)
5]

1 1 1
0 05 1 1.5 2 25 3 35 4
Concentration, C (gmol/l)

O

Example 3.5

It is suspected from theoretical considerations that the rate of water flow from a
firehouse is proportional to some power of the nozzle pressure. Assume pressure data
Is more accurate. You are transforming the data.

Flow rate, F (gallons/min) 96 129 135 |145 |168 |235
Pressure, P (psi) 11 17 20 25 40 55
What is the exponent b of the nozzle pressure in the regression model F = ap”
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Solution
The linearization of the above data is done as follows.
F=ap’
In(F) =In(a) +biIn(p)
z=a,+bx
Where
z=In(F)
x=In(p)
3, =In(a)
Implying
a =e®
There is a linear relationship between z and x.
Linear regression constants are given by

n n n
”Z X.Z, —z X, Zzi
— i=1

b — i=1 i=1

S ]

i=1 i

n

Zl:xfznlzi —Z‘xinizi

i= i=1 i i=1
a. =4 i
0

”Zn: X; _(Zn: %; 2

i=1 i=1

>

Since

n=6

ZG:xizi =In(11) x In(96) + In(17) x In(129) + In(20) x In(135) + In(25) x In(145) + In(40) x In(168)
7 +1In(55) x In(235) =96.208

x. = In(L1) + In(L7) + IN(20) + IN(25) + In(40) + In(55) =19.142

z. =In(96) +In(129) + IN(135) + In(145) + In(168) + In(235) = 29.890

o IMe LMo

3 x2 = (In(LD)? + (IN(L7))? + (In(20))? + (In(25))? + (In(40))? + (In(55))? = 62.779

i=1
then
 _ 6%96.208-19.142x 29.890
6x62.779-19.142?
_ 577.25-572.15
~ 376.67 —366.41
=0.49721
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Example 3.6

The following data have been obtained for the decomposition of benzene diazonium

chloride to chlorobenzene:

T (K) 313 319

323

328

333

k (s 0.0043 0.0103

0.018

0.0355

0.0717

From this data, determine the pre-exponential factor A and activation energy E,
assuming that the rate constant follows an Arrhenius form.

-E
k = Aexp (ﬁj
Solution:
Ink = In A——=
RT
y=Ink
x=1/T
a,=InA
-E
TR
We get
y=a, +aX
T (K) k (sh x=1T y=In k X2 Xy
313 0.0043 0.00319 -5.44914 |1.02073e-05| -0.01741
319 0.0103 0.00313 -4.57561 [9.82695e-06| -0.01434
323 0.018 0.00310 -4.01738 [9.58506e-06| -0.01244
328 0.0355 0.00305 -3.33822 [9.29506e-06| -0.01018
333 0.0717 0.00300 -2.63526 [9.01803e-06| -0.00791
> 0.01548 -20.0156 |4.79324e-05| -0.06228
nZn: X Yi _Zn:XiZn:yi
a, == = —-14612

o8]

i=1

a,=y—-aX=41.2272

a,=InA=41.2272 =

A=exp(40.2272) =8.0303x10"
a=-E/R=>
E =-a xR =—-(-14612)x8.314 =121480
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A Matlab program for solving example 3.6 is listed in Table 3.1.

Table (3.1) Matlab code and results for solution example (3.6)

Matlab | T=[313,319,323,328,333];

Code K=[0.0043,0.0103,0.018,0.0355,0.0717];
x=1./T;

y=log(K);

Poly=polyfit(x,y,1);

E=-Poly(1)*8.314

Ao=exp(Poly(2))

Results |E=
1.2148e+05

Ao =
8.0303e+17

The comparison between experimental and predicted k values is shown in below
figure:

0.08 : r : :
+ K Exp.
—k Pred. i

0.06 g

0.07

T

T

0.05 ,

T

0.04 ,

T

T

0.03 g

0.02 ,

T

Reaction rate constant (k)

0.01

T

0 r r r r
310 315 320 325 330 335
Temperature (K)
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Numerical Integration

Numerical Integration Approximation.

Integration is the process of measuring the area under a function plotted on a graph.
Sometimes, the evaluation of expressions involving these integrals can become
daunting, if not indeterminate. For this reason, a wide variety of numerical methods
have been developed to find the integral.

Here we discuss six different methods for approximating the value of a definite
integral. Each method revolves around associating a definite integral with area under a
curve. The first three use areas of rectangles, the fourth uses areas of trapezoids, and
the final approximation technique uses areas of shapes that include a portion of a
parabola.

4.1 Left-Endpoint Approximation

On each of the four subintervals shown below, we create a rectangle whose width is the
length of the subdivision and whose height is determined by the function value at the
left endpoint of each subdivision.

width: Ax, height: f(xo) = f(0)

width: Ax, height: f(x1) = f(Ma)

width: Ax, height: f(x,) = ()

/width: AX, height: f(xs) = f(%/a)

y=f(x)=e*

The sum of the areas of the four rectangles represents our approximation for the area
under the curve and therefore represents an approximation for the value of the definite
integral:
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1
[ dxm Ax- £ () + AX- () +AX- () +Ax- f(x,)
0

~ AX(F (%) + F(x)+ (%) + F(x;))
~ AXi f (Xi)

This same sequence of steps can be generalized for left-endpoint approximation of the

b
definite integral jf(x)dx using n subdivisions:

a

b
I f()dx = Ax- f (X)) +Ax- F(x)+A +Ax- f(x,,)+Ax- f(x, ;)

~ AX(F () + T ) +A + (%, ,)+ (%))

~ Axni f(x)
i=0

4.2 Right-Endpoint Approximation

Again we create rectangles whose widths are each the length of a subdivision, but here
each height is determined by the function value at the right endpoint of each
subinterval.

width: Ax, height: f(x,) = f(*/4)

width: Ax, height: f(x,) = (/)

y="f(x)=e width: Ax, height: f(xs) = ()

idth: Ax, height: f(x4) = f(1)

The sum of the areas of these four rectangles represents a right-endpoint approximation
for the area under the curve and therefore is an approximation for the value of the
definite integral:
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e dx ~ AX- f(x)+Ax- f(X,)+Ax- f(x)+Ax- f(X,)

O ey

~ AX(f (%) + F(X,)+ F(x)+ f(x,))
zAXif(Xi)

This same sequence of steps can be generalized for right-endpoint approximation of

b
the definite integral [ f(x)dx using n subdivisions:

b
jf(x)dXzAx- f(x)+AX- fF(X,)+A +Ax- f(X,,)+Ax-f(X,)

~ AX(F () + T Q) +A + F(x0)+ F(x,)

~ X3 1 (x)

4.3 Midpoint Approximation

For a third time we create rectangles each of whose width is the length of the
subdivision, but now each height is determined by the function value at the midpoint of
each subdivision.

width: Ax, height: f((xo*+x1)l2) = f(/s)

width: Ax, height: f((xi+x2)/2) = f(%/s)
2
y=f(x)=¢e™" width: Ax, height: f((xa+xs)/) = f(ls)

width: Ax, height: f((xs*+xa)/>) = f('ls)

|

The sum of the areas of these four rectangles represents a midpoint approximation for

the area under the curve and therefore is another approximation for the value of the
definite integral:
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1
[edxsaxe f(ujmx- f(u)wx- f(MJ+Ax- f(—"3+x4)
0 2 2 2 2

~ Ax f(x0+xlj+f(x1+x2j+f(x2+x3J+f(x3+x4)
2 2 2 2
S [ X+ X
~A f i i+1
S i(5)

This same sequence of steps can be generalized for midpoint approximation of the

b
definite integral J.f(x)dx using n subdivisions:

X1+X2D+A +(Ax« f(—X”‘1+X” D+[Ax« f(x" +X””D
2 2 2

+ X

4.4 Trapezoidal Rule

Trapezoidal rule is based on the Newton-Cotes formula that if one approximates the
integrand by an n™ order polynomial, then the integral of the function is approximated
by the integral of that n" order polynomial. Integrating polynomials is simple and is
based on the calculus formula. The height of each trapezoid is the length of the
subdivision. The two bases of each trapezoid correspond to the values of the function at
the endpoints of the subinterval on which the trapezoid has been drawn.

height: Ax, bases: f(*/,) and f(*/>)

height: Ax, bases: f(0) and f(*/4)

2
=f(x)=e"
y="1x) height: Ax, bases: f(*/,) and f(*/4)

height: Ax, bases: f(*/s)and f(1)
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It may be useful to remove the first of these trapezoids and rotate it into a more
conventional orientation as we calculate its area.

base length: f(0)

height:Ax - Area = /5(Ax) (f(0) + f(*/4))

base length: f(*/,)
The sum of the areas of these four trapezoids represents an approximation for the area

under the curve and therefore is one more approximation for the value of the definite
integral:

- 2
I e dx
0

X
/‘—“\

2010+ 1) 380 (1 )+ £) |+

w106+ £00) |+ 38 (100) 100

AX(F (%) +2F (%) +2F(x,)+2F (%) + F(x,))

A" (F(x) + F (%)

i=0

VR

I\)IH I\JII—‘ I\>II—‘

This same sequence of steps can be generalized for trapezoid approximation of the
b

definite integral jf(x)dx using n subdivisions:

jf(x)dx (;Ax f(x)+f(xl))j G ~(f(x1)+f(x2))]+A

+ %Ax f(xn1)+f(xnl))] G -(f(xn1)+f(xn))j

NEN AX(f (%) +2F (%) +2F(x,) +A

+2F (x,0) + 2 (%) + (x,))
Single Segment Trapezoidal Rule

j f (x)dx z%AX(f 06+ f(%,1)

Multiple Segments Trapezoidal Rule

Tf(x)dngAx_nZ_f(f(xw f(%.))

-31-
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Example 4.1

. 1 dx ; e ey . ;
Evaluate the integral 1 = by trapezoidal rule dividing the interval [0, 1] into
g j o bytrap g [0, 1]

five equal parts.

Solution
n=>5
AX = ﬂ =0.2
5
X 0 0.2 0.4 0.6 0.8 1.0
1

- 1.0 1 0.98058 | 0.92848 | 0.85749 | 0.78087 | 0.70711

1+ X

From Trapezoidal Rule;

| :%[f (%) + 2(F (%) + T (%) + F(X,)+ F (%)) + F(X)]

= 0;22[1+ 2(0.98058 + 0.92848 + 0.85749 + 0.78087) + 0.70711]

=0.88016

Example 4.2

Use Multiple-segment Trapezoidal Rule to find the area under the curve f(x) = 1300>i
+e

from x=0 to x=10.

Solution

Using two segments, we get
~10-0
2
300(0)

0

AX =5

f(0) = 0

1+e

- 200 -

10.039

300(10)
fa0)=""5 =

0.136

Area:g[f (0)+2F(5)+ f(10)] = g[o +2(10.039) + 0.136] = 50.535
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12 300x

So what is the true value of this integral? j .
o1T€

dx = 246.59

X

Making the relative true error | |= |246'59 —50.535/, 1 00%% — 79.506%

24659 |
10
Table: Values obtained using Multiple-segment Trapezoidal Rule for I fi(:i dx
0
n Approximate E, ‘ €, ‘
Value
1 0.681 245.91 99.724%
2 50.535 196.05 79.505%
4 170.61 75.978 30.812%
8 227.04 19.546 7.927%
16 241.70 4.887 1.982%
32 245.37 1.222 0.495%
64 246.28 0.305 0.124%
Example 4.3
The average values of a function can be determined by:-
T2
j CpdT
— Tl
Cpmh - -I-2 _Tl

C,=0.99403 +1.617x10*T+9.7215x10°T* ~ 9.5838 x 10™ T° + 1.9520 x 10™ T*
C, in KJ/(Kg K)
Use this relationship to verity the average value of specific heat of dry air in the
range from 300 K to 450 K:
1) Analytically
2) Numerically using five points Trapezoidal Rule
Solution

450

[0.99403+1.617x10*T +9.7215x10°T* -9.5838 x10™ T° +1.9520x10* T*dT

_ 300

1) Cp. =
) CPa 450 — 300

4 5 1 44 450
2 3 4 5 300

C =
P 450 —300
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465.73-306.18

P, = 250 300 =1.0637
2) AT = w =375
T 300 3375 375 412.5 450
Cp 1.0489 1.0562 1.0637 1.0711 1.0785
Cp., = (dT/2)*(Cp(1)+2*(Cp(2)+Cp(3)+Cp(4))+Cp(5))
™ T 2_T1
(37.5/2)*(1.0489 + 2*(1.0562 +1.0637 +1.0711) +1.0785) _ 10637
450 —300 -

Analytical Solution - Numerical Solution 0% — 1.0637-1.0637

Analytical Solution 1.0637

Realative Error % =

% =0%

4.5 Simpson’s Rule (1/3 Simpson’s Rule)

The final approximation technique we develop in this section is called Simpson’s Rule.
It is different from the first four methods because we are not creating polygons on each
subinterval but rather we create a figure with a non-straight component to it. For this
method, it is required that the number of subintervals be an even number.

A parabola is created that contains the
points (Xo,f(Xo)), (X1,f(x1)), and (xz,f(x2)).

ey

y=f(x)=e*

Another parabola is
created that contains
the points (x2,f(x2)),

T
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Simpson’s Rule uses pairs of subdivisions and creates over each pair a parabola that
contains the points (Xaio, f(Xsi-2)), (Xoi-1, f(X2i.1)), and (Xzi, f(X2;)) for i going from 1 to "/,.
A shape is created using the resulting parabola, two vertical segments—one from
(X2i-2,0) to (X2i_2, f(X2i2)) and one from (Xi+2,0) t0 (Xois2, f(Xoi+2))—and the segment on
the x-axis with endpoints (X,i.»,0) and (X,i+»,0). The area of the resulting shape—such as
of the red-shaded figure above or the green-shaded figure above-is calculated using the

formula Ax. %(f (11) + 45 () + F (%0.0)).

The sum of the areas of these shapes represents an approximation for the area under the
curve and therefore is an approximation for the value of the definite integral:

J1.e K (Ax Z(F(x)+4f(x)+ f(xz))j (Ax-%(f(x2)+4f(x3)+ f(x4))j

This same sequence of steps can be generalized for the Simpson’s Rule approximation

b
of the definite integral _[f(x)dx using n subdivisions:

a

i f(X)dx ~ (Axé(f () +4F (%) + f(xz))J FA +(Ax-%(f (%) +4F(x, )+ f (xn))j
<A Z(F06) +4100) + 106) +A + %) +41(x,)+ T(x)

Single Segment 1/3 Simpson’s Rule
jf(x)dx~ 2 (£ () + 4 (4) + £ (%))

Multiple Segment 1/3 Simpson’s Rule

jf(x)dx~—ﬁ (f (o) +4F (%) + F (%)

Example 4.4
0.8 dX

Evaluate the integral | = I by 1/3 Simpson’s rule dividing the interval [0, 0.8]
0o V1+ X2

to 4 equal sub-intervals.
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Solution

n=4
AX = 08-0_ 0.2
4
X 0 0.2 0.4 0.6 0.8
1

1.0 0.91287 | 0.84515 | 0.79057 | 0.74536

1+ X2

From Simpson’s 1/3" Rule

| =Off (X)dX=%[(f (X)) +4F(x)+ F(X%))+(F(x)+4F(x)+ f(x))]

= %[f (%) + 40T (4) + TO6)]+ 21 (%) + T(x,)]

= %[1.0 +4[0.91287 +0.79051] + 2 x 0.84515 + 0.74536]
= 0.68329

4.6 Simpson’s Rule (3/8 Simpson’s Rule)

If we connect the points of the curve using a 3™ order Lagrange polynomial, the area

under the curve can be approximated by the following formula:

3;:([1:(X0)+3f(xl)+3f(X2)+2f(X3)+3f(X4)+3f(X5)

+2F(Xg)+. +2F (X, 5) +3F(X,,) +3F (X, )+ F(X,)]

[RIOLYE

Single Segment 3/8 Simpson’s Rule

if(X)dXzLQX[f(XO)+3f(X1)+3f(xz)+ f(x;)]

Multiple Segment 3/8 Simpson’s Rule

b Y5
J £ 09= 225 (0 5) + 31 06, 3 (00 + )

i=1
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Example 4.5
Evaluate the integral of the following tabular data with
(@) The trapezoidal rule.

(b) Simpson’s rules.

X 0 0.1 0.2 0.3 0.4 0.5
F(X) 1 8 4 3.5 5 1
Solution

(a) Trapezoidal rule (n =5):

| :07'1[1+ 2(8+4+35+5)+1]=2.15

(b) Simpson’s rules (n = 5):

| = 0?'1[1+ 4(8) + 4] + 0.12[4 +3(3.5+5)+1] =1.233333+1.14375=2.377083

Example 4.6
The volume of is given by following expression:
_ Fu OJ-Q dx,
CAo 0 k(l_ XA)
Withk =2.7x10" exp(-6500/T) min"and T =325+ 19000x, using
120.35x, +143.75

Fao = 1500mol/min, cA=2.5mol L™

Calculate the volume of the reactor using Simpsons rule with five points (4 steps).
Solution

Xa T k 1
k(l-x,)
0 325.0000 0.0557 17.9691
0.2250 350.0251 0.2325 5.5491
0.4500 368.2020 0.5816 3.1263
0.6750 382.0035 1.1005 2.7958
0.9000 392.8396 1.7597 5.6827

V = (1500/2.5)*(0.225/3) * (23.1031+ 4 * 7.1346 + 2* 4.0195 + 4*3.5947 + 7.3063)
=3661.4L

A Matlab program for solving example 4.5 is listed in Table 4.1.
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Table (4.1

) Matlab code and results for solution example (4.5)

Xa=0:0.225:0.9
Matlab T=325+(19000*Xa)./(120.35*Xa+143.75)
k=2.7e7*exp(-6500./T)
Code | 1 /k*(1-Xa))
V=(1500/2.5)*(0.225/3)*(f(1)+4*f(2)+2*f(3)+4*f(4)+f(5))
Xa=
0 0.2250 0.4500 0.6750 0.9000
T=
325.0000 350.0251 368.2020 382.0035 392.8396
k =
Results 0.0557 0.2325 0.5816 1.1005 1.7597
f=
17.9691 5.5491 3.1263 2.7958 5.6827
V=
2.8478e+03
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Numerical Differentiation

Numerical Differentiation is a method used to approximate the value of a derivative
over a continuous region [a,b].

Let f(x) is a continuous function with step size h. There are forward, backward and
centered difference methods to approximate the derivatives of f(x) at a point X;.

5.1 Forward Difference Approximation of the First Derivative
We know

, _ f(x+Ax)—- f(x)
f (X) B Alin—jo AX

For a finite 'Ax'.

£1(x) = f(x+Ax)- f(x)

a AX

f (X) A

B

X X+ AX X

Figure 5.1: Graphical representation of forward
difference approximation of first derivative

So if you want to find the value of f'(x) at x=x, we may choose another point

'Ax' ahead as x = x.

i+l"

This gives

Where Ax=x,,-X

Numerical Analysis /Lec. 5 -39-
Third Class



Example 5.1

0<t<30

4
The velocity of a rocket is given by v(t)= 2000In{ 1410 }—9&

14 x10* — 2100t

Where 'v' isgiveninm/sand 't is given in seconds.

Use forward difference approximation of the first derivative of v(t) to calculate the

acceleration at t=16s. Use a step size of At=2s.

Solution
alt,) = v(ti)-v(t)
Y At
t. =16
At =2
a(16): V(18)—V(16)
2

14 x10*
14 x10* - 2100(18)

v(18) = 20001n } —9.8(18) = 453.02m/s

14 %10
| 14x10" —2100(16)

v(16)=2000In

} 9.8(16) = 392.07m/s

Hence

a(16) = v(18); v(16) _ 453.02;392.07 _ 30.475m/ <2

The exact value of a(16) can be calculated by differentiating

4 4 4
a(t)= 3| 2000 1n| —14*10 o8| =oo0p| M4x10° 210011 df 1410 ~9.8
dt 14 10" — 2100t 14x10° ) dt|14x10* — 2100t

4 4
_ 2000(14><10 2100tj(_1)[<1 14x10

; ~|(-2100)-9.8 =29.674m/s’
1410 4x10* - 2100t)

The absolute relative true error is

o= | True Value - Approximate Value | 100 = 129.674 —30.475| 100 = 2.6993%
| True Value | | 29674 |
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5.2 Backward Difference Approximation of the First Derivative
We know

, - f(x+Ax)- f(x)
/()= lim ———>

For a finite 'Ax',
£1(x) = f(x+Ax)— f(x)
AX
If 'Ax' is chosen as a negative number,

oy F(x+Ax)— f(x)
f(x)= AX

, f(x)- f(x—Ax)
f (X): AX

This is a backward difference approximation as you are taking a point backward

from x. To find the value of f'(x) at x=x, we may choose another point 'Ax

behindas x=x,_,. Thisgives

_H00)= () yhere AX=X =% 4

/ X — AX X
Figure 5.2 Graphical representation of backward
difference approximation of first derivative
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Example 5.2
The velocity of a rocket is given by

14 x10*
14 x10* — 2100t

v(t) = 2000 In{ }—9.8t,0£t£30

Use backward difference approximation of the first derivative of (t) to calculate the

acceleration at t=16s. Use a step size of At=2s.

Solution
a(t); V(ti )_V(ti—l)
At
t =16
At=2

t =t —At =16-2=14

14x10*
14x10* —2100(16)

v(16)= 2000In{ }—9.8(16) =392.07m/s

14x10*
14x10* - 2100(14)

v(14) = 2000 In{ } ~9.8(14) = 334.24m/s

a(16) = v(16)-v(14) _392.07-334.24 _ 28.915m) 52
2 2
The absolute relative true error is
&= 29.674 - 28.915| <100 = 2.557%
| 29674 |
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5.3 Central Difference Approximation of the First Derivative
As shown above, both forward and backward divided difference approximation of the

first derivative are accurate on the order of 0(Ax). Can we get better approximations?

Yes, another method to approximate the first derivative is called the Central
difference approximation of the first derivative.
From Taylor series

Fx)= F(x )+ F/(x Axs ;X )(axy + ";Xi ) (A +K (1)
F52)= 1) 10 Jwer 0 - 0D ¢ @)

Subtracting equation (2) from equation (1)

F.0) £50)= 1020+ 200 (¢

£/(x)= f (Xiﬂ;;)(f (%) f ,;Xi ) (AxP +K

£/(x )= f (XM;;Xf (1) +0(Ax )

£/(x )= f(%.a)— (%)

2AX

Hence showing that we have obtained a more accurate formula as the error is of the

order of 0(Ax).

£(%) A

v

X — AX X X+ AX

Figure 5.3 Graphical Representation of central
difference approximation of first derivative.
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Example 5.3
The velocity of a rocket is given by

14x10*
14x10* — 2100t

v(t)=2000|n{ }—9.8t,osts3o.

Use central divided difference approximation of the first derivative of w(t) to

calculate the acceleration at t=16s. Use a step size of At=2s.

Solution
a(ti ) o~ V(ti+l)_ V(ti—l)
2At
t =16

t,, =t +At=16+2=18
t,, =t —At=16-2=14
v(18)—v(14) v(18)-v(14)

2(16) = 22) a4

) .-
v(18) = 20001n 1410 —9.8(18) = 453.02m/s
|14 x10* - 2100(18) |

) .-
v(14) = 20001n 1410 —9.8(14) = 334.24m/s
|14 x10* —2100(14) |

= 29.695m/s?

a(16) = v(18)—v(14)  453.02-334.24
- . _ -
The absolute relative true error is

= |29'6;‘; ;72;’-695{ <100 =0.070769%

The results from the three difference approximations are given in Table 1.

Table 1 Summary of a(16) using different divided difference approximations.

Type of Difference a(16) o
Approximation (m/s?) s
Forward 30.475 2.6993
Backward 28.915 2.557
Central 29.695 0.070769

Clearly, the central difference scheme is giving more accurate results because the
order of accuracy is proportional to the square of the step size.
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5.4 Higher Order Derivatives

Example: Second order derivative:
Note that for the centered formulation, it is a derivation of a derivative:

f(xi+1)_ f(xi)_ f(xi)_ f(xi—l)

£(x) = AX AX _ F(.0)=2F () + (x4)
- AX (AX)?
Forward £(x) = f (%is2) =2 F (xiaa)+ F06)
B (M)*
Backward F1(x)= FO6)—2F (xi0)+ F(xip)
B (&)*
Centered F(x)= f(%a) =2 () + f (%)
B (A)*

I) Forward Difference Methods
First Derivative

f I(Xi) — f (Xi+li; f (Xi)

Second Derivative

f”(Xi) — f(xi+2)_§Af)E;(;+l)+ f(Xi)

Third Derivative

f(3)(xi) _ f(x.3)—3f (XiEZA)x;Bf (%i.a)— f ()

Fourth Derivative

(4) f (Xi+4)_ 4f (Xi+3)+ 6f (Xi+2)_ 4f (Xi+1)+ f (Xi)
f€x) = !

I1) Backward Difference Methods
First Derivative

fr(x)= f(xi);): (Xi_1)

Second Derivative

£(x) = f (Xi )— 2 f((AX)i(SlZ)Jr f (Xi—z)
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Third Derivative

f(3)(xi) _ f(Xi)_Bf(Xi_l)(Zf)Z (%5)— f(xis)

Fourth Derivative

@)y — f(xi)_4f(Xi—1)+6f(xi—2)_4f(xi—3)+ f(xi—4)
(%) = (A0

I11) Central Difference Methods
First Derivative
f '(Xi) — f (Xi+1)_ f (Xi—l)
2AX
Second Derivative

fr(x)= f(x”l)_z(i)(:)(iz)Jr floxs)

Third Derivative

f(S)(Xi) _ f(xi+2)_2f(xi+21()ZX§3f (6.1)— (% ,)

Fourth Derivative

(4) f (Xi+2)_ 4f (Xi+1)+ 6f (Xi )— 4f (Xi—1)+ f (Xi—z)
5 (04) = ™%
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Solving System of Linear Equations

6.1 Linear Equation
y = mx is an equation, in which variable y is expressed in terms of x and the constant
m, is called Linear Equation. In Linear Equation exponents of the variable is always

< b

onc .

6.2 Linear Equation in n variables:

axX +aX, +a% +...+a,Xx, =b

Where x,x,,X,...,x, are variables and
a;,a,,a,..,a, and b are constants.

6.3 System of Linear Equations:

A Linear System of m linear equations and n unknowns is:
Ay X + 85Xy +AygXg + .+, X, =Dy

Ay1 Xy + 8y Xy + BngXg + e+ B9 X, =Dy

Ag X + AgpXy + 8g3Xg + ...+ Az X, =g

Ay Xy + 8o Xy + 8pgXg + et 8 X, =0y

Where x,x,,X,,..., X, are variables or unknowns and a’s and b’s are constants.

6.4 Augmented Matrix

System of linear equations:

%+ 83,X, + g%y =Dy

Ap1X) + 8ppXy + 8533, = bz

831X + 8gpX; + A3y = b3

Can be written in the form of matrices product

ay 8, a;|%| |b
Q1 Gy Ay X = bz
aSl a32 a33 X3 b3
Or we may write it in the form AX=b,

&, &, a3 X b,
Where A=|a,, a,, a,| ,X=|x ,b=ln,
aSl a32 a33 X3 b3

a; 8, a3 b

Augmented matrix is [A:b]=|a,, a, a, b,

a3 1 a3 2 a‘3 3 b3
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Example 6.1:
Write the matrix and augmented form of the system of linear equations
3X—y+62=6
X+y+z=2
2X +y+4z2 =3
Solution: Matrix form of the system is
3 -1 6| X 6
1 1 1|y|=|2
2 1 4|z 3

3 -1 6 6
Augmented formis  [A:b]=|1 1 1 2|.
2 1 4 3

6.5 Methods for Solving System of Linear Equations
1. Gaussian Elimination Method
2. Gauss -Jorden Elimination Method

6.5.1 Gaussian Elimination.
Gaussian elimination is a general method of finding possible solutions to a linear
system of equations.

Gaussian Elimination Method
Step 1. By using elementary row operations

8, 8, a3 b 1 A, As B
aZl a22 a23 b2 - O 1 A23 BZ
a31 a32 a33 b3 O O 1 B3

Step 2. Find solution by back — substitutions.

Example 6.2:
Solve the system of linear equations by Gaussion- Elimination method
X +X,+X =3
2X, —X, —2X; =6
4% +2X, +3%, =1
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Solution:

Step 1.

Augmented matrix is

1 1 113 R,=r,-2r
2 -1 -26 o=t =41
4 2 3|7

1 1 1|3

0 _3 _4 0 R3:3I’3—2I’2
_0 -2 -1-5

1 1 1|3

0 -3 -4 0 Rp=—T,
0 0 5/|-15 R,=53

L 5
11 13

0 3 40

0 0 1-3

Equivalent system of equations form is:
Step 2. Back Substitution

X+ Xy +X3=3 X; =—3
3X, +4x%; =0 = X, =—4X,/3=12/3=4
X3 =—3 X, =3=X,— X, =3-4+3=2

Solutions are x =2, x,=4, x,=-3

Example 6.3:
For the below figure calculate the values of the unknown flow rates F;, F, and F3 by
using Gaussion- Elimination method

F=7 F,=?

99% Benzene 5% Benzene
Tl% Toluene T 92% Toluene
3 % Xylene

F=1000 kg/hr
—
40% Benzene
40% Toluene
20% Xylene

Tower 1
v
Tower 2

' ngz’?
10% Toluene
909 Xylpnp
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Component material balance gives these three equations of three variables
F+ F,+ F, =1000

0.99F, +0.05F, + OF, = 400

0.01F, +0.92F, +0.1F, = 400

Augmented matrix is

1 1 1 1000

099 0.05 0 400 R,=r,— (0.99/1)xr;
10.01 0.92 0.1 400 Rs=r;— (0.01/1)xr;
1 1 1 1000

0 -0.94 -0.99 -590 Rs=r3-(0.91/(-0.94))r,
0 0091 0.09 390

1 1 1 1000

0 -094 -0.99 -590 R,=r,/(-0.94)

0 0 -0.8684 -181.17 R;=r3/( -0.8684)
1 1 1 1000

0 1 1.0532 627.6596

0 0 1 208.6253

Equivalent system of equations form is:
Fi+ F, + F3=1000

F,+1.0532F;= 627.6596

F;=208.6253

Step 2. Back Substitution
F;=208.6253
F,=627.6596-1.0532F;=627.6596-1.0532x208.6253 =407.9354
F;=1000- F,-F;=1000 -208.6253 - 407.9354= 383.4393
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6.5.2 Gauss - Jorden Elimination Method

Gauss - Jorden Method

By using elementary row operations
a, a, az; b 100 B

a, &, a, b,|—>|0 1 0 B,

8y Ay, a5 Db 0 01 B

Example 6.4:

Solve the system of linear equations by Gauss-Jorden elimination method
X1+ X+ 2X3=8

- X1-2X,+ 3X3=1

3X1-7Xs + 4X3=10

Solution:
Augmented matrix is

1 1 2 8

-1 -2 31 Ro= ratn
'3 -7 410 Rere3n
1 1 2 8

0 -1 5 9 R2:'r2

_0 -10 -2 -14 R;=r3-10r,
11 2 8

01 -5 -9 R3=-r3/52
0 0 -52 -104

1 1 2 8 R.=r;-2r3
01 -5 -9 Ro=ry+5r3
00 1 2
1 1 0 4]
0 101 Ry=r1-1,
00 1 2
1 0 0 3
0101
001 2
Equivalent system of equations form is:
X1=3
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X,=1
X3 = 2
Is the solution of the system.

Example 6.5:
Total and component material balance on a system of distillation columns gives the
flowing equations:-
Fi+ F+ Fs+ F,=1690
0.4F;+ 0.15F, + 0.25F;+ 0.2F,= 4125
0.25F; + 0.8F, + 0.3F3+ 0.45F,= 701
0.08F; + 0.05F, + 0.45F;+ 0.3F,= 487.3
Use Gauss - Jorden method to compute the four un-known's in above equations:-
Solution:
Augmented matrix is

1 1 1 1 1690

04 015 025 02 4125 Ro=r2-(0.4/1)r,
025 08 03 045 701 Rs=r3-(0.25/1)r,
1008 005 045 0.3 487.3 R4=r4-(0.08/1)r,
1 1 1 1 1690 |

~0.25 -015 -0.2 -2635
055 005 02 2785 Rs=r5-(0.55/(-0.25))r,
~0.03 037 022 3521 R,=r4-((-0.03)/(-0.025))r,

0

0

0

1 1 1 1 1690 |
0 -025 -015 -02 -2635
0 0 -028 -0.24 -301.2
0
1
0
0
0

0 0388 0244 383.72 R4=r4-((0.0388)/(-0.028))r;

1 1 1 1690

-025 -015 -02  -2635 R,=1,/(-0.25)
0 -028 -024 -301.2 Rs=r3/(-0.028)
0 0 -0.08857 -33.657 R4=r4/(-0.0887)
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11 1 1 1690 | R1= 11y
01 06 08 1054 R,=r>-(0.8/1)r,
0 0 1 085714 1075.74 Rs=rs-(0.85714/1)r,
00 1 380 |
1 1 1 0 1310] Ri=r1-13
01 06 0 750 R,=r,-((-0.6)/1)r3
00 1 0 750
0 0 0 1 380]
1 1 0 0 560]
0 1 0 0 300 Ri=ri-17
0 01 0 750
0 0 0 1 380]
(1 0 0 0 260]
0 1 0 0 300 Equivalent system of equations form:
00 1 0 750 F, =260, F,=300, F;= 750 and
000 1 38 F,=380 is the solution of the system.
Example 6.6
Balance the following chemical equation:
X1 Palg + %o Pat X3 HO — X4 PHyl + X5 H3PO,
Solution:
P balance: 2x;+ 4X,=Xs+ Xs
| balance: 4x;=Xs+ Xs
H balance: 2x;=4x,+3X5
O balance: x3=4xs
Re-write these as homogeneous equations, each having zero on its right hand
side:
2X1+ 4Xo- Xa- X5s= 0
4X1- X4 - X=0
2X3- 4X4- 3X5=0
X3- 4Xs= 0

At this point, there are four equations in five unknowns. To complete the system,

we define an auxiliary equation by arbitrarily choosing a value for one of the

coefficients:
X1= 1
We can easily solve the above equations to balance this reaction using MATLAB
such in table 6.1
Numerical Analysis /Lec. 6 -53-

Third Class



Table (6.1) Matlab code and results for solution example (6.6)

A=[240-1-1
400-10

Matlab |°2°%243
Code 0010 -4

10000];
B=1[0;0;0;0;1];
X = A\B

X =
1.0000
1.3000
12.8000

4.0000
3.2000

Results

This does not yield integral coefficients, but multiplying by 10 will do the trick:
The balanced equation will be:
10 P,l, + 13 P, + 128 H,O — 40 PHyl + 32 H3PO,
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Iterative Methods for Solving System of Linear Equation

7.1 Jacobi Method
Let the given equation be

aX+hy+cz=d

a,x+hb,y+c,z=d,

X+ by+c,z=d,

If the given system of equation is diagonally dominant then

(4D :ai(dl by -, z0)

1
y+ _ bi (d, - a,x —c,20)
2

S+1) _ Ci (05— agx® —by®)
3

7.1.1 Condition for Jacobi method of converges:
The sufficient condition is

o] = [by] + ey
b, > |ay| +|c,|

C3] > [ag] + by

The absolute value of the diagonal element in each row of the coefficient matrix must
be greater than the sum of the absolute values of the off-diagonal elements in the
same row.

Example 7.1:
Use the Jacobi iteration method to obtain the solution of the following equations:
6X1 -2 Xo + X3 =11
X1 +2X5 -bx3 = -1
-2X1+7 Xy, ¥2X3=5

Solution

Step 1: Re-write the equations such that each equation has the unknown with largest
coefficient on the left hand side:

6X1= 11+2 Xo-X3

TXo= 5+2X1 -2X3

5X3 =1+X; +2X5

2X, — X5 +11
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X3:X1+25X2 +1

Step 2: Assume the initial guesses XX =xJ =xJ =0 then calculate Xj, X; and X3 :
1 _2(x9)—(x3) +11_2(0)-(0) +11

X =1.833
6
0y _ 0 _
v _2(x) §(x3)+5=2(0) 2(0)+5=0.714
0 0
XL =(x1)+25(x2)+1= (0)+2(0)+1=0200

Step 3: Use the values obtained in the first iteration, to calculate the values for the 2™
iteration:
2_20) (%) +11_2(0.714)—(0.200) +11

X: =2.038
6 6
1y oyl _
- 20)-206)+5_ 21839 ~200200)+5 _, o
7 7
1 1
2 L)+ 25(X2) +1_(1833)+ 25(0'714) *1_0.852

and so on for the next iterations so that the next values are calculated using the
current values:
(i1 20x) — (%) +11
(=
6
(i1 200) ~2(x5) +5
i
7
1 () +2(%) +1
i+l
5
The results for 9 iterations are:

Unknowns
Iter. X1 X5 X3

1 1.833 0.714 0.200
2.038 1.181 0.852
2.085 1.053 1.080
2.004 1.001 1.038

AlwN

9 2.000 1.000 1.000
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Example 7.2:
Solve the equations by Jacobi method
20X, + X, — 2X3 =17
3X; + 20X, — X3 =18
2X1 — 3%y + 20%3 = 25
Solution
Rewrite the given equation in the form:

xl”lzz—lo(l? — Xy +2X5)

X, :2—10 (—-18-3x, +X{)

x;“:%(ZS—le‘ +3%))

Using x? =x?=x}=0, we obtain

x =1 _ 0485
20

=28 _ 090
20

Xt =22 _195
20

Putting these values on the right of equations to obtain

S

X =25 (17-x; —2x,)=1.02

X2 = %(—18—3%1 +X} ) =—0.965

2
2 1 1 1
X2 = 2—0(25— 2x: +3x’, ) =1.1515

These and further iterates are listed in the table below:

X X; X3
0 0 0
085 | -090 | 1.25
1.02 | -0.965 | 1.1515
1.0134 | -0.9954 | 1.0032
1.0009 | —1.0018 | 0.9993
1.0000 | —1.0002 | 0.9996
1.0000 | —1.0000 | 1.0000

OO BIW DN PO -

The values in 5™ and 6" iterations being practically the same, we can stop. Hence the
solutions are:
Xx1=1,x,=-land xz=1
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7.2 Gauss-Seidel Method
If the given system of equation is diagonally dominant then

W+ _ ai (0, ~byy® —c,z20)

y
iv) 1 i+ i
y( 1):b_(d2_azx( 1)_(:22())

)

S+ _ Ci(dg _agx(Y _bgy(i+1))
3

Example 7.3:
Use the Gauss-Seidel method to obtain the solution of the following equations:
6X1 -2 Xo + X3 =11 (2)

X1 +2 Xo -bx3 =-1 (2)
'2X1 +7 Xo +2X3 =5 (3)
Solution

Step 1: Re-write the equations such that each equation has the unknown with largest
“coefficient on the left hand side:

X1:2><2—Tx3+11 from eq. (1)
Xo = 2% §X3 2 from eq. (3)
X3 :%XZH from eq. (2)

Step 2: Assume the initial guesses xs = x3 =0 , then calculate x':

42 205)—(6)+11_2(0)—(0)+11
1 - =
6

Use the updated value x =1.833 and x{ =0 to calculate x

Xl_2(xi)—2(x§)+5_2(1.833)—2(0)+5
2 7 B 7
Similarly, use x =1.833 and x; =1.238 to calculate x;
(x11)+2(x§)+1:(1.833)+2(1.238)+1
5 5

=1.833

=1.238

=1.062

1_
X3=

Step 3: Repeat the same procedure for the 2" iteration
2_2(%)—(xg)+11_2(1.238) - (1.062) +11

=2.069
X 6 6
2y 1 _
2 =2()(1) 2(x3)+5=2(2.069) 2(1.062)+5=1_002
7 7
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(%) +2(x3) +1_(2.069) +2(1.002) +1
5 5

and so on for the next iterations so that the next values are calculated using the

current values:

ot 2 20%) = EExé)+11

g1 204 =2(x6) +5
2 7

(0 +206™) +1
X3 = 5
and continue the above iterative procedure until [(x,)"* - (x)'}/ ()" < € for i=1,2 and
3.
The procedure yields the exact solution after 5 iterations only:

=1.015

2
X3=

Unknown
Iter. X1 X X3
1 1.833 1.238 1.062

2 2.069 1.002 1.015
3 1.998 0.995 | 0.998
4 1.999 1.000 1.000
5 2.000 1.000 1.000

Example 7.4:
Solve by Gauss — Seidel method, the equations:
20X1 + X — 2X3 = 17
3X; + 20X, — X3 =—18
2X1 — 3Xy + 20%X3 =25
Solution
As before, we start with initial estimate X; =X, =X;= 0. We write the given

equation in the form
g1 . .
X =5(17 — X5 + 2X5)

i i+1

Xyt :2—10 (—18—3x™ + xi)

x5 :2—10 (25-2x" +3x5™)

These and further iterates are listed in the table below:
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i X4 X5 X5
0 0 0 0
1 0.8500 |-1.0275| 1.0109
2 1.0025 | —0.9998 | 0.9998
3 1.0000 | -1.0000 | 1.0000

The value in the 2" and 3" iterations being particularly the same, we can stop. Hence
the solutionsis Xx; =1, X, =—1 and X3 = 1.

Example 7.5:
For the below figure calculate the values of the unknown flow rates F1, F2 and F3 by

using Gauss-Seidel Method F1=? F2=2

99% Benzene 5% Benzene
Tl% Toluene T 929% Toluene

3 % Xylene
— N
F=1000 kg/hr | % =
—» = — =
o o
40% Benzene| F =
40% Toluene
20% Xylene
B l F3="?
10% Toluene
90% Xylene

Component material balance gives these three equations of three variables
0.99F, +0.05F, + OF, = 400

0.01F, +0.92F, +0.1F, = 400

OF, +0.03F, + 0.9F, = 200

Re-arranging the above equations

F, = (400—0.05F,)/0.99

F, = (400-0.01F, - 0.1F,)/0.92

F, = (200-0.03F,)/0.9

Starting with F1=F2=F3=1000/3

Iteration | F1 F2 F3
333.3333 | 333.3333 | 333.3333
1.0000 | 387.2054 | 394.3420 | 209.0775
2.0000 |384.1241 | 407.8815 | 208.6262
3.0000 |383.4403 | 407.9380 | 208.6243
4.0000 |383.4375|407.9383 | 208.6243
5.0000 |383.4375|407.9383 | 208.6243
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A Matlab program for solving the above equations using Gauss-Seidel method is
listed in Table 7.1

Table (7.1) Matlab code and results for solution example (7.5)

F1=333.33; F2=333.33; F3=333.33
fori=1:4
F1=(400-0.05*F2)/0.99;
Matlab | o5 _ 400-0.01#F1-0.1%F3)/0.92:
Code | £3-(200-0.03*F2)/0.9;
disp([ i, F1, F2, F3])
end
1.0000 387.2056 394.3423 209.0775
2.0000 384.1241 407.8815 208.6262
Results | 50000 383.4403 407.9380 208.6243
4.0000 383.4375 407.9383 208.6243
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Solutions of Non-Linear Equations in One Variable (Root Finding)

8.1 Graphical Methods

A simple method for obtaining a root of the equation f(x) = 0 is to plot the function
and observe where it crosses the x axis. There is much available software that will
facilitate making a plot of a function. We will use Matlab exclusively for the course
notes; however you can use other software such as Excel or Matcad for your work.

Example 8.1

600 —0.15x

Solve ~ (1 —e ") =50 using the graphical method.

Solution

_ 600
X
Matlab statements listed in table (8.1).

The function f(x) (1 — e®™) — 50 can be plotted in Figure 8.1 using the

Table (8.1) Matlab code for solving example (8.1) using graphical method

x=4:0.1:20;
fx=600*(1-exp(-0.15*x))./x-50;
Matlab | plot(x,fx,[0 20],[0 0])

Code xlabel('x");

ylabel('f(x)")

grid on; zoom on

20

15

10

5

0

-5

-10

-15

-20

-25
0 2 4 6 8 10 12 14 16 18 20

Figure 8.1 The graphical method for roots finding.
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The Matlab Zoom on statement allows the function to be zoomed in at the cursor
with left mouse click (right mouse click will zoom out). Each time you click the axes
limits will be changed by a factor of 2 (in or out). You can zoom in as many times as
necessary for the desired accuracy. Figure 8.2 shows the approximate root x to be
8.79

0.06

0.04

0.02

()

-0.02

-0.04

-0.06

-0.08

8.75 8.76 8.77 8.78 8.79 8.8 8.81 8.82
X

Figure 8.2 The graphical method for roots finding with Matlab Zoom on.

The plot of a function between x; and x, is important for understanding its behavior
within this interval. More than one root can occur within the interval when f(x;) and
f(x,) are on opposite sides of the x axis. The roots can also occur within the interval
when f(x;) and f(x,) are on the same sides of the x axis. Since the functions that are
tangent to the x axis satisfy the requirement f(x) = 0 at this point, the tangent point is
called a multiple root.

8.2 The Bisection Method

The bisection method or interval halving can be used to determine the solution to f(x)

=0 on an interval [x; = a, X, = b] if f(x) is real and continuous on the interval and f(x,)
and f(x,) have opposite signs. We assume for simplicity that the root in this interval is

unique. The location of the root is then calculated as lying at the midpoint of the

subinterval within which the functions have opposite signs. The process is repeated to

any specified accuracy.

The procedure can be summarized in the following steps

Numerical Analysis /Lec. 8 -62 -
Third Class



Let f(xy) f(x2) <0 on an interval [x; = a, X, = b]
Stepl  Letxc= - (x+ )i fu =10 2 = (o)

Step 2 Evaluate f, = f(xy)
If f, f; > 0 then
X1 =Xy f1 =1k
else
X2 = Xy f2 = fx
end
Step 3 If abs(x, — x;) > an error tolerance, go back to Step 1

Figure 8.3 shows first three iterations xs, X4, and Xs of the bisection method.

15

10

x5

f(x)
o

xl=a 4

-10

-15
4 6 8 10 12 14 16

X

Figure 8.3 The first three iterations Xs, X4, and xs of the bisection method.

;=6 = f(x)=9.3430 and x=14 = f(x,) =-12.3910
X3 = %(x1+x2): %(6+14)=10 = f(xs) =-3.3878

F(x;) f(Xa) < 0 = X4 = %(x1 +%g) = %(6 +10)=8 = f(x,)=2.4104

F(x3) f(Xq) < 0 = X5 = %(x3 +%) = %(10 +8)=9 = f(xs)=-0.6160
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Since f(x;) and f(x,) bracket the root and x; = %(xl + Xp) = %(a + b), the error after

the first iteration is less than or equal to %(b —a).

A Matlab program for solving example 8.1 using bisection method is listed in Table
8.2 where the function f(x) is an input to the program.

Table (8.2) Matlab code and results for solving example (8.1) using bisection method

fun=inline('600*(1-exp(-0.15*x)) /x-50")
x1=6;
f1=fun (x1);
x2=14,
f2=fun (x2);
tol=1e-5;
for i=1:100
x3=(x1+x2)/2;
3= fun(x3);
if f1*f3<0
X2=X3;
f2=f3;
else
x1=x3;
f1=f3;
end
if abs(x2-x1)<tol; break;end
end
X3

Matlab
Code

X3 =

Results 8.7892

The statement Inline is used to define the function at a given value of x.
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Example 8.2
Use the bisection method to find the root of the equation x-cos(x) = 0 with a percent
relative error |&/< 1%. (The exact value is 0.7391)

Solution

f(x)= X-C0S(X)
We have seen before that there is a single root lies in the interval [0,1]. Therefore, we
start with x,=0 and x,=1, then iterate using the same procedure followed in example 8.1
to get the following tabulated results:

Iter X Xo X3 fX) | (X)) | f(X9) led
1 0.0 1.0 05 | -1.0000 | 0.4597 | -0.3776 | 32.35
2 0.5 1.0 0.75 | -0.3776 | 0.4597 | 0.0183 | 1.48
3 0.5 0.75 | 0.625 | -0.3776 | 0.0183 | -0.1860 | 15.44
4 0625 | 075 | 0.6875 | -0.1860 | 0.0183 | -0.0853 | 6.98
5 0.6875 | 0.75 | 0.7188 | -0.0853 | 0.0183 | -0.0339 | 2.75
6 0.7188 | 0.75 | 0.7344 | -0.0339 | 0.0183 | -0.0079 | 0.64

Then x=0.7344

Example 8.3

The friction factor f depends on the Reynolds number Re for turbulent flow in smooth
pipe according to the following relationship.

% — -0.40+3In(Re /)

Use the bisection method to compute f for Re = 25200 that lies between [0.001 ,0.1 ].

Solution

Re-write the above equation in the form

E(f) = -0.40 + 31n(25200/T) —%
Iter fi f f3 E(f) E(f,) E(fs)
1 0.0010 | 0.1000 | 0.0505 |-20.4514 | 11.9973 | 10.1179
2 0.0010 | 0.0505 | 0.0258 |-20.4514 | 10.1179 | 7.7528
3 0.0010 | 0.0258 | 0.0134 |-20.4514 | 7.7528 | 4.7705
4 0.0010 | 0.0134 | 0.0072 |-20.4514| 4.7705 | 1.0841
5 0.0010 | 0.0072 | 0.0041 |-20.4514 | 1.0841 | -3.2373
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6 0.0041 | 0.0072 | 0.0056 | -3.2373 | 1.0841 | -0.6453
7 0.0056 | 0.0072 | 0.0064 | -0.6453 | 1.0841 | 0.2946

8 0.0056 | 0.0064 | 0.0060 @ -0.6453 | 0.2946 | -0.1536
Then according to above table f = 0.006

8.3 Secant Method (Linear Interpolation Method)

The bisection method is generally inefficient, it requires more function evaluations in
comparison with the secant method which is linear interpolation using the latest two
points. Figure 8.4 shows graphically the root x; obtained from the intersection of the
line AB with the x-axis.

9]

f(x)
Figure 8.4 Graphical depiction of the secant method.

The intersection of the straight line with the x-axis can be obtained by using similar
triangles x3 x; A and x3 X, A or by using linear interpolation with the following points.

X X1 X3 X2
f(x) f(x1) 0 f(x2)
Xg =X, _—  0-1(x,) —y X, — X

el Ten e T S R N Ton o

The next guess is then obtained from the straight line through two points [x,, f(x;)]
and [xs, f(x3)]. In general, the guessed valued is calculated from the two previous
POINts [Xn.1, f(Xn-1)] and [xn, f(xn)] @s
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Xn+1 = Xn— F(Xn) X0 = %01

F(X0) = (%)

The secant method always uses the latest two points without the requirement that they
bracket the root as shown in Figure 8.4 for points [xs, f(x3)] and [Xs, f(X4)]. As a
consequence, the secant method can sometime diverge. A Matlab program for
solving example 8.1 using secant method is listed in Table 8.3

Table (8.3) Matlab code and results for solving example (8.1) using secant method

fun=inline('600*(1-exp(-0.15*x))/x-50")
tol=1e-5;
x(1)=1;
f(1)= fun(x(1));
x(2)=14;
f(2)= fun(x(2));
Matlab | fori=2:20
Code X(i+1)=x(0)-f(i)*(x(1)-x(I-1))/(f(i)-f(i-1))
f(i+1)= fun(x(i+1));
if abs(x(i+1)-x(i))<tol;
break;
end
end
X

1.0000
14.0000
10.4956
8.3724
8.8209
8.7897
8.7892
8.7892
The last value of x vector is the solution of the equation

Results
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Example 8.4
Use secant method to estimate the root of f(x)=e™-x. with the two initial guesses X, =

0.and x; = 1.
Solution:

Iter X f(x)
Starting 0 1.0000
Values 1.0 -0.6321

1 0.6127 -0.0708
2 0.563838 0.00518
3 0.56717 | -0.0000418
Example 8.5
Repeat Examples 8.4 using the secant method with the two initial guesses X, = 2. and
X1 = 3.
Solution:

Iter X f(x)
Starting 2 -1.8647
Values 3 -2.9502

1 0.2823 0.4718
2 0.6570 -0.1385
3 0.5719 -0.0075

4 0.5671

This method converges with the required accuracy after 5 iterations.

Example 8.6
Use secant method with initial guesses T = 300 and T = 350 to calculate the bubble

point of binary system (VCM 18 mol%, Water 82 mol%). The vapor pressure for this
components is calculated by:

VCM P°em=eXp(14.9601-1803.84/(T-43.15))
Water  P°, =exp(18.3036-3816.44/(T-46.13))

Where: Ki=P /P,

P=760

Yi =KixXx;

At Bubble point ) yi=> K;xx; =1

Solution
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f(T)= Kixx; -1= e(14.9601-1|-8_32§:f§ » 0.18 N e(ls.sossif‘ig-fé . 0.82 4
760 760
Iter T f(T)
Initial 300.0000 | -0.3086

Values 350.0000 1.4192

1 308.9299 -0.1132
2 311.9636 -0.0378
3 313.4866 0.0018
4 313.4157 | -0.000028

Then at bubble point T=313.457 K

8.4 The Newton-Raphson Method

The Newton-Raphson method and its modification is probably the most widely used
of all root-finding methods. Starting with an initial guess x; at the root, the next guess
X, 1S the intersection of the tangent from the point [x, f(x;)] to the x-axis. The next
guess Xs is the intersection of the tangent from the point [x,, f(x,)] to the x-axis as
shown in Figure 8.5. The process can be repeated until the desired tolerance is
attained.

f(x)

Figure 8.5 Graphical depiction of the Newton-Raphson method.

The derivative or slope f(x,) can be approximated numerically as

() = 1O +A%) = F(x,)
[y = et

The Newton-Raphson method can be derived from the definition of a slope
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F(%) = f(x)-0 = Xy = Xy — f(x)

X =X, f'(xl)

In general, from the point [x,, f(x,)], the next guess is calculated as
- f(X,)
Xns1 = Xn— ——2
n+l n fl(Xn)

A Matlab program for solving example 8.1 using Newton- Raphson method is listed
in Table 8.4 .

Table (8.4) Matlab code and results for solving example (8.1) using Newton-
Raphson method

Matlab
Code

f=inline('600*(1-exp(-0.15*x))/x-50");
df=inline('(90.0*exp(-0.15*x))/x + (600*exp(-0.15*x) - 600)/x"2");
tol=1e-5;
x(1)=1;
for i=2:20
x(i+1)=x(i)-f(x(1))/df(x(i));
if abs(x(i+1)-x(i))<tol;
break;
end
end

Results

1.0000
0.0031
5.9278
8.4473
8.7840
8.7892
8.7892
The last value of x vector is the solution of the equation

Numerical Analysis /Lec. 8 -70 -

Third Class




Example 8.7

Use Newton-Raphson method to estimate the root of f(x)=e™-x. Show all details of

the iterations. Hint: the root is located between 0 and 1.

Solution:
Iter Xi fX) | X)) | Xia | [ea(%)]
1 0.0 1.0 -2.0 0.5 100.00
2 0.5 0.1065 | -1.6065 | 0.5663 | 11.71
3 0.5663 | 0.0013 | -1.5676 | 0.5671 0.15
4 0.5671 | 0.0000 | -1.5676 | 0.5671 0.00
Example 8.8
Repeat Example 8.7 starting with x, = 5.
Solution:
Iter Xi fox) | (X Xiv1 | |ea (%)|
1 5.0 -4,.9933 | -1.0067 | 0.04016 | 12351
2 0.04016 | 0.92048 | -1.9606 | 0.5096 | 92.12
3 0.5096 | 0.0911 | -1.6007 | 0.5665 | 10.04
4 0.5665 | 0.0010 | -1.5675 | 0.5671 | 0.000
Example 8.9

Apply Newton-Raphson method to solve Redlich-Kwong equation which used to
estimate the molar volume of saturated vapor of methyl chloride at 333.15 K and

13.76 bar
RT

a

P=V—b_T°'5\/(\/ +b)

If you know that:-
A=1.5651x10% cm® bar mol? K2

b=44.891 cm® mol*

R=83.14 cm .bar.Kt.mol*

Solution

RT

a

f(v)=

83.14x 333.15

V-b TV +b)_P

1.5651x108

f(V)= - = ~13.76
V —44.891  333.15°°V(V +44.891)
f(v)—_ 27698 _ 8574764131
V —44.891 V(V +44.891)
Fi(v) = 27698 8574764.131  8574764.131

= + +
(V —44.891)>  V(V +44.891)2  V?(V +44.891)

It’s better to start with ideal molar volume as initial value of VV
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_RT _83.14x333.15

\ =2012.943
P 13.76
Iter Vi f(Vi) (Vi) Via
1 2012.943 | -1.75623 |-0.00512 | 1669.717
2 1669.717| 0.291628 |-0.00695 | 1711.673
3 1711.67/3 | 0.005731 |-0.00668 | 1712.531
4 1712.531 | 0.00000231 | -0.00667 | 1712.531

The molar volume equal to 1712.531 cm® mol™
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Solving System of Non-Linear Systems of Equations

A nonlinear system of equations has at least one equation which is not first degree.

Examples: x?+y*=25 y = 3x* — 4X + 2 Xy =9

2X +3y =7 X*+y=8 3 —y* =12
The solutions of a nonlinear system are the points of intersection of the graphs of the
equations. Some systems have one point of intersection; some have more than one
point of intersection; and some have no points of intersection.

band
T @

9.1 Analytical Methods for Solving Systems of Equations

Solutions of nonlinear systems of equations can be found using the substitution or the
elimination method. The substitution method is preferable for a system with one
linear equation. The elimination method is preferable in most, but not all, cases when
both equations are nonlinear.

9.1.1. The Substitution Method

Solve one of the equations for a first degree variable. Substitute the resulting
expression in for that variable in the other equation. Solve for the remaining variable.
Back substitute to find the value(s) of the first variable. Write your solutions as
ordered pairs.

Example 9.1
Solve x*+2x=y+6

X+y=-2 16
Solution il

X+y=—2 5 y=—2-X » X°+2X=-2-X+6 -

X*+3x—-4=0 > (X+4)(x-1)=0 > x=-4&x=1
y=-2-(4)=2 & y=-2-1=-3 >
Solution: (-4,2) (1,-3)

S

To check graphically, entery; = x> +2x -6 & y,=-2-X
Find the points of intersection.
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9.1.2. The Elimination Method

Line the equations up vertically so like terms are underneath each other. If needed,
multiply each equation by a number so that when the equations are added together one
of the variables is eliminated. Solve for the remaining variable. Back substitute to find
the value(s) of the eliminated variable. Write your solutions as ordered pairs.

Example 9.2

Solve  3x*+5y*=17
2x* -3y’ =5

Solution:

3x*+5y°=17 3R, > 9x*+15y°=51

2x*-3y*=5 B5R, - 10x*-—15y*=25
19x°=76

=4 5 x=-2 & x=2

3(-2)%+5y°=17 - 12+5y*=17

5y’=5 S y*=1 o vy=-1 & y=1

3(2°+5y°=17 - 12+5y*=17 o

5y’=5 5 y*=1 o y=-1 & y=1

Solutions: (-2,-1) (-2,1) (2,-1) (2,1)

9.2 Numerical Methods for Solving Systems of Equations

9.2.1 Fixed point iteration for systems of non-linear equations

Using an initial guess, solve for each variable in the system and use fixed-point
iteration to estimate the solution.

One of the most important drawbacks of the fixed iteration method is that the
convergence of the method is dependent on how the equations are formulated. May
diverge quickly, in that case try solving for the variables in a different way.

It can be shown that sufficient convergence criteria for two equations are:
of | |of,
0% | [OX,
and
of, |, |of,
0%, | |0X,

<1

<1

This represents a very restrictive criteria and that’s why fixed point iteration method
IS not used to solve systems of non-linear equations.
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Example 9.3
Solve using 5 iteration of successive substitution where x =y = 1.5 initially:

Solution

|

x> +y*=5

y—x>=-1

Using x=+5-y2 andy=x*—1 it is easy to show the following iterations:

Iteration Xn Yn
0 1.5 1.5
1 1.658 1.75
2 1.392 0.9375
3 2.030 3.121
4 Non-real Non-real
5

So it is apparent that successive substitution this will not work using these formulas.
Using y=+5-x* and x=,/1+y we can just as easily show the following iterations:

Iteration Xn Y
0 1.5 1.5
1 1.5811 1.5811
2 1.607 1.555
3 1.599 1.564
4 1.601 1.561
5 1.600 1.562

Which is rapidly converging on the true solution of ( /1+;/ﬁ, ~1+417

2

|

As with the Jacobi iterative process, convergence is assured only for a system of

diagonally dominant linear equations.

For systems that are neither linear nor

diagonally dominant, convergence is a function of the equations themselves as well

as the values of x’s chosen to start the iterations.

Example 9.4
As an example of applying the Jacobi method to a system of non-linear equations,
consider the following system:

4\/x>1 —X,+Xg=1
ax,-8(x, f+x,=-21
2%+ X,+5(x, =15

Solving the equations for each of the unknowns (x’s), we have the following:
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Using these relationships in a Jacobi algorithm with starting values of x; = X, = X3 =0,
we can show the convergence of the algorithm over ten iterations in the following

table:

9.2.2 Newton-Raphson for solving systems of non-linear equations

—21-4x,—X
X,= - 173
V -8
15+2x,—X
X,= /#
5

—~
=

X1

X2

X3

0

0

0

3.0625

1.620185

1.732051

2.9654

2.091114

1.975086

3.164866

2.086764

1.941118

3.191267

2.109519

1.961783

3.193133

2.113257

1.963314

3.195105

2.113523

1.963314

3.195343

2.113757

1.963501

3.195385

2.113790

1.963514

O N OB~ W N O

3.195403

2.113796

1.963516

=
o

3.195406

2.113798

1.963518

The Newton-Raphson formula is the following:

Xig =X —

f(x)
f(x)

This formula can be obtained using Taylor series expansion. We can do the same
approach for a system of equations, but considering a Taylor series that account for
the presence of both variables:

Oy Oty
fuen = fuy + (%~ Xl(i))aT(l)Jf (o) = Xap) ax(z) o
and
afz i afz i
Foan) = To) + (Xl(i+1) - Xl(i))aT() + (Xz(i+1) - Xz(i))—ax( Ly
1 2

For the root estimate f,,.,and f,;,,, must be equal zero.
Therefore:
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) Oy 1) Oyi)
U Xy +—2 Xy =— oo + X Yt X !
6X1 1(i+1) 8X2 2(i+1) 1(i) 1(i) 8X1 2(i) 8X2
and

UX oy A+ —2 Xy = — Foy + Xy Y X, !
8X1 1(i+1) 8X2 2(i+1) 2(i) X1(|) axl 2(i) 6X2
Finally;

Which is an iterative method to solve the system of nonlinear equations.

Note also that the Newton-Raphson method can be generalized to solve N
simultaneous equations.

Example 9.5
Solve the following system using Newton-Raphson method:
X +y’ —8x—-4y+11=0
X*+y*—20x+75=0
By tacking a starting point as (x=2; y=4) and & =107,
Solution

L of ) t, of

_ oy oy
oy ofy Oy Oy
oX oYy oy OX

ofy of

Vo = Yo — o OX T o
) =IO T Of, of,,  ofy, of

oxX oy oy oX

f

Let f,=x*+y*-8x—4y+11 and f,=x*+y*-20x+75

_ _ _ f..
Thus: ot =2X -8, ot =2y -4, o, =2x-20, and ot =2y
OX oy OX oy

Hence when x =2 and y = 4 we find that:
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ofo

0 = 2(2)-8=—4,
o~ 22
Also f,,=2°+4° -
a1:1,0 a1:2,0 _ afl,O afz,
oX oy oy oX

1,0

of
=2(4) -
& (4)

4-4,

So for the first iteration we see that:
x, =2 CDE =CH) g 105,

32

y, =4 ONEA=CNEO) 4y 5765

32

X, —X,|_2-9.125

8:‘

Xo

=3.5625

Now we find that iteration 2 produces:

11

of
=2(9.1250) -8 =10.25,
X

11

Ay _ 2(11.375) - 4=18.75,
oy

2,0

° = (~4)(8) - (4)(-16) =32

= 2(2) - 20 =16,
X

2,1

and

2,0

8(2)-4(4)+11=-1 and f,, =2°+4°-20(2)+ 75 =55

=2(4)=8

=2(9.1250) — 20 = -1.75,
X

of
and —2=2(11.375)=22.75
oy

Also f,=9125 ? +11.375% —8(9.125) — 4(11.375) +11 =105.1563 and
f,, =9125 ? +11.375° — 20(9.125) + 75 =105.1563
of , of,, of of

L2l 21172 (10.25)(22.75) — (18.75)(~1.75) = 266
oX oy oy oX
So for the second iteration we see that:
X, 9125 - (1051563 )(22.75) — (1051563 )(18.75) _ -, ¢ 1070

266
y, =11.375 — (205.1563 )(10.25) — (105.1563 )(-1.75) ~6.631109
266
o _[Xo=x,|_[0.125-7.543703 | _ ) _anos
%, | | 915 |
f f
Itr f, f, oM it oy o, X y &
OX oy OX oy
2 4

1 -1 55 -4 4 -16 8 9.125 | 11.375 | 3.5625

2 |105.1563]105.1563| 10.25 | 18.75 | -1.75 | 22.75 |7.543703]6.631109 |0.173293

3 | 25.005 | 25.005 |7.0874069.262218]-4.91259 |13.26222 | 6.826694 | 4.480083 | 0.095047

4 |5.141014]5.141014 | 5.653389 | 4.960166 | -6.34661 | 8.960166 | 6.576327 | 3.728981 | 0.036675

5 ]0.626838 | 0.626838 | 5.152654 | 3.457963 | -6.84735 | 7.457963 | 6.535955 | 3.607865 | 0.006139

6 [0.016299]0.016299 | 5.07191 |3.215731] -6.92809 | 7.215731 | 6.534848 | 3.604543 | 0.000169

7 |1.23E-05 | 1.23E-05 | 5.069696 | 3.209087 | -6.9303 |7.209087 | 6.534847 | 3.604541 | 1.28x10”
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Solving System of Non-Linear Systems of Equations

A nonlinear system of equations has at least one equation which is not first degree.

Examples: x?+y*=25 y = 3x* — 4X + 2 Xy =9

2X +3y =7 X*+y=8 3 —y* =12
The solutions of a nonlinear system are the points of intersection of the graphs of the
equations. Some systems have one point of intersection; some have more than one
point of intersection; and some have no points of intersection.

band
T @

9.1 Analytical Methods for Solving Systems of Equations

Solutions of nonlinear systems of equations can be found using the substitution or the
elimination method. The substitution method is preferable for a system with one
linear equation. The elimination method is preferable in most, but not all, cases when
both equations are nonlinear.

9.1.1. The Substitution Method

Solve one of the equations for a first degree variable. Substitute the resulting
expression in for that variable in the other equation. Solve for the remaining variable.
Back substitute to find the value(s) of the first variable. Write your solutions as
ordered pairs.

Example 9.1
Solve x*+2x=y+6

X+y=-2 16
Solution il

X+y=—2 5 y=—2-X » X°+2X=-2-X+6 -

X*+3x—-4=0 > (X+4)(x-1)=0 > x=-4&x=1
y=-2-(4)=2 & y=-2-1=-3 >
Solution: (-4,2) (1,-3)

S

To check graphically, entery; = x> +2x -6 & y,=-2-X
Find the points of intersection.
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9.1.2. The Elimination Method

Line the equations up vertically so like terms are underneath each other. If needed,
multiply each equation by a number so that when the equations are added together one
of the variables is eliminated. Solve for the remaining variable. Back substitute to find
the value(s) of the eliminated variable. Write your solutions as ordered pairs.

Example 9.2

Solve  3x*+5y*=17
2x* -3y’ =5

Solution:

3x*+5y°=17 3R, > 9x*+15y°=51

2x*-3y*=5 B5R, - 10x*-—15y*=25
19x°=76

=4 5 x=-2 & x=2

3(-2)%+5y°=17 - 12+5y*=17

5y’=5 S y*=1 o vy=-1 & y=1

3(2°+5y°=17 - 12+5y*=17 o

5y’=5 5 y*=1 o y=-1 & y=1

Solutions: (-2,-1) (-2,1) (2,-1) (2,1)

9.2 Numerical Methods for Solving Systems of Equations

9.2.1 Fixed point iteration for systems of non-linear equations

Using an initial guess, solve for each variable in the system and use fixed-point
iteration to estimate the solution.

One of the most important drawbacks of the fixed iteration method is that the
convergence of the method is dependent on how the equations are formulated. May
diverge quickly, in that case try solving for the variables in a different way.

It can be shown that sufficient convergence criteria for two equations are:
of | |of,
0% | [OX,
and
of, |, |of,
0%, | |0X,

<1

<1

This represents a very restrictive criteria and that’s why fixed point iteration method
IS not used to solve systems of non-linear equations.
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Example 9.3
Solve using 5 iteration of successive substitution where x =y = 1.5 initially:

Solution

|

x> +y*=5

y—x>=-1

Using x=+5-y2 andy=x*—1 it is easy to show the following iterations:

Iteration Xn Yn
0 1.5 1.5
1 1.658 1.75
2 1.392 0.9375
3 2.030 3.121
4 Non-real Non-real
5

So it is apparent that successive substitution this will not work using these formulas.
Using y=+5-x* and x=,/1+y we can just as easily show the following iterations:

Iteration Xn Y
0 1.5 1.5
1 1.5811 1.5811
2 1.607 1.555
3 1.599 1.564
4 1.601 1.561
5 1.600 1.562

Which is rapidly converging on the true solution of ( /1+;/ﬁ, ~1+417

2

|

As with the Jacobi iterative process, convergence is assured only for a system of

diagonally dominant linear equations.

For systems that are neither linear nor

diagonally dominant, convergence is a function of the equations themselves as well

as the values of x’s chosen to start the iterations.

Example 9.4
As an example of applying the Jacobi method to a system of non-linear equations,
consider the following system:

4\/x>1 —X,+Xg=1
ax,-8(x, f+x,=-21
2%+ X,+5(x, =15

Solving the equations for each of the unknowns (x’s), we have the following:
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Using these relationships in a Jacobi algorithm with starting values of x; = X, = X3 =0,
we can show the convergence of the algorithm over ten iterations in the following

table:

9.2.2 Newton-Raphson for solving systems of non-linear equations

—21-4x,—X
X,= - 173
V -8
15+2x,—X
X,= /#
5

—~
=

X1

X2

X3

0

0

0

3.0625

1.620185

1.732051

2.9654

2.091114

1.975086

3.164866

2.086764

1.941118

3.191267

2.109519

1.961783

3.193133

2.113257

1.963314

3.195105

2.113523

1.963314

3.195343

2.113757

1.963501

3.195385

2.113790

1.963514

O N OB~ W N O

3.195403

2.113796

1.963516

=
o

3.195406

2.113798

1.963518

The Newton-Raphson formula is the following:

Xig =X —

f(x)
f(x)

This formula can be obtained using Taylor series expansion. We can do the same
approach for a system of equations, but considering a Taylor series that account for
the presence of both variables:

Oy Oty
fuen = fuy + (%~ Xl(i))aT(l)Jf (o) = Xap) ax(z) o
and
afz i afz i
Foan) = To) + (Xl(i+1) - Xl(i))aT() + (Xz(i+1) - Xz(i))—ax( Ly
1 2

For the root estimate f,,.,and f,;,,, must be equal zero.
Therefore:
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) Oy 1) Oyi)
U Xy +—2 Xy =— oo + X Yt X !
6X1 1(i+1) 8X2 2(i+1) 1(i) 1(i) 8X1 2(i) 8X2
and

UX oy A+ —2 Xy = — Foy + Xy Y X, !
8X1 1(i+1) 8X2 2(i+1) 2(i) X1(|) axl 2(i) 6X2
Finally;

Which is an iterative method to solve the system of nonlinear equations.

Note also that the Newton-Raphson method can be generalized to solve N
simultaneous equations.

Example 9.5
Solve the following system using Newton-Raphson method:
X +y’ —8x—-4y+11=0
X*+y*—20x+75=0
By tacking a starting point as (x=2; y=4) and & =107,
Solution

L of ) t, of

_ oy oy
oy ofy Oy Oy
oX oYy oy OX

ofy of

Vo = Yo — o OX T o
) =IO T Of, of,,  ofy, of

oxX oy oy oX

f

Let f,=x*+y*-8x—4y+11 and f,=x*+y*-20x+75

_ _ _ f..
Thus: ot =2X -8, ot =2y -4, o, =2x-20, and ot =2y
OX oy OX oy

Hence when x =2 and y = 4 we find that:
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ofo

0 = 2(2)-8=—4,
o~ 22
Also f,,=2°+4° -
a1:1,0 a1:2,0 _ afl,O afz,
oX oy oy oX

1,0

of
=2(4) -
& (4)

4-4,

So for the first iteration we see that:
x, =2 CDE =CH) g 105,

32

y, =4 ONEA=CNEO) 4y 5765

32

X, —X,|_2-9.125

8:‘

Xo

=3.5625

Now we find that iteration 2 produces:

11

of
=2(9.1250) -8 =10.25,
X

11

Ay _ 2(11.375) - 4=18.75,
oy

2,0

° = (~4)(8) - (4)(-16) =32

= 2(2) - 20 =16,
X

2,1

and

2,0

8(2)-4(4)+11=-1 and f,, =2°+4°-20(2)+ 75 =55

=2(4)=8

=2(9.1250) — 20 = -1.75,
X

of
and —2=2(11.375)=22.75
oy

Also f,=9125 ? +11.375% —8(9.125) — 4(11.375) +11 =105.1563 and
f,, =9125 ? +11.375° — 20(9.125) + 75 =105.1563
of , of,, of of

L2l 21172 (10.25)(22.75) — (18.75)(~1.75) = 266
oX oy oy oX
So for the second iteration we see that:
X, 9125 - (1051563 )(22.75) — (1051563 )(18.75) _ -, ¢ 1070

266
y, =11.375 — (205.1563 )(10.25) — (105.1563 )(-1.75) ~6.631109
266
o _[Xo=x,|_[0.125-7.543703 | _ ) _anos
%, | | 915 |
f f
Itr f, f, oM it oy o, X y &
OX oy OX oy
2 4

1 -1 55 -4 4 -16 8 9.125 | 11.375 | 3.5625

2 |105.1563]105.1563| 10.25 | 18.75 | -1.75 | 22.75 |7.543703]6.631109 |0.173293

3 | 25.005 | 25.005 |7.0874069.262218]-4.91259 |13.26222 | 6.826694 | 4.480083 | 0.095047

4 |5.141014]5.141014 | 5.653389 | 4.960166 | -6.34661 | 8.960166 | 6.576327 | 3.728981 | 0.036675

5 ]0.626838 | 0.626838 | 5.152654 | 3.457963 | -6.84735 | 7.457963 | 6.535955 | 3.607865 | 0.006139

6 [0.016299]0.016299 | 5.07191 |3.215731] -6.92809 | 7.215731 | 6.534848 | 3.604543 | 0.000169

7 |1.23E-05 | 1.23E-05 | 5.069696 | 3.209087 | -6.9303 |7.209087 | 6.534847 | 3.604541 | 1.28x10”
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Solution of First-Order Ordinary Differential Equations

An equation that consists of derivatives is called a differential equation. Differential
equations have applications in all areas of science and engineering. Mathematical
formulation of most of the physical and engineering problems lead to differential
equations. So, it is important for engineers and scientists to know how to set up
differential equations and solve them. Differential equations are of two types

1) Ordinary differential equation (ODE).

2) Partial differential equations (PDE).
An ordinary differential equation is that in which all the derivatives are with respect
to a single independent variable. Examples of ordinary differential equation include:

d .
1) Lay=sin) . y(©)=1,
d?y . dy dy
2) —2+2-2+y=0, 2(0)=2, y(0)=4
) o2 gty @ y(0)
ddy .d%y _dy . d%y dy
3) —Z+3-—Z2+5-2+y=sinx, —(0)=12 , 2(0)=2 , y(0)=4
) o TS g gy Ty =sinX GIXZ() dx() y(0)
First order ordinary differential equations are of the form:
dx

E: f(x,t) with x(0) =x,

On the left hand side is the derivative of the dependent variable x with respect to
the independent variable t. On the right hand side, there is a function that may depend
on both x and t.

Many differential equations cannot be solved exactly. Numerical methods have
been developed to approximate solutions. Numerical analysis is a field in mathematics
that is concerned with developing approximate numerical methods and assessing their
accuracy, for instance for solving differential equations. We will discuss the most basic
method such Taylor, Euler and Runge-Kutta methods.

10.1 Taylor Series Method

Function y(x) can be expanded over a small interval x using the Taylor series from a
start or reference point x
YOKHR) = Y00 +hy () + 20700 + Y70+ 4 'y () +A @

Where h =x_,—x =h, aconstant.
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Example 10.1
Solve the following ordinary differential equation (ODE) using Taylor’s method of

order 2 with h=0.2
?j—i =y-x*+1 , for0<x<2 , withy(0)=05
Solution

2
d—Z =W o=y x+1-2x
dx dx

Yors= Yo + (Yo —Xo2 + 1)h + %(yn —x2 = 2%, + D)h?

i X y

1 0 0.5000
2 0.2000 | 0.8300
3 0.4000 | 1.2158
4 0.6000 | 1.6521
5 0.8000 | 2.1323
6 1.0000 | 2.6486
7 1.2000 | 3.1913
8 1.4000 | 3.7486
9 1.6000 | 4.3061
10 | 1.8000 | 4.8463
11 | 2.0000 | 5.3477

10.2. Euler’s Method
Euler’s method is the simplest and least useful of these three methods. If we are

solving a first-order differential equation of the form 3—3{: f(t,y) with the initial

condition y(0)=A, Euler’s method begins by approximating the first derivative as

dy _ y(t+At)—y(t)
dt At

Setting this equal to f(t,y) and solving for y(t+At) yields the following algorithm for

advancing the numerical solution of an ordinary differential equation:

Y _(xy) ¥(0) =y,

dx
Yni1 = Yn +hx f(X, y)
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Using Euler’s method we have the following consideration:

X =X, +h Yi=Yo+N- (X, 0)
X, =% +h Y, =Y +h-f(x,y)
X =X, +h Ya =Y, +h-f(x,,y,)

M M

M M

M M

Exercise 10.2:
Apply Euler’s method to approximate the solution of the initial value problem

% =2y with y(0)=5 (2)

Solution
We know that the analytical solution of equation (2) is, y =5exp(2x). We numerically

solve equation (2) using Euler’s method with h=0.1 in the time interval [0, 0.5], and
then check how well this method performs. We have f (y) =2y. Then

Xo =0

X, =% +h=0+0.1=0.1

X, =X +h=01+01=0.2

X =X,+h=0.2+0.1=0.3

X, =X +h=03+01=04

Xs =X, +h=04+0.1=0.5

And

Yo =9
Y1 =Yoo + hf (yo) = 5+(P1)ﬁ%§5) =6

f(Yo)
Y, =Yy, +hf(y,) =6+ (0.1)(2)(6) =7.2
y, =Y, +hf(y,)=7.2+(0.1)(2)(7.2) =8.64
y, = Ys +hf(y,) =8.64+(0.1)(2)(8.64) =10.368
Yo =y, +hf (y,) =10.368 + (0.1)(2)(10.368) =12.4416

We summarize this in the following table. If h=0.1, then

X y Exact Difference
0 5 5 0
0.1 6 6.107014 0.107014
0.2 1.2 7.459123 0.259123
0.3 8.64 9.110594 0.470594
0.4 10.368 11.1277 0.759705
0.5 12.4416 13.59141 1.149809
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The third column contains the exact values, y =5exp(2x). The last column contains

the absolute error after each step, computed as |y-Yexac- We see that when h=0.1, the
numerical approximation is not very good after five steps. If we repeat the same
approximation with a smaller value for h, say h=0.01, the following table results for

the first five steps:

X y Exact Difference

0 5 5 0
0.01 5.1 5.101007 | 0.001007
0.02 5.202 5.204054 | 0.002054
0.03 5.30604 5.309183 | 0.003143
0.04 5412161 | 5.416435 | 0.004275
0.05 5520404 | 5.525855 | 0.005451

Doing five steps only gets us to x=0.05. We can do more steps until we reach x=0.5.
We find that the final point will be:

X y

0.5 13.45794

Difference
0.133469

Exact
13.59141

Choosing a smaller value for h resulted in a better approximation at x=0.5 but also
required more steps. One source of error in the approximation comes from the
approximation itself.

10.3 Fourth order Runge-Kutta Method

To find numerical solution to the initial value problem %: f(x,y), y(0) =y, using

Runge-Kutta method we have the following consideration:

y|+1 yl 1 (k + 2k2 + 2k3 + k4)h

k= f(x.%)
1 1
f(x +2h y,+2khj

f x+1h y,+1khj

k, = f(x +h,y, +kh)

This method gives more accurate result compared to Euler’s method
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Example 10.3:
Solve the following ordinary differential equation (ODE) using fourth order
Runge-Kutta method to calculate y(x=0.2)

d_y: - = =
™ x+y; y(0)=1, h=01

Solution:

k,=0+1=1

k, = (0+0.05)+(1+1x0.05)=1.10

k, = (0+0.05) +(1+1.1x0.05)= 1.1050

k, = (0+0.1)+(1+1.1050%0.1) = 1.2105

Y, =Y, +%(k1 + 2k, + 2k, +k,)

y(0.1) =1+ % x (1+2x1.1+2x1.105 +1.2105) =1.11034
k,=0.1+1.11034 =1.21034

k, = (0.1+0.05)+(1.11034+1.21034x0.05) = 1.3209

ky = (0.1+0.05) +(1.11034+1.3209%0.05)= 1.3264

k, =(0.1+0.1)+( 1.11034+1.3264x0.1) = 1.4430

y(0.2) =1.11034 + % x (1.21034 +2x1.3209 +2x1.3264 +1.4430) =1.2428

atx=0.2 y=1.2428

Example 10.4:
A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K.
Assuming heat is lost only due to radiation, the differential equation for the

temperature of the ball is given by

Z—I = —2.2067 x107*3(T* —81x10°) , T(0)=1200 K

where T is in K and t in seconds. Find the temperature at t=480 seconds using
Runge-Kutta 4th order method. Assume a step size of h=240 seconds.
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Solution

‘Z—I = 22067 x102(T* —81x10°)

f(t,T)=—2.2067 x10*2(T* —81x10°)

T,.=T +%(kl+2k2+2k3+k4)

i+1

For i=0 , t,=0 , T,=1200K
k, = f(t,,T,) =(0,1200 ) = —2.2067 x10*2(1200* — 81 x10°) = —4.5579

1

k =f(t0 +%h,T0 +%klhj =f(0+%(240),1200 +%(— 4.5579 ) x 240)

2

— £(120,653.05) = —2.2067 x10*(653.05* —81x10° )
=-0.38347
1 1 1 1
ko =f| to+ SN To+ Sk | =fl 0+ 5(240)’1200 + E(— 0.38347 )x 240

~ £(120,1154.0) = —2.2067 x10*2(1154.0* — 81x10°) = —3.8954
k, =f(t, +h,T, +k,h)="F(0+240,1200 + (- 3.894 )x 240) = f(240,265.10)

— —2.2067 x10*(265.10* —81x10° ) = 0.069750

T, =T, +%(kl + 2k, + 2k, +k,)

=1200 + %(— 4.5579 + 2(—0.38347 )+ 2(— 3.8954 ) + (0.069750 ))

=675.65K

T, is the approximate temperature at t=t;
t=t,+h=0+240 =240
For i=11t, =240,T, =675.65K
k, =f(t,,T,) =f(240,675.65)=—2.2067 x10**(675.65* —81x10°)

=—0.44199

k, = f(tl +%h,T1 +%klhj = f(240 + %(240),675.65 + %(— 0.44199 )240)

=(360,622.61) = —2.2067 x102(622.61° —81x10°)
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= -0.31372
1 1 1 1
K, = f(tl + Eh,T1 + Ekzh) = f(240 +§(240),675.65 +§(— 0.31372 ) x 240)

=(360,638.00)
— 22067 x10*?(638.00* —81x10°)
=-0.34775
k, =f(t, +h, T, + k;h)="7(240 + 240,675.65 + (— 0.34775 ) x 240 ) = (480,592.19)

— 2.2067 x107%2(592.19* —81x10°)
— —0.25351
T,=T, +%(kl + 2k, + 2k, +K,)

=675.65 + %(— 0.44199 + 2(~0.31372 )+ 2(— 0.34775 )+ (- 0.25351 ))

=594 91K

T, is the approximate temperature at time t,
t, =t +h =240+ 240 =480

Table 1 and Figure 2 show the effect of step size on the value of the calculated
temperature at t =480 seconds.

Table 1 Value of temperature at time, t=480s for different step sizes

Step size, h | T(480) | E; | |%

480 -90.278 | 737.85 113.94

240 594,91 | 52.660 8.1319

120 646.16 | 1.4122 0.21807

60 647.54 |0.033626 0.0051926
30 647.57 |0.00086900 | 0.00013419

Example 10.5
Using Matlab Commands solve the following equation using both Eular and
Runge-Kutta method and to approximate the solution of the initial value problem

% =x+Yy, y(0)=1 with step sizeh =0.1.
X

Solution:
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Eular Runge Kutta
clear all, clc,format short clear all, clc,format short
x(1)=0; X(1)=0;y(1)=1;h=0.1;
y(1)=1; f=inline('x+y");
h=0.5 % f(X,y) = x+y
for i=1:5 for i=1:5
X(i+1)=x(i)+h; X(i+1)=x(i)+h;
dy=x(i)+y(i); k1 = f(x(1),y(1));
y(i+1)=y(1)+h*dy; k2 = f(x(1)+h/2,y(i)+k1*h/2);
end k3 = f( x(i) + h/2,y()+k2*h/2);

y_exact= -1-x+2*exp(X);
error=y_exact-y

table=[x',y',y_exact',error’]

k4 = f( x(i) + h,y(i))+k3*h);
y(i+1)=y(i)+(1/6)*h*(k1 +2*k2 + 2*k3 +k4);
end

y_exact= -1-x+2*exp(X); error=y_exact-y
table=[x',y',y_exact',error']

table =

0 1.0000  1.0000
0.1000 1.1000 1.1103
0.2000 1.1200 1.2428
0.3000 1.1320  1.3997
0.4000 1.1432 1.5836
0.5000 1.1543 1.7974

0
0.0103
0.1228
0.2677
0.4404
0.6431

table =

0 1.0000 1.0000 0
0.1000 1.1103 1.1103 0.0000
0.2000 1.2428 1.2428 0.0000
0.3000 1.3997 1.3997  0.0000
0.4000 1.5836 1.5836  0.0000
0.5000 1.7974 1.7974  0.0000
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Solving Simultaneous First-Order Ordinary Differential Equations

11.1 Integration two simultaneous first-order ordinary differential equations
Consider the following system of first-order ODE’s describing the dependence of two
dependent variables y and z on one independent variable x:

dy

_:f v Yo
=1(0y.2)
dz
&—g(x,y,z)

These two differential equations are coupled and must be integrated simultaneously
because both equations involve both dependent variables.

Initial conditions are required giving the values of y and z at the initial value of x. The
algorithm for 4th-order Runge-Kutta integration of two coupled ODEs is:

h
Yier =i +g( Kyg + 2Ky +2Kgy +Kyy)

h
Zi,1 =1 +g(k12 + 2Ky, +2Kgp +kyp )

ki = F0%,Yi.2i)

ki =9(%,Yi.7)

k,, = f(% +0.5h,y; +0.5hk,,;,z; +0.5hk,, )
ky, = g(x +0.5h,y; +0.5hk,,,z; +0.5hk,, )
ks, = f(% +0.5h,y; +0.5hk,,,z; +0.5hk,, )
K3, = 9( % +0.5h,y; +0.5hk,,,z; +0.5hk,, )
Ky = F(X +h,y; +hkgp,z +hks, )

ke, = 9(% +h,y; +hkgy,z; + hkg, )

As example an exothermic reaction in unsteady-state continuous stirred tank reactor
and exothermic reaction in a plug flow reactor with heat exchange through the reactor
wall.

From the one and two ODE examples, you can extend the method to integration of
three coupled ODE’s. Three coupled ODE’s would be encountered, for example, for
reaction of gases in a steady-state non-isothermal plug flow reactor with significant
pressure drop (dC/dx =, dT/dx =, and dP/dx=).
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11.2 Integration of a system of first-order ordinary differential equations

d
%: 1% Y1, Y200 Vi)
d
%: f( Y1, Y20 Y )
d
(;/)r(n = (X Y1 Y2 re Yin)

The solution of the above equations is:

N h
yrt =y +g(k1,i +2Ky; +2K3; +Kei ) Wherei=1,2, ..., mand

kyi = X" Y0 Y3 Ym)

h hk hk hk

kz,i=fi(><”+5,y{‘+ 2“,y2+ 21'2---,y,2+ 2““)
hk hk hk

ka,i=fi(><”+§,y1”+ 22'1,yz”+ 22'2---,y,%+ 22"“)

Ky = fi(x"+h,y7 +hkgy,y5 +hkgy .., ym +hks )

The idea of the solution to a system of differential equations is similar to a solution of a
single differential equation.

Example 11.1:
Using fourth order Runge-Kutta method with step size h = 0.1 solve

&= yy2 +x -, y(0)=1

dy, _ _
dLX _XY2+yl ) Y2(O)_'1

To calculate y,(0.1) and y,(0.1)

Solution
Atx=0,y,=1y,=-1
Kip=yiy2 +X=(1)(-1) +0=-1

Kio=xy, +y; = (0)(-1) + 1=1
Ky = (y1+0.5hKy 1)(y,+0.5hK, 5) + (x+0.5h) =(0.95)(-0.95) + 0.05 = -0.8525
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Kz = (x+0.5h)(y,+0.5hk; ) +(y;1+0.5hk; ;) =(0.05)(-0.95) + 0.95 = 0.9025
ka1 = (Y1+0.5hK,1)(y2+0.5hK, ) + (x+0.5h) =(0.9574)(-0.9549) + 0.05= -0.8642
ks, = (x+0.5h)(y,+0.5hK5 ) +(y1+0.5hk, 1) =(0.05)(-0.9549) + 0.9574 = 0.9096
Ks1 = (y1+hks 1) (yo+hks») + (x+h) =(0.9136)(-0.9091) + 0.1 = -0.7305

Ky = (X+h)(ya+hks ) +(y;1+hks ;) =(0.1)(-0.9091) + 0.9136= 0.8227

at x=0.1

y,(0.1) = y,(0) + (WB) (K, ; + 2Ky, + 2Ky, + K, ;)
y,(0.1) = 1 +(0.1/6) [(-1) + 2(-0.8525) + 2(-0.864) + (-0.730)]= 0.9139
Y,(0.1) = y,(0) +(6) (K, , + 2K, , + 2Ky, + K, ,)

y,(0.1) = -1 + [(1) + 2(0.9025) + 2(0.909) + (0.823)]= -0.9092

Example 11.2
Use ode45 Matlab Command to solve the following first order system for y; andy, at
0<x<1.

W= vy, +x ,¥1(0) =1

dx

Yo =xy,+y1 L ya0)=-1

dx
Using fourth order Runge-Kutta method with step size h = 0.1
Solution

The Matlab routines ode45 can be used to solve the system. A Matlab function must
be created to evaluate the slopes as a column vector. The function name in this
example is exode(x, y) which must be saved first in the hard drive with the same
name exode.m.

function dydx = exode(x,y)
dydx (1,1)=y(1)*y(2)+x;
dydx (2,1)=x*y(2)+y(1);
The command ode45 is then evaluated from the command windows. Matlab will set
the step size to achieve a preset accuracy that can be changed by user.

The independent variable can also be specified at certain locations between the initial
and final values and Matlab will provide the dependent value at these locations.
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xspan=0:0.1:1;
[X,y]=0de45('exode’,xspan,[1 , -1])

X = y =
0 1.0000 -1.0000
0.1000 0.9139 -0.9092
0.2000 0.8522 -0.8341
0.3000 0.8106 -0.7711
0.4000 0.7863 -0.7174
0.5000 0.7772 -0.6705
0.6000 0.7817 -0.6283
0.7000 0.7987  -0.5889
0.8000 0.8274  -0.5504
0.9000 0.8675 -0.5108
1.0000 0.9188 -0.4681

Exercise 11.3:

Let’s consider a simple example of a model of a plug flow reactor that is described by a
system of ordinary differential equations. A plug flow reactor is operated as shown in
Figure (9.1) below.

z=0 z=3

Figure (9.1) Isothermal plug flow reactor
The plug flow initially has only reactant A, the components A react to form component
B. The mole balance for each component is given by the following differential
equations
Ldc, _

dz K,
u d;:zB =k,C, —k,C,
u d;:zc =k,C,
With the following initial values
Ca(z=0) =1 kmol/m® Cg(z=0)=0 Cc(z=0)=0 and k;=2 k,=3
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If u=0.5 m/s and reactor length z=3 m. Solve the differential equations and plot the
concentration of each species along the reactor length

Solution:

We’ll start by writing the function defining the right hand side (RHS) of the ODEs. The

following function file ‘example3’ is used to set up the ode solver.

function dC= Example4 ( z, C)
u=0.5;

k1=2; k2=3;

dC(1,1) = -k1 *C(1) / u;

dC(2,1) = (k1 *C(1)-k2 *C(2)) / u;
dC(3,1) = k2 *C(2)/ u;

Now we’ll write a main script file to call ode45. CA, CB and CC must be defined
within the same matrix, and so by calling CA as C(1), CB as C(2) and CC as c(3), they
are listed as common to matrix C.

The following run file is created to obtain the solution:

clear all, clc

[z, C] = oded5(' Example3d', [0:0.1:3], [1 0 0])
plot (z,C(;,1),'k+-',2,C(:,2),'k*:",z,C(:,3),'kd-.")
xlabel (‘'Length (m)");

ylabel (‘Concentrations (kmol/m”3) ');

legend (‘A', 'B', 'C")

The produced plot is as in Figure (9.2)
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= C
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Length (m)
Figure (9.2): A, B and C concentrations along plug flow reactor
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11.3 Solving Higher Order Ordinary Differential Equations
We have learned Euler’s and Runge-Kutta methods to solve first order ordinary

differential equations of the form

%:f&dlﬂm=%

What do we do to solve differential equations that are higher than first order? For
example an n"order differential equation of the form
d"y

a,—-+a, 31/+K+a ay
dx" dx" dx

with n-1initial conditions can be solved by assuming

n n-1

+a,y = f(x)

y=12, (1)
dy dz

—1 2
ax  dx 2 2)
d’y dz
dle B d_x2 — % (3)
A
d™'y dz,.
W e )
dy _dz,
dx"

dn -1
H-a S -a L ay i)
= i(_ an—lZnK _alzZ _aozl + f(X)) (n+1)
a

n

The above Equations from (2) to (n+1) represent n first order differential equations as
follows

dz

d_xl =27, = f,(2,,2,,K ,X)

dz

d_xzz Z3 = fZ(Zl,ZZ,K ’X)
M

dz

N 1
dx = a_(_ a,,z,K —a,z, —a,z, + f(x))

Each of the n first order ordinary differential equations is accompanied by one initial
condition. These first order ordinary differential equations are simultaneous in nature
but can be solved by the methods used for solving first order ordinary differential
equations that we have already learned.

n
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Higher Order Ordinary Differential System of first Order Ordinary
Equations Differential Equations
((jjxg 23§+2y:ezxsinx %=Z . Y¥(0)=-
with %zezxsinx—2y+22 , 2(0)=—
v0)=-04, Y0)=—06
dx
dy ,dy dy dy
—+2 —3—==X"+Y, —=1Z, 0)=4
dx>  dx* dx y dx y(0)
V;'t; ; %:u, 2(0) =2
>0 =1 ~(©0)=2, y(0)=4 i
d—=x2+y—2u+32, u(0) =1
X
dly . dy y dy
_— = — - = 0 =l
e der3y ’ ax yO)
with %:u, z(0)=1
o "L 0)-025, dy(O) LyO-1 |
d—izv, u(0)=0.25
dv vy
&:;—3y+z, V(O):05

Example 11.4
Re-write the following differential equation as a set of first order differential equations.

2

39Y oW 5y e y(0)=5, y(0)=

dx*  dx
Solution
The ordinary differential equation would be rewritten as follows. Assume
2
dy _ z, Then d—zl _d
dx dx® dx

Substituting this in the given second order ordinary differential equation gives
3$+22+5y=e‘X
dx
dz l(e_x
dx
The set of two simultaneous first order ordinary differential equations complete with
the initial conditions then is

-2z —5y)
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dy
= —7 y(0)=5
- z, y(0)

%z%(e‘x —2z-5y) 2(0)=7.

Now one can apply any of the numerical methods used for solving first order ordinary
differential equations.

Example 11.5

Given the third-order ordinary differential equation and associated initial conditions
3 2 2

9y 39Y Wy | yO=4b _g5 Y _go

dx dx dx dX|,_q dx?|

a. Write this differential equation as a system of first-order ordinary differential
equations

b. Using fourth order Runge-Kutaa method to estimate y(0.1) and y(0.2) taking
Ax=0.1

a)

Yz yor-4
dx

dz
e
du_ x*-3u-5z-y, u(0)=0.22

dx

b) Solution (1)

First step of integration x=0,y=4,2z=0.6,u=0.22 , Ax=0.1

k11=z =0.6000

k21=u=0.2200

k31=x2-3xu-5xz-y= 02-3%0.22-5%0.6-4=-7.6600
k12=z+0.5xAxxk21=0.6+0.5%0.1%0.22= 0.6110

k22=(u+0.5xAxxk31) =(0.22+0.5%0.1x(-7.6600)) = -0.1630

k32=(x+0.5%Ax)2 -3%(u+0.5xAxxk31)-5x(z+0.5% Axxk21)-(y+0.5x Axxk11)
=(0+0.5%0.1) 2-3%(0.22+0.5%0.1x(-7.66))-5%(0.6+0.5x0.1x0.22)-(4+0.5%0.1x0.6)
=-6.5935

k13=z+0.5xAxxk22=0.6+0.5x0.1%(-0.1630)= 0.5918

k23=u+0.5xAxxk32 =0.22+0.5%0.1x(-6.5935) = -0.1097

k33=(x+0.5xAx) 2 -3x(u+0.5xAxxk32)-5x(z+0.5x Axxk22)-(y+0.5x Axxk12)

u, 2z(0)=06
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=(0+0.5%0.1)2-3x%(0.22+0.5%0.1%(-6.5935))-5%(0.6+0.5x0.1%(-0.1630))-(4+0.5x0.1x
0.6110) = -6.6583

k14=z+Axxk23=0.6+0.1x(-0.1097)= 0.5890

k24=u+Axxk33=0.22+0.1%(-6.6583) = -0.4458

k34=(x+Ax) 2 -3x(u+Axxk33)-5%(z+Ax*xk23)-(y+Axxk13)
=(0+0.1)2-3%(0.22+0.1x(-6.6583))-5%(0.6+0.1x(-0.1097))-(4+0.1x0.5918) = -5.6569
X=x+Ax=0+0.1=0.1000
y=y+Ax/6x(k11+2xk12+2xk13+k14)=4+0.1/6%(0.6+2x0.6110+2x0.5918+0.5890)

= 4.0599
7=7+Ax/6*(k21+2*k22+2*k23+k24)=0.6+0.1/6x%(0.2200+2%(-0.1630)+2%(-0.1097)+
(-0.4458))=0.5871
U=u+Ax/6*(k31+2*k32+2*k33+k34)=u+0.1/6x(-7.6600+2x(-6.5935)+2x(-6.6583)+
(-5.6569))=-0.4437

2
Then at x=0.1, y=4.0599, z=%Y —os871 , u=92-9Y_ g7

U= — =
dx dx dx®

Second step of integration x=0.1 , z=0.5871 , u=-0.4437 , Ax=0.1
k1l=z=0.5871

k21=u=-0.4437

k31=x2-3xu-5xz-y= 0.12-3%(-0.4437)-5%(0.5871)- 4.0599=-5.6546
k12=z+0.5xAxxk21=0.5871+0.5%0.1x(-0.4437)= 0.5650

k22=(u+0.5xAxxk31) =((-0.4437)+0.5%0.1x(-5.6546)) = -0.7264
k32=(x+0.5xAx)2-3x(u+0.5xAxxk31)-5%(z+0.5x Axxk21)-(y+0.5x Axxk11)
=(0.1+0.5%0.1)2-3%(-0.4437+0.5x0.1%(-5.6546))-5%(0.5871+0.5%0.1x(-0.4437))-(
4.0599+0.5x0.1x0.5871) = -4.7124
k13=z+0.5xAxxk22=0.5871+0.5%0.1x(-0.7264)= 0.5508

k23=u+0.5xAxxk32 =-0.4437+0.5x%0.1x(-4.7124) = -0.6793

k33=(x+0.5xAx)2 -3%(u+0.5x Axxk32)-5x(z+0.5% Axxk22)-(y+0.5x Axxk12)
=(0.1+0.5%0.1)2-3x(-0.4437+0.5%0.1x(-4.7124))-5x(0.5871+0.5%0.1x(-0.7264))-(
4.0599+0.5x0.1x0.5650) = -4.7819

k14=z+Axxk23=0.5871+0.1%(-0.6793)= 0.5192
k24=u+Axxk33=-0.4437+0.1%(-4.7819) = -0.9219
k34=(x+Ax)2-3%(Uu+Axxk33)-5%(z+Axxk23)-(y+Axxk13)
=(0.1+0.1)2-3%(-0.4437+0.1%(-4.7819))-5%(0.5871+0.1%(-0.6793))-(4.0599+0.1%0.5
508) =-3.9055
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x=x+Ax=0.1+0.1= 0.2
y=y+Ax/6%(k11+2xk12+2xk13+k14)=
4.0599+0.1/6%(0.5871+2x0.5650+2x0.5508+0.5192)= 4.1155
2=2+Ax/6*(k21+2*k22+2*k23+k24)=
0.5871+0.1/6%((-0.4437)+2x(-0.7264)+2x(-0.6793)+( -0.9219))= 0.5175
U=u+Ax/6*(k31+2*k32+2*k33+k34) =

-0.4437 +0.1/6%((-5.6546) +2x( -4.7124 )+2x(-4.7819)+ (-3.9055 ))=-0.9195

dz d%

Then at x=0.2 , y=4.1155, z = a_ 05175, u — =-0.9195
dx dx dx

Solution (2) Using Matlab:
We’ll start by writing the function defining the right hand side (RHS) of the ODEs. The
following function file ‘EX’ is used to set up the ode solver.

function dq = Ex(x,q)
y=q(1);z=a(2);u=q(3);
dq(1,1)=z;

dq(2,1)=u;
dqg(3,1)=x"2-3*u-5*z-y;

The following run file is created to obtain the solution:

clear all,clc,format compact
[X,q]=0de45('Ex',[0:0.1:0.2],[4,0.6,0.22])

y=q(:,1)

The produced results will be
X =

0
0.1000
0.2000

4.0000 0.6000 0.2200
4.0599 0.5871  -0.4437
4.1155 0.5175 -0.9195

y =
4.0000
4.0599
4.1155
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