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Introduction to Numerical Analysis 

 

1.1 Analysis versus Numerical Analysis  

The word analysis in mathematics usually means who to solve a problem through 

equations. The solving procedures may include algebra, calculus, differential 

equations, or the like. 

 

Numerical analysis is similar in that problems solved, but the only procedures that 

are used are arithmetic: add, subtract, multiply, divide and compare.  

 

Differences between analytical solutions and numerical solutions: 

1) An analytical solution is usually given in terms of mathematical functions. The 

behavior and properties of the function are often apparent. However, a numerical 

solution is always an approximation. It can be plotted to show some of the 

behavior of the solution. 

2) An analytical solution is not always meaningful by itself.  

Example: 3  as one of the roots of 03323  xxx . 

3) While the numerical solution is an approximation, it can usually be evaluated as 

accurate as we need. Actually, evaluating an analytic solution numerically is 

subject to the same errors. 

 

1.2 Computers and Numerical Analysis 

 

 

 

 As you will learn enough about many numerical methods, you will be able to 

write programs to implement them.  

 Programs can be written in any computer language. In this course all programs 

will be written in Matlab environment. 

 Actually, writing programs is not always necessary. Numerical analysis is so 

important that extensive commercial software packages are available.  

 

 

Computers Numerical Methods＋Programs 
Numerical Analysis 
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1.3 Types of Equations 

The equations is divided into three main categories such as in below figure:- 

 

 

1.4 Kinds of Errors in Numerical Procedures 

 

The total error comprises of: 

1) Model Error: due to the mismatch between the physical situation and the 

mathematical model. 

2) Data Error: due to the measurements of doubtful accuracy. 

3) Human Error: due to human blunders. 

4) Propagated Error: the error in the succeeding steps of a process due to an 

occurrence of an earlier error. 

5) Truncation Error: the notion of truncation error usually refers to errors introduced 

when a more complicated mathematical expression is “replaced” with a more 

elementary formula. This formula itself may only be approximated to the true values, 

thus would not produce exact answers. 
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Example 1.1: 

Truncation of an infinite series to a finite series to a finite number of terms leads to 

the truncation error. For example, the Taylor series of exponential function 

   
!

...
!3!2

1
32

n

xxx
xe

n
x   

If only four terms of the series are used, then 
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The truncation error would be the unused terms of the Taylor series, which then are 


!5!4

54 xx
Et 

!5

1

!4

1 54

  0516152.0  

 

Check a few Taylor series approximations of the number ex, for x = 1, n = 2, 3 and 4. 

Given that e1 = 2.718281.  

 

Order of n 
Approximation 

for ex 
Absolute error 

Percent relative 

error 

2 2.500000 0.218281 8.030111% 

3 2.666667 0.051614 1.898774% 

4 2.708333 0.00995 0.365967% 

 

6) Round-Off Error: A round-off error, also called rounding error, is the 

difference between the calculated approximation of a number and its exact 

mathematical value due to rounding 

 

Example 1.2: 

Numbers such as , e, or 3  cannot be expressed by a fixed number of decimal 

places. Therefore they cannot be represented exactly by the computer. 

Consider the number . It is irrational, i.e. it has infinitely many digits after the 

period:  = 3.1415926535897932384626433832795..... 

The round-off error computer representation of the number  depends on how many 

digits are left out. 
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Let the true value for  is 3.141593. 

 

Number of digits 

(Decimal digit) 

Approximation 

for  
Absolute error 

Percent relative 

error 

1 3.1 0.041593 1.3239% 

2 3.14 0.001593 0.0507% 

3 3.142 0.000407 0.0130% 

  

1.5 Errors in Numerical Procedures 

 There are two common ways to express the size of the error in a computed result: 

absolute error and relative error. 

 

 Absolute error = | true value – approximate value |, which is usually used when the 

magnitude of the true value is small. 

 

 Relative error =
| valuetrue|

|  valueeapproximat -  value true|
, which is a desirable one. 

While 

 %100
 valuetrue

 valueeapproximat   valuetrue
error, relativePercent t 


  

 

 

 



Numerical Analysis /Lec. 2     - 5 -                   

Third Class                                                  

Interpolation and Approximation  

 

What is interpolation? 

Many times, data is given only at discrete points such as (x1, y1), (x2, y2),………. (xn, yn), 

(xn+1, yn+1).  So, how then does one find the value of y at any other value of x? 

Well, a continuous function f(x) may be used to represent the n+1 data values with f(x) 

passing through the n+1 point (Figure 2.1). Then we can find the value of y at any other 

value of x. This is called interpolation.  

Of course, if x falls outside the range of x for which the data is given, it is no longer 

interpolation, but instead, is called extrapolation.   

 

Figure 2.1 Interpolation of discrete data 

 

For n+1 data points, there is one and only one polynomial of order n that passes 

through all the points. For example, there is only one straight line (that is, a 

first-order polynomial) that connects two points. Similarly, only one parabola 

connects a set of three points.  

Polynomial Interpolation consists of determining the unique n
th
 order polynomial that 

fits n+1 data points. This polynomial then provides a formula to compute 

intermediate values.  

One of the methods used to find this polynomial is called the Lagrange method of 

interpolation. Other methods include Newton’s divided difference polynomial method 

and the direct method.   

 

 

 00, yx  

 11, yx  

 22, yx  
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 xf  

x  
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2.1 Lagrange Interpolating Polynomial  

Consider a function f(x) that passes through the two distinct points (x0, f(x0)) and (x1, 

f(x1)) as shown in Figure 2.2. The first order polynomial that approximates the 

function between these two points can be expressed as 

f(x) = a + bx 

Where a and b are constants. f(x) can also be written in Lagrangian form as 

f(x) = c0(x  x1) + c1(x  x0)  

f(x)

xx0 x1

f(x )0

f(x )1

f(x)

xx0 x1

f(x )0

f(x )1

x2

f(x )2

 

Figure 2.2 First and second order polynomial approximation. 

 

I. Linear  

By weighting the average of the two values used to produce the coordinates of the 

line the formula: 

   22111 )( xfLxfLxf        where:   
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Example 2.1  

Compute a 4-decimal place value of ln 9.2 from ln 9.0 = 2.1972, ln 9.5 = 2.2513 by 

linear Lagrange interpolation and determine the error, using the exact value of ln 9.2 

= 2.2192. 

Solution:  

x1 = 9.0 , x2 = 9.5 ,  f1 = ln 9.0= 2.1972 ,  f2 = ln 9.5= 2.2513 ; hence we get  

4.02.02)2.9(),0.9(0.2
5.0

0.9
)(

6.0)3.0(0.2)2.9(),5.9(0.2
5.0

5.9
)(

22

11












Lx
x

xL

Lx
x

xL

 

ln 9.2  p1 (9.2) = L1 (9.2)f1 + L2 (9.2)f2 = 0.6×2.1972 + 0.4×2.2513 = 2.2188 

The absolute error is 0.0004 = 2.2188 - 2.2192  
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II. Quadratic 

By weighting the average of the three points that produce the parabola we can derive 

the formula: 

     3322112 )( xfLxfLxfLxf   

       where: 
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Example 2.2  

Compute ln 9.2 from the data in the previous example 2.1 and the additional third 

value ln 11.0 = 2.3979. 

Solution: 

0200.0)2.9(L)5.85x5.18x(
3

1

)5.90.11)(0.90.11(

)5.9x)(0.9x(
)x(L

4800.0)2.9(L)99x20x(
75.0

1

)0.115.9)(0.95.9(

)0.11x)(0.9x(
)x(L

5400.0)2.9(L5.104x5.20x
)0.110.9)(5.90.9(

)0.11x)(5.9x(
)x(L

3

2

3

2

2

2

1

2

1



















 

ln 9.2  p2(9.2) = 0.5400 × 2.1972 + 0.4800 ×2.2513  0.0200×2.3979 = 2.2192. 

The absolute error is 0.0000 = 2.2192 - 2.2192  

 

III. General Lagrange Interpolating Polynomial 

In general, the Lagrange polynomial can be represented as: 
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Example 2.3  

Find the Lagrange interpolation polynomial that takes the values prescribed below 

xk 0 1 2 4 

f(xk) 1 1 2 5 

Solution 

 P3(x) = 


3

0

,3 )(
k

k xL  f(xk) 

 P3(x) = 
)40)(20)(10(

)4x)(2x)(1x(




(1) + 

)41)(21)(01(

)4)(2)(0(



 xxx
(1) 

  + 
)42)(12)(02(

)4)(1)(0(



 xxx
(2) + 

)24)(14)(04(

)2)(1)(0(



 xxx
(5) 
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When working with grids having large numbers of intervals one typically assigns a 

set of low degree (n = 1, 2, or 3) basis functions to each adjacent set of n+1 = 2, 3, or 

4 nodes.  

 

Example 2.4 

The following table gives the value of density of saturated water for various 

temperatures of saturated stream. 

Temp 
o
C   ( = T)  100 150 200 250 

Density kg/m
3
 (= d)  958 917 865 799 

1)  Use third order Lagrange interpolating polynomials to correlate density as a 

function of temperature. 

2) Find the densities when the temperatures are 130
o
C . 

Solution 

10 + 0.1566T -T104 +T101.3333 -
)250100)(200100)(150100(

)250T)(200T)(150T(
L 23-36-

1 



  

20- 0.38T T102.2- T104
)250150)(200150)(100150(

)250T)(200T)(100T(
L 23-36-

2 



   

15 + .31T0 -T102 + T104 -
)250200)(150200)(100200(

)250T)(150T)(100T(
L 23-36-

3 



  

4- 0.08666  -T106+ T101.3333 
)200250)(150250)(100250(

)200T)(150T)(100T(
L 24-36-

4 



   

1019 0.53T-T104- T104- )x(fL)x(fL)x(fL)x(fL)x(f 2-43-6

443322114    

934.5520)130(f4   

 

Example 2.5 

Use Lagrange global interpolation by one polynomial and piecewise polynomial 

interpolation with quadratic for the following nodes. 

xk 0 1 2 4 5 

f(xk) 0 16 48 88 0 

Solution 

Global interpolation by one polynomial: P(x) = 


4

0

,4 )(
k

k xL  f(xk) 

 P4(x) = 
)50)(40)(20)(10(

)5x)(4x)(2x)(1x(




(0) + 

)51)(41)(21)(01(

)5x)(4x)(2x)(0x(




(16) 

 + 
)52)(42)(12)(02(

)5x)(4x)(1x)(0x(




(48) + 

)54)(34)(14)(04(

)5x)(2x)(1x)(0x(




(88) + 0 

             46.6667x + 59.3333x - 33.33x +4.6667x - 234  



Numerical Analysis /Lec. 2     - 9 -                   

Third Class                                                  

Piecewise polynomial interpolation with quadratic 

 P2(x) = 
)20)(10(

)2x)(1x(




(0) + 

)21)(01(

)2)(0(



 xx
(16) + 

)12)(02(

)1)(0(



 xx
(48);  0  x  2 

             28x8x   

 P2(x) = 
)52)(42(

)5)(4(



 xx
(48) + 

)54)(24(

)5)(2(



 xx
 (88) + 

)45)(25(

)4)(2(



 xx
(0);  2  x  5 

             36x -236x +280 - 2  

 

2.1 Newton Divided Difference Interpolating  

The Lagrangian interpolation polynomials are useful in discussions on numerical 

integration. An alternative in interpolation is ‘Newton’s Divided Difference 

Interpolation’. It involves fewer arithmetical operations. 

Another advantage of Newton’s rests with the following scenario. Suppose we need to 

improve the accuracy and increase the number of grid points. From the forms of 

Lagrange interpolation polynomials, all the terms have to be evaluated once again, 

and this is a huge amount of work if the number of points is large. Newton’s does not 

suffer from this drawback, and just one additional term needs to be computed. 

 

I. Linear Interpolation 

Consider the diagram below in which a curve is modeled (poorly) by 21xx : 

 

Using similar triangles the slopes are the same and hence: 
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And thus the coordinate on the curve at x1 can be approximated by rearranging the 

above to become: 

)(
)()(

)()( 1

12

12
11 xx

xx

xfxf
xfxf 




  

Example 2.6 

Estimate the common logarithm of 10 using linear Newton’s interpolation. 

(a) Interpolate between log 8 = 0.9030900 and log 12 = 1.0791812. 

(b) Interpolate between log 9 = 0.9542425 and log 11 = 1.0413927.  

For each of the interpolations, compute the percent relative error based on the true 

value. 

Solution 

a) 991136.0)810(
812

90309.00791812.1
90309.0)10(1 




f  

%886.0%100
1

991136.01



t  

b) 997818.0)910(
911

9542425.00413927.1
9542425.0)10(1 




f  

%218.0%100
1

997818.01



t  

 

II. Quadratic Interpolation 

To reduce the error, a quadratic interpolation that introduces some curvature into the 

interpolation is used. The form: 

))(()()( 2131212 xxxxbxxbbxf   

Let x = x1 to produce: 

  )( 11 xfb   

Let x = x2 and use the previous identity to produce: 

  
12

12
221312212

xx

)x(f)x(f
b)xx)(xx(b)xx(b)x(f)x(f




  

And again by substitution of b1 and b2 we derive that: 
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Example 2.7 

Fit a second-order Newton’s Interpolating polynomial to estimate log 10 using the 

data from Example 2.7 at x = 8, 9, and 11. Compute the true percent relative error. 

Solution 

First, order the points 

x1 = 9 f(x1) = 0.9542425 

x2 = 11 f(x2) = 1.0413927 

x3 = 8 f(x3) = 0.9030900 

b1 = 0.9542425 

0435751.0
911

9542425.00413927.1
2 




b  

0025258.0
98

0435751.00461009.0

98

0435751.0
118

0413927.19030900.0

3 












b  

Substituting these values yields the quadratic formula 

)11)(9(0025258.0)9(0435751.09542425.0)(2  xxxxf  

which can be evaluated at x = 10 for 

0003434.1)1110)(910(0025258.0)910(0435751.09542425.0)10(2 f  

%03434.0%100
1

0003434.11



t  

 

III. General form of Newton Divided Difference Interpolating Polynomial 

In general, if we find the finite differences defined as: 

1n
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11nn

ki

kjji

kji

ji

ji

ji

xx

]x,...,x,x[f]x,...,x,x[f
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Then the general Newton Interpolating Polynomial of order n – 1with n data points is 

defined as: 

 

))...()((....))(()()( 1212131211   nnn xxxxxxbxxxxbxxbbxf  
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Where       
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For an example of a third order polynomial, given ),,( 00 yx ),,( 11 yx ),,( 22 yx and ),,( 33 yx  
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Example 2.8 

The following table gives the value of density of saturated water for various temperatures of saturated 

stream. 

  Temp
o
 C ( = T) : 100 150 200 250 300 

  Density kg/m
3
 (= d) : 958 917 865 799 712 

Using Newton divided difference interpolating find the densities when the temperatures are 

130
o
C and 275

o
C respectively. 

Solution 

i T D f[xi+1,xi] f[xi+2,xi+1,xi] f[xi+3,xi+2,xi+1,xi] f[xi+4,xi+3,xi+2,xi+1,xi] 

1 100 958     

   -0.8200       

2 150 917  -0.0022   

   -1.0400     -4×10
-6

     

3 200 865  -0.0028        -2.6667×10
-8

    

   -1.3200     -9.333×10
-6

     

4 250 799  -0.0042   

   -1.7400    

5 300 712     
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250)-(T*200)-(T*150)-(T*100)-(T102.6667-

200)-(T*150)-(T*100)-(T104-150)-(T*100)-(T0.0022-100)-(T0.8200-958=P

8-

-6
4





4-83-52

4 T102.6667-T101.46670.0051T- 0.0167T-999=P   

 kg/m3 934.6864)130(P4   

 kg/m3758.7187)275(P4   

 

Or by direct substitution 

 kg/m3 934.6864)130(P4   

P(130)= 958-0.82×(130-100)-0.0022×(130-100)×(130-150) -4×10
-6

×(130-100) × 

(130-150) ×(130-200) -2.6667×10
-8

×(130-100) ×(130-150)×(130-200) ×(130-250)  

= 934.6864 kg/m
3 

 

P(275)=958-0.82×(275-100)-0.0022×(275-100)×(275-150)-4×10
-6

×(275-100) 

×(275-150) ×(275-200) -2.6667×10
-8

 ×(275-100)×(275-150)×(275-200) ×(275-250)  

= 758.7188 kg/m
3 
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Curve Fitting  

 

3.0 What is regression? 

Regression analysis gives information on the relationship between a response variable 

and one or more independent variables to the extent that information is contained in the 

data. The goal of regression analysis is to express the response variable as a function of 

the predictor variables.  

Once regression analysis relationship is obtained, it can be used to predict values of the 

response variable, identify variables that most affect response, or verify hypothesized 

casual models of the response.  

 

3.1 Linear regression 

Linear regression is the most popular regression model. In this model we wish to 

predict response to n data points (x1,y1), (x2,y2), ....., (xn, yn) data by a regression model 

given by. 

xaay 10                      

Where a0 and a1 are the constants of the regression model. 

A measure of goodness of fit, that is, how xaa 10   predicts the response variable y is 

the magnitude of the residual, i at each of the n data points. 

 )( 10 iii xaay                   

Ideally, if all the residuals i  are zero, one may have found an equation in which all 

the points lie on the model. Thus, minimization of the residual is an objective of 

obtaining regression coefficients.   

The most popular method to minimize the residual is the least squares method, where 

the estimates of the constants of the models are chosen such that the sum of the squared 

residuals is minimized, that is minimize


n

i

i

1

2
 .   

Let us use the least squares criterion where we minimize  

 
2

1

10

1

2





n

i

ii

n

i

ir xaayS    

Sr is called the sum of the square of the residuals. 
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Figure 3.1 Linear regression of y vs. x data showing residuals at a typical point, xi. 

 

To find a0 and a1, we minimize Sr with respect to a0 and a1: 
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Solving the above equations gives: 
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Or from equation (3.2)   

x 

xaay 10 
11, yx

22 , yx
33 , yx

nn yx ,

ii yx ,

iii xaay 10 

y 
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xay
n
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Example 3.1 

The following y vs. x data is given 

x 1 7 13 19 25 

y 1 49 169 361 625 

 

Figure 3.1 Data points of the y vs x data 

Although 
2xy   is an exact fit to the data, a scientist thinks that xaay 10   can 

explain the data.  Find constants of the model, 0a , and 1a , 

Solution 

First find the constants of the assumed model 

 xaay 10   

 xaya 10   

 5n  

 2502562525361191691349711
1

5

1

 
 

n

i i

iiii yxyx  

 120525191371 22222

1

5

1

22  
 

n

i i

ii xx  

 1205625361169491
1

5

1

 
 

n

i i

ii yy  

 y vs x 
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 6525191371
5

11
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xxn
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a  

 
_

1

_

0 xaya   

 
    

   21
6512055

120565250255




a 26  

     xaya 10   
5

65
26

5

1205
        1326241     97  

This gives 

               xaay 10   

               xy 2697   

 

Example 3.2 

The following table gives the value of density of saturated water for various 

temperatures of saturated stream. 

Temp
o
C ( = T)  100 150 200 250 300 

Density kg/m
3
 (= D)  958 917 865 799 712 

a) Use curve fitting to fit the results to a first-order polynomial TBAD  .  

b) Find the densities when the temperatures are 130
o
C and 275

o
C respectively. 

Solution: 

a0 and a1 can be computed by constructing the following table:                    

Ti Di Ti
2 

Ti Di 

100 958 10000 95800 

150 917 22500 137550 

200 865 40000 173000 

250 799 62500 199750 

300 712 90000 213600 

∑1000 4251 225000 819700 

1.22- 
)1000( 2250005

425110008197005
21 




a  

1094.2 
5

1000

5

4251
10  aa  

D=1094.2-1.22×T 



Numerical Analysis /Lec. 3     - 18 -                    

Third Class                                                  

To compare the predicted values to the experimental values: 

Ti 

 

Di 

 

Di(estimated) 

D=1094.2-1.22×T 

100 958 972.2 

150 917 911.2 

200 865 850.2 

250 799 789.2 

300 712 728.2 

D(130)= 1094.2-1.22×130=935.6 

D(175)= 1094.2-1.22×175=880.7 

 

3.2 Polynomial Models 

Given N data points (x1, y1), (x2, y2).  .  , (xN, yN) use least squares method to regress 

the data to an n
th
 order polynomial. 

In the development, we use n as the degree of the polynomial and N as the number of 

data pairs ( ,i ix y ). We will always have 1N n   in the following. 

Assume the functional relationship for fitting 
2

0 1 2( ) n

nY x a a x a x a x    L  

with errors defined by 
2

0 1 2( ) n

i i i i i i n ie y Y x y a a x a x a x       L , 

in which i  1, 2, 3,…, N. 

We minimize the sum of error squares, 

2 2 2

0 1 2

1 1

( )
N N

n

i i i i n i

i i

S e y a a x a x a x
 

        L . 

At the minimum, all the first partial derivatives with respect to ia ’s vanish. We have 

2

0 1 2

10

0 2 ( )( 1)
N

n

i i i n i

i

S
y a a x a x a x

a 


       


 L , 

2

0 1 2

11

0 2 ( )( )
N

n

i i i n i i

i

S
y a a x a x a x x

a 


       


 L , 

2 2

0 1 2

12

0 2 ( )( )
N

n

i i i n i i

i

S
y a a x a x a x x

a 


       


 L , 

M 

2

0 1 2

1

0 2 ( )( )
N

n n

i i i n i i

in

S
y a a x a x a x x

a 


       


 L , 

Rearrange them to get 

2

0 1 2

1 1 1 1

N N N N
n

i i n i i

i i i i

a N a x a x a x y
   

       L , 
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2 3 1

0 1 2

1 1 1 1 1

N N N N N
n

i i i n i i i

i i i i i

a x a x a x a x x y

    

        L , 

2 3 4 2 2

0 1 2

1 1 1 1 1

N N N N N
n

i i i n i i i

i i i i i

a x a x a x a x x y

    

        L , 

M 

1 2 2

0 1 2

1 1 1 1 1

N N N N N
n n n n n

i i i n i i i

i i i i i

a x a x a x a x x y 

    

        L , 

or, in matrix form, 

2

1 1 1 1

02 3 1

1 1 1 1 1

22 3 4 2

1 1 1 1

1 2 2

1 1 1 1

N N N N
n

i i i i

i i i i

N N N N
n

i i i i i i

i i i i i

N N N N
n

i i i i

i i i i

n

N N N N
n n n n

i i i i

i i i i

N x x x y

a
x x x x x y

a

a
x x x x

a

x x x x

   



    



   

 

   

 
 
 

  
  
  

  
  
  
    

 
 
  

   

   

   

   

L

L

L
M

M

L

1

2

1

1

N

N

i i

i

N
n

i i

i

x y

x y





 
 
 
 
 
 
 
 
 
 
 
 
  







M

. (3.3) 

 

Equations (3.3) represent a linear system. However, this system is usually 

ill-conditioned and round-off errors can distort the solution of ia ’s. Up to degree-3 or 

4, the problem is not too great. It is very infrequent to use a degree higher than 4. 

 

Example 3.3 

Rotameter calibration data (flow rate versus Rotameter reading) are as follows: 

Rotameter Reading R 10 30 50 70 90 

Flow rate V(L/min) 20 52.1 84.6 118.3 151 

a) Using curve fitting to fit the calibration data to second order polynomial. 

b) Calculate the flowrate (V) at rotameter reading R=73. 

Solution: 

a) 2
nd

 order polynomial 





n

i

iioi

n

i

ir xaxaayS
1

2

21

1

2 )(  



















n

i

iiioi
r

n

i

iiioi
r

n

i

iioi

o

r

xxaxaay
da

dS

xxaxaay
da

dS

xaxaay
da

dS

1

22

21

2

1

2

21

1

1

2

21

0)()(2

0)()(2

0)1()(2

                             (1) 

Re arranging above equations 
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n

i

n

i

ii

n

i

i

n

i

iio

n

i

n

i

ii

n

i

i

n

i

iio

n

i

n

i

i

n

i

iio

yxxaxaxa

yxxaxaxa

yxaxana

1 1

2

1

4

2

1

3

1

2

1 11

3

2

1

2

1

1 11

2

21

                  (2)
 

Making required table 

 

 

 

 

 

 

 

 

By substitution in equation 2 

2063160a96690000a1225000a16500

27864a1225000a16500a250

426a16500a250a5

21o

21o

21o







 

Solving above equation simultaneously gives; 

ao =3.8786  ,   a1 =1.5981   ,   a2 = 4.2857×10
-4

 

then 
2-4 R10×4.2857R1.5981 3.8786 V  

 

B) 

122.833710×4.2857371.5981 3.8786)73( 2-4 V  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 R V R
2
 R

3 
R

4
 RV R

2
y

 

 10 20 100 1000 10000 200 2000 

 30 52.1 900 27000 810000 1563 46890 

 50 84.6 2500 125000 6250000 4230 211500 

 70 118.3 4900 343000 2401000

0 

8281 579670 

 90 151 8100 729000 6561000

0 

13590 1223100 

∑ 250 426 16500 1225000 9669000

0 

27864 2063160 
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nkCr 

3.3 Nonlinear Data 

Whenever data from experimental tests are not linear, we need to fit to them some 

function other than a first-degree polynomial. Popular forms that are tried are the 

power form 
by ax  

or the exponential form 
bxy ae . 

Since such nonlinear equations are much more difficult to solve than linear equations, 

they are usually linearized by taking logarithms before determining the parameters: 

ln ln lny a b x  , 

or 

ln lny a bx  . 

 

 linear non-linear 

Figure 3.2 Linear vs non-linear data 

 

In cases when such linearization of the function is not desirable, or when no method 

of linearization can be discovered, graphical methods are frequently used; one merely 

plots the experimental values and sketches in a curve that seems to fit well. 

 

Example 3.4 

The progress of a homogeneous chemical reaction is followed and it is desired to 

evaluate the rate constant and the order of the reaction. The rate law expression for 

the reaction is known to follow the power function form        

Use the data provided in the table to obtain n  and k . 

gmol/l)(AC  4 2.25 1.45 1.0 0.65 0.25 0.006 

s)gmol/l(  Ar  0.398 0.298 0.238 0.198 0.158 0.098 0.048 

 

Solution 

Taking the natural log of both sides of Equation, we obtain 

     Cnkr lnlnln 
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)ln(0 ka  0a
ek 

Let  

 
 rz  ln

 

 
 Cw ln

 
implying that  

 na 1                                       
We get 

 waaz 10   
This is a linear relation between z  and w , where 

 
 

 

 

 














n

i

n

i

ii

n

i

i

n

i

n

i

iii

wwn

zwzwn

a

1

2

1

2

11 1
1

                                        

 










































n

w

a
n

z

a

n

i

i

n

i

i

1

1

1

0

       
Table: Kinetics rate law using power function 

i  C  r  w  z  zw  
2w  

1 4 0.398 1.3863 -0.92130 -1.2772 1.9218 

2 2.25 0.298 0.8109 -1.2107 -0.9818 0.65761 

3 1.45 0.238 0.3716 -1.4355 -0.5334 0.13806 

4 1 0.198 0.0000 -1.6195 0.0000 0.00000 

5 0.65 0.158 -0.4308 -1.8452 0.7949 0.18557 

6 0.25 0.098 -1.3863 -2.3228 3.2201 1.9218 

7 0.006 0.048 -5.1160 -3.0366 15.535 26.173 




7

1i  
  -4.3643 -12.391 16.758 30.998 

 7n  

 




7

1

3643.4
i

iw

 

 




7

1

391.12
i

iz

 

 




7

1

758.16
i

ii zw

 

 




7

1

2 998.30
i

iw

 
From above equations 



Numerical Analysis /Lec. 3     - 23 -                    

Third Class                                                  

 

     
   

31943.0

3643.4998.307

391.123643.4758.167
21






a

 

 

 

5711.1

7

3643.4
31943.

7

391.12
0







a

 
Then 

 20782.0

5711.1



 ek

 

 31941.0

1



 an

 
Finally, the model of progress of that chemical reaction is 

 
31941.020782.0 Cr 

 

 
 

 

 

Example 3.5 

It is suspected from theoretical considerations that the rate of water flow from a 

firehouse is proportional to some power of the nozzle pressure. Assume pressure data 

is more accurate.  You are transforming the data. 

Flow rate, F  (gallons/min) 96 129 135 145 168 235 

Pressure, p  (psi) 11 17 20 25 40 55 

What is the exponent b of the nozzle pressure in the regression model bapF    
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Solution 

The linearization of the above data is done as follows. 

 
bapF    

 bxaz

pbaF





0

)ln()ln()ln(

 
Where 

 

 
)ln(

ln

px

Fz





 

 
 aa ln0 

  
Implying  

 
0a

ea 
 

There is a linear relationship between z and x. 

Linear regression constants are given by 

2

11

2

111
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n
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xxn

zxzxn
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1111

2
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n

i
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n

i

i

n
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n

i

i

xxn

zxxzx

a

 
Since  

208.96)235ln()55ln(

)168ln()40ln()145ln()25ln()135ln()20ln()129ln()17ln()96ln()11ln(zx

6n

6

1i

ii










 

779.62))55(ln())40(ln())25(ln())20(ln())17(ln())11(ln(

890.29)235ln()168ln()145ln()135ln()129ln()96ln(

142.19)55ln()40ln()25ln()20ln()17ln()11ln(

222222
6

1

2

6

1

6

1



















i

i

i

i

i

i

x

z

x

 

then 

49721.0

41.36667.376

15.57225.577

142.19779.626

890.29142.19208.966
2











b
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Example 3.6 

The following data have been obtained for the decomposition of benzene diazonium 

chloride to chlorobenzene: 

T (K) 313 319 323 328 333 

k (s
-1

) 0.0043 0.0103 0.018 0.0355 0.0717 

From this data, determine the pre-exponential factor A and activation energy E, 

assuming that the rate constant follows an Arrhenius form. 








 


RT

E
Ak exp  

Solution:  

RT

E
Ak  lnln

 
ky ln

 Tx /1  

Aao ln  

R

E
a


1

 
We get 

xaay o 1  

14612- 

 

2

11

2

111
1 























n

i

i

n

i

i

n

i

i

n

i

i

n

i

ii

xxn

yxyxn

a  

41.2272 1  xayao  

121480314.8)14612(

/

108.0303)2272.40exp(

2272.41ln

1

1

17









RaE

REa

A

Aao

 

 

 

 T (K) k (s
-1

) x=1/T y=ln k x
2
 xy

 

 313 0.0043 0.00319 -5.44914 1.02073e-05 -0.01741 

 319 0.0103 0.00313 -4.57561 9.82695e-06 -0.01434 

 323 0.018 0.00310 -4.01738 9.58506e-06 -0.01244 

 328 0.0355 0.00305 -3.33822 9.29506e-06 -0.01018 

 333 0.0717 0.00300 -2.63526 9.01803e-06 -0.00791 

∑   0.01548 -20.0156 4.79324e-05 -0.06228 
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A Matlab program for solving example 3.6 is listed in Table 3.1. 

Table (3.1) Matlab code and results for solution example (3.6) 

Matlab 

Code 

T=[313,319,323,328,333]; 

K=[0.0043,0.0103,0.018,0.0355,0.0717]; 

x=1./T; 

y=log(K); 

Poly=polyfit(x,y,1); 

E=-Poly(1)*8.314 

Ao=exp(Poly(2)) 

Results E = 

   1.2148e+05 

Ao = 

   8.0303e+17 

 

The comparison between experimental and predicted k values is shown in below 

figure: 

310 315 320 325 330 335
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Temperature (K)

R
e

a
c
ti
o

n
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a
te
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o

n
s
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n
t 
(k

)

 

 

k Exp.

k Pred.
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Numerical Integration  

Numerical Integration Approximation. 

Integration is the process of measuring the area under a function plotted on a graph.  

Sometimes, the evaluation of expressions involving these integrals can become 

daunting, if not indeterminate. For this reason, a wide variety of numerical methods 

have been developed to find the integral.   

Here we discuss six different methods for approximating the value of a definite 

integral. Each method revolves around associating a definite integral with area under a 

curve. The first three use areas of rectangles, the fourth uses areas of trapezoids, and 

the final approximation technique uses areas of shapes that include a portion of a 

parabola.  

 

4.1 Left-Endpoint Approximation 

On each of the four subintervals shown below, we create a rectangle whose width is the 

length of the subdivision and whose height is determined by the function value at the 

left endpoint of each subdivision. 

 

 

The sum of the areas of the four rectangles represents our approximation for the area 

under the curve and therefore represents an approximation for the value of the definite 

integral: 

width: x, height: f(x3) = f(
3
/4) 

width: x, height: f(x0) = f(0) 

2

)( xexfy   

width: x, height: f(x1) = f(
1
/4) 

width: x, height: f(x2) = f(
1
/2) 
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This same sequence of steps can be generalized for left-endpoint approximation of the 

definite integral f (x)dx
a

b

  using n subdivisions: 

 



















1

0

1210

1210

)(

)()()()(

)()()()()(

n

i

i

nn

nn

b

a

xfx

xfxfxfxfx

xfxxfxxfxxfxdxxf





 

 

4.2 Right-Endpoint Approximation 

Again we create rectangles whose widths are each the length of a subdivision, but here 

each height is determined by the function value at the right endpoint of each 

subinterval. 

 

 

The sum of the areas of these four rectangles represents a right-endpoint approximation 

for the area under the curve and therefore is an approximation for the value of the 

definite integral: 

width: x, height: f(x4) = f(1) 

2

)( xexfy   

width: x, height: f(x1) = f(
1
/4) 

width: x, height: f(x2) = f(
1
/2) 

width: x, height: f(x3) = f(
3
/4) 
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This same sequence of steps can be generalized for right-endpoint approximation of 

the definite integral 
b

a

dxxf )(  using n subdivisions: 
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4.3 Midpoint Approximation 

For a third time we create rectangles each of whose width is the length of the 

subdivision, but now each height is determined by the function value at the midpoint of 

each subdivision. 

 

 

The sum of the areas of these four rectangles represents a midpoint approximation for 

the area under the curve and therefore is another approximation for the value of the 

definite integral: 

width: x, height: f((x3+x4)/2) = f(
7
/8) 

2

)( xexfy   

width: x, height: f((x0+x1)/2) = f(
1
/8) 

width: x, height: f((x1+x2)/2) = f(
3
/8) 

width: x, height: f((x2+x3)/2) = f(
5
/8) 
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This same sequence of steps can be generalized for midpoint approximation of the 

definite integral 
b

a

dxxf )(  using n subdivisions: 
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4.4 Trapezoidal Rule 

Trapezoidal rule is based on the Newton-Cotes formula that if one approximates the 

integrand by an n
th
 order polynomial, then the integral of the function is approximated 

by the integral of that n
th
 order polynomial. Integrating polynomials is simple and is 

based on the calculus formula. The height of each trapezoid is the length of the 

subdivision. The two bases of each trapezoid correspond to the values of the function at 

the endpoints of the subinterval on which the trapezoid has been drawn. 

 

 

height: x, bases: f(
3
/4)and f(1) 

2

)( xexfy   
height: x, bases: f(0) and f(

1
/4) 

height: x, bases: f(
1
/4) and f(

1
/2) 

height: x, bases: f(
1
/2) and f(

3
/4) 
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It may be useful to remove the first of these trapezoids and rotate it into a more 

conventional orientation as we calculate its area. 

 

 

 

The sum of the areas of these four trapezoids represents an approximation for the area 

under the curve and therefore is one more approximation for the value of the definite 

integral: 
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This same sequence of steps can be generalized for trapezoid approximation of the 

definite integral f (x)dx
a

b

  using n subdivisions: 
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Single Segment Trapezoidal Rule 

 )()(
2

1
)( 1 ii

b

a

xfxfxdxxf  

Multiple Segments Trapezoidal Rule  

 





1

0

1)()(
2

1
)(

n

i

ii

b

a

xfxfxdxxf  

height:x 

base length: f(0) 

base length: f(
1
/4) 

Area = 
1
/2(x) (f(0) + f(

1
/4)) 
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Example 4.1  

Evaluate the integral 




1

0
21 x

dx
I  by trapezoidal rule dividing the interval [0, 1] into 

five equal parts.  

Solution 

2.0
5

01

5








x

n

 

x 0 0.2 0.4 0.6 0.8 1.0 

21

1

x
 1.0 0.98058 0.92848 0.85749 0.78087 0.70711 

From Trapezoidal Rule; 

88016.0

]70711.0)78087.085749.092848.098058.0(21[
2

2.0

)]())()()()((2)([
2

654321








 xfxfxfxfxfxf
x

I

 

 

Example 4.2 

Use Multiple-segment Trapezoidal Rule to find the area under the curve 
xe

x
xf




1

300
)(   

from 0x  to 10x . 

Solution 

Using two segments, we get 

5
2

010



x  

0
1

)0(300
)0(

0





e
f  

039.10
1

)5(300
)5(

5





e
f  

136.0
1

)10(300
)10(

10





e
f  

Area  )10()5(2)0(
2

5
fff   136.0)039.10(20

2

5
 535.50  
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So what is the true value of this integral? 59.246
1

300
10

0




dx
e

x
x

 

Making the relative true error  %100
59.246

535.5059.246



t %506.79  

Table: Values obtained using Multiple-segment Trapezoidal Rule for  

10

0
1

300
dx

e

x
x

 

n Approximate 

Value 
tE  t  

1 0.681 245.91 99.724% 

2 50.535 196.05 79.505% 

4 170.61 75.978 30.812% 

8 227.04 19.546 7.927% 

16 241.70 4.887 1.982% 

32 245.37 1.222 0.495% 

64 246.28 0.305 0.124% 

 

Example 4.3 

The average values of a function can be determined by:- 

12

2

1

C

TT

pdT

Cp

T

T

mh





 

Cp= 0.99403 +1.617×10
-4

T+9.7215×10
-8

T
2
 – 9.5838 × 10

-11
 T

3
 + 1.9520 × 10

-14
 T

4
 

Cp in KJ/(Kg K) 

Use this relationship to verity the average value of specific heat of dry air in the 

range from 300 K to 450 K: 

1) Analytically 

2) Numerically using five points Trapezoidal Rule 

Solution  

1) 
300450

T 10 × 1.9520 + T 10 × 9.5838 - T10×9.7215+T10×1.617+ 0.99403

450

300

414-311-28-4-



 dT

Cpmh  

 

300450

T 
5

10 × 1.9520
 + T 

4

10 × 9.5838
 -T

3

10×9.7215
+T

2

10×1.617
+T 0.99403

450

300

5
14-

4
11-

 3
8-

2
4-


mhCp  
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1.0637
300450

306.18-465.73   



mhCp  

2) 37.5
4

150-450   
T  

T 300 337.5 375 412.5 450 

Cp 1.0489 1.0562 1.0637 1.0711 1.0785 

1.0637
300450

1.0785)1.0711)1.0637(1.0562*2(1.0489*(37.5/2)   

Cp(5))Cp(4))Cp(3)(Cp(2)*2(Cp(1)*(dT/2)   

12












TT
Cpmh

 

%0%
1.0637

1.0637-1.0637
%

SolutionAnalytical

SolutionNumerical-SolutionAnalytical
=%Error  Realative   

 

4.5 Simpson’s Rule (1/3 Simpson’s Rule) 

The final approximation technique we develop in this section is called Simpson’s Rule. 

It is different from the first four methods because we are not creating polygons on each 

subinterval but rather we create a figure with a non-straight component to it. For this 

method, it is required that the number of subintervals be an even number. 

 

 

 

 

 

2

)( xexfy   

Another parabola is 

created that contains 

the points (x2,f(x2)), 

(x3,f(x3)), and (x4,f(x4)). 

A parabola is created that contains the 

points (x0,f(x0)), (x1,f(x1)), and (x2,f(x2)). 
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Simpson’s Rule uses pairs of subdivisions and creates over each pair a parabola that 

contains the points (x2i-2, f(x2i-2)), (x2i-1, f(x2i-1)), and (x2i, f(x2i)) for i going from 1 to 
n
/2. 

A shape is created using the resulting parabola, two vertical segments—one from 

(x2i-2,0) to (x2i–2, f(x2i-2)) and one from (x2i+2,0) to (x2i+2, f(x2i+2))—and the segment on 

the x-axis with endpoints (x2i-2,0) and (x2i+2,0). The area of the resulting shape—such as 

of the red-shaded figure above or the green-shaded figure above-is calculated using the 

formula   )()(4)(
3

1
12212   iii xfxfxfx . 

The sum of the areas of these shapes represents an approximation for the area under the 

curve and therefore is an approximation for the value of the definite integral: 

   


















 )()(4)(
3

1
)()(4)(

3

1
432210

1

0

2

xfxfxfxxfxfxfxdxe x  

This same sequence of steps can be generalized for the Simpson’s Rule approximation 

of the definite integral f (x)dx
a

b

  using n subdivisions: 

   

 )()(4)()()(4)(
3

1

)()(4)(
3

1
)()(4)(

3

1
)(

12210

12210

nnn

nnn

b

a

xfxfxfxfxfxfx

xfxfxfxxfxfxfxdxxf






























 

Single Segment 1/3 Simpson’s Rule 

 )()(4)(
3

)( 210 xfxfxf
x

dxxf

b

a




  

Multiple Segment 1/3 Simpson’s Rule 

 


 



2

1

21222 )()(4)(
3

)(

n

i

iii

b

a

xfxfxf
x

dxxf  

 

Example 4.4 

Evaluate the integral 




8.0

0
21 x

dx
I  by 1/3 Simpson’s rule dividing the interval [0, 0.8] 

to 4 equal sub-intervals.  
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Solution 

2.0
4

08.0

4








x

n

 

x 0 0.2 0.4 0.6 0.8 

21

1

x
 1.0 0.91287 0.84515 0.79057 0.74536 

From Simpson’s 1/3
rd

 Rule 

))]()(4)(())()(4)([(
3

)( 432210

8.0

0

xfxfxfxfxfxf
x

dxxfI 


   

)]()(2)]()([4)([
3

42310 xfxfxfxfxf
x




  

   

68329.0

]74536.084515.02]79051.091287.0[40.1[
3

2.0




 

 

4.6 Simpson’s Rule (3/8 Simpson’s Rule) 

If we connect the points of the curve using a 3
rd

 order Lagrange polynomial, the area 

under the curve can be approximated by the following formula: 

)]()(3)(3)(2.....)(2

)(3)(3)(2)(3)(3)([
8

3
)(

1236

543210

nnnn

b

a

xfxfxfxfxf

xfxfxfxfxfxf
x

dxxf










  

 

Single Segment 3/8 Simpson’s Rule 

)]()(3)(3)([
8

3
)( 3210 xfxfxfxf

x
dxxf

b

a




  

Multiple Segment 3/8 Simpson’s Rule 

 


 



3

1

3132333 )()(3)(3)(
8

3
)(

n

i

iiii

b

a

xfxfxfxf
x

dxxf  
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Example 4.5 

Evaluate the integral of the following tabular data with  

(a) The trapezoidal rule. 

(b) Simpson’s rules. 

x 0 0.1 0.2 0.3 0.4 0.5 

F(x) 1 8 4 3.5 5 1 

Solution 

(a) Trapezoidal rule (n = 5):   

15.2]1)55.348(21[
2

1.0
I            

(b) Simpson’s rules (n = 5): 

377083.214375.1233333.1]1)55.3(34[
8

3
1.0]4)8(41[

3

1.0
I  

 

Example 4.6 

The volume of is given by following expression: 

  


9.0

0

0

)1( A

A

o

A

xk

xd

CA

F
V   

with 17 min)/6500exp(107.2  Tk and    
75.14335.120

19000
325




A

A

x

x
T using 

 0AF = 1500mol/min,  0CA =2.5 mol L
-1

 

Calculate the volume of the reactor using Simpsons rule with five points (4 steps). 

Solution 

Xa T k 
)1(

1

Axk 
 

0 325.0000 0.0557 17.9691 

0.2250 350.0251 0.2325 5.5491 

0.4500 368.2020 0.5816 3.1263 

0.6750 382.0035 1.1005 2.7958 

0.9000 392.8396 1.7597 5.6827 

 

L 3661.4 

)3063.75947.3*40195.4*21346.7*41031.23(*)3/225.0(*)5.2/1500(



V
 

 

A Matlab program for solving example 4.5 is listed in Table 4.1.  
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Table (4.1) Matlab code and results for solution example (4.5)  

Matlab 

Code 

Xa=0:0.225:0.9 

T=325+(19000*Xa)./(120.35*Xa+143.75) 

k=2.7e7*exp(-6500./T) 

f=1./(k.*(1-Xa)) 

V=(1500/2.5)*(0.225/3)*(f(1)+4*f(2)+2*f(3)+4*f(4)+f(5)) 

Results 

Xa = 

         0    0.2250    0.4500    0.6750    0.9000 

T = 

  325.0000  350.0251  368.2020  382.0035  392.8396 

k = 

    0.0557    0.2325    0.5816    1.1005    1.7597 

f = 

   17.9691    5.5491    3.1263    2.7958    5.6827 

V = 

   2.8478e+03 
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Numerical Differentiation 

 

Numerical Differentiation is a method used to approximate the value of a derivative 

over a continuous region [a,b]. 

Let f(x) is a continuous function with step size h. There are forward, backward and 

centered difference methods to approximate the derivatives of f(x) at a point xi.  

 

5.1 Forward Difference Approximation of the First Derivative 

We know 

  
   

x

xfxxf
xf

x 




 0
lim  

For a finite '' x . 

  
   

x

xfxxf
xf




  

   

Figure 5.1: Graphical representation of forward  

difference approximation of first derivative 

So if you want to find the value of  xf   at ixx  , we may choose another point 

'Δ' x  ahead as 1 ixx . This gives 

 
   

x

xfxf
xf ii

i



 1

 

  
   

ii

ii

xx

xfxf










1

1       Where ii xxx  1Δ  

)(xf  

xx   x  x  
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Example 5.1 

The velocity of a rocket is given by   300,8.9
21001014

1014
ln2000

4

4













 tt

t
t  

Where ''ν  is given in m/s and ''t  is given in seconds. 

Use forward difference approximation of the first derivative of  tν  to calculate the 

acceleration at st 16 . Use a step size of st 2 . 

Solution 

  
   

t

tt
ta ii
i




   1  

 16it  

 2Δ t  

 ttt ii 1 18216   

  
   

2

1618
16

 
a  

  
 

 188.9
1821001014

1014
ln200018

4

4













 sm /02.453  

  
 

 168.9
1621001014

1014
ln200016

4

4













 sm /07.392  

Hence 

  
   

2

1618
16

νν
a




2

07.39202.453 
 2/475.30 sm  

The exact value of  16a  can be calculated by differentiating 

   




















 t8.9

t21001014

1014
ln2000

dt

d
ta

4

4

 8.9
t21001014

1014

dt

d

1014

t21001014
2000

4

4

4

4

























  

   
 

  8.92100
t21001014

1014
1

1014

t21001014
2000

24

4

4

4
































  2/674.29 sm  

The absolute relative true error is 

 100
Value True

Value eApproximat-Value True
t 100

674.29

475.30674.29



 %6993.2  
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5.2 Backward Difference Approximation of the First Derivative 

 We know 

   
   

x

xfxxf
xf

x 




 0
lim  

 For a finite 'Δ' x , 

   
   

x

xfxxf
xf




  

 If  'Δ' x  is chosen as a negative number, 

   
   

x

xfxxf
xf




  

 
   

x

xxfxf
xf




  

 This is a backward difference approximation as you are taking a point backward 

from x . To find the value of  xf   at ixx  , we may choose another point 'Δ' x  

behind as 1 ixx .  This gives 

  
   

x

xfxf
xf ii

i



 1

 

 
   

1

1










ii

ii

xx

xfxf
   where     1 ii xxx  

 

 

 

 

 

   

              

 

 

Figure 5.2 Graphical representation of backward  

difference approximation of first derivative 

 

 

 

x  xx   
x  

)(xf  
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Example 5.2 

The velocity of a rocket is given by 

   30t0,t8.9
t21001014

1014
ln2000t

4

4













  

Use backward difference approximation of the first derivative of  tν  to calculate the 

acceleration at st 16 . Use a step size of st 2 . 

Solution 

  
   

t

tt
ta ii




 1

 

 16it  

 2Δ t  

 ttt ii 1 14216   

  
   

2

1416
16

 
a  

  
 

 168.9
1621001014

1014
ln200016

4

4













 sm /07.392  

  
 

 148.9
1421001014

1014
ln200014

4

4













 sm /24.334  

 

  
   

2

1416
16

 
a

2

24.33407.392 
 2/915.28 sm  

The absolute relative true error is 

 100
674.29

915.28674.29



t  %557.2  
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5.3 Central Difference Approximation of the First Derivative 

As shown above, both forward and backward divided difference approximation of the 

first derivative are accurate on the order of  xΔ0 . Can we get better approximations?  

Yes, another method to approximate the first derivative is called the Central 

difference approximation of the first derivative. 

From Taylor series 

     
 

 
 

  







32

1 Δ
!3

Δ
!2

Δ x
xf

x
xf

xxfxfxf ii
iii    (1) 

     
 

 
 

  






32

1
!3!2

x
xf

x
xf

xxfxfxf ii
iii         (2) 

Subtracting equation (2) from equation (1) 

      
 

  


 
3

11
!3

2
2 x

xf
xxfxfxf i

iii  

 
     

  






  211

!32
x

xf

x

xfxf
xf iii

i  

 
   

 211 0
2

x
x

xfxf
xf ii

i 



   

 
   

x

xfxf
xf ii

i



 

2

11
 

Hence showing that we have obtained a more accurate formula as the error is of the 

order of  2
0 x . 

          

Figure 5.3 Graphical Representation of central  

difference approximation of first derivative. 

)(xf  

xx   x  xx   
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Example 5.3 

The velocity of a rocket is given by 

   300,8.9
21001014

1014
ln2000

4

4













 tt

t
t . 

Use central divided difference approximation of the first derivative of  tν  to 

calculate the acceleration at st 16 .  Use a step size of st 2 . 

Solution 

  
   

t

tt
ta ii
i




 

2

11 
 

 16it  

 18216Δ1  ttt ii  

 142161  ttt ii  

  
   

 22

1418
16

νν
a




   
4

1418 νν 
  

  
 

 188.9
1821001014

1014
ln200018

4

4













 sm /02.453  

  
 

 148.9
1421001014

1014
ln200014

4

4













 sm /24.334  

  
   

4

1418
16

νν
a




4

24.33402.453 
 2/695.29 sm  

The absolute relative true error is 

 100
674.29

695.29674.29



t  %070769.0  

The results from the three difference approximations are given in Table 1. 

Table 1 Summary of  16a  using different divided difference approximations. 

Type of Difference 

Approximation 

 16a  

 2/ sm  
%t  

Forward 

Backward 

Central 

30.475 

28.915 

29.695 

2.6993 

2.557 

0.070769 

 Clearly, the central difference scheme is giving more accurate results because the 

order of accuracy is proportional to the square of the step size.   
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5.4 Higher Order Derivatives  

 

Example: Second order derivative: 

Note that for the centered formulation, it is a derivation of a derivative: 

 

       
     

2
11

11

)(

2
''

x

xfxfxf

x

x

xfxf

x

xfxf

xf iii

iiii

















 



 

Forward  
     

2
12

)(

2
''

x

xfxfxf
xf iii




   

Backward   
     

2
21

)(

2
''

x

xfxfxf
xf iii




   

Centered  
     

2
11

)(

2
''

x

xfxfxf
xf iii




   

 

I) Forward Difference Methods 

First Derivative 

   
x

xfxf
xf ii

i



 1)('    

Second Derivative 

     
2

12

)(

2
)(''

x

xfxfxf
xf iii

i



   

Third Derivative 

         
3

1233

)(

33
)(

x

xfxfxfxf
xf iiii

i



   

Fourth Derivative 

           
4

12344

)(

464
)(

x

xfxfxfxfxf
xf iiiii

i



   

 

II) Backward Difference Methods 

First Derivative 

   
x

xfxf
xf ii

i



 1)('    

Second Derivative 

     
2

21

)(

2
)(''

x

xfxfxf
xf iii

i
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Third Derivative 

         
3

3213

)(

33
)(

x

xfxfxfxf
xf iiii

i



   

Fourth Derivative 

           
4

43214

)(

464
)(

x

xfxfxfxfxf
xf iiiii

i



   

 

III) Central Difference Methods 

First Derivative 

   
x

xfxf
xf ii

i



 

2
)(' 11    

Second Derivative 

     
2

11

)(

2
)(''

x

xfxfxf
xf iii

i



   

Third Derivative 

         
3

21123

)(2

22
)(

x

xfxfxfxf
xf iiii

i



   

Fourth Derivative 

           
4

21124

)(

464
)(

x

xfxfxfxfxf
xf iiiii

i
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Solving System of Linear Equations 

 

6.1 Linear Equation  

y = mx is an equation, in which variable y is expressed in terms of x and the constant 

m, is called Linear Equation. In Linear Equation exponents of the variable is always 

‘one’. 

 

6.2 Linear Equation in n variables: 

bxaxaxaxa nn  ....332211  

Where nxxxx ,...,,, 321  are variables and 

 naaaa ,...,,, 1321  and b are constants. 

 

6.3 System of Linear Equations:  

A Linear System of m linear equations and n unknowns is: 

mnmnmmm

nn

nn

nn

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa









....

........................................................

.......................................................

....

....

....

332211

33333232131

22323222121

11313212111

      

Where nxxxx ,...,,, 321  are variables or unknowns and a’s and b’s are constants. 

 

6.4 Augmented Matrix   

System of linear equations: 

33133232131

23123222121

13113212111

bxaxaxa

bxaxaxa

bxaxaxa







 

Can be written in the form of matrices product 



















































3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

    

Or we may write it in the form AX=b,  

Where A=

















333231

232221

131211

aaa

aaa

aaa

  , X =

















3

2

1

x

x

x

     , b =

















3

2

1

b

b

b

 

Augmented matrix is   


















3

2

1

333231

232221

131211

    

  

   

:

b

b

b

aaa

aaa

aaa

bA  
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Example 6.1:  

Write the matrix and augmented form of the system of linear equations 

3x – y + 6z = 6    

x + y + z = 2                                                 

2x + y+4z = 3 

Solution: Matrix form of the system is  

















































 

3

2

6

412

111

613

z

y

x

 

Augmented form is    














 



3    412

2    111

6    613

: bA . 

6.5 Methods for Solving System of Linear Equations 

1. Gaussian Elimination Method 

2. Gauss -Jorden Elimination Method 

 

6.5.1 Gaussian Elimination. 

Gaussian elimination is a general method of finding possible solutions to a linear 

system of equations. 

Gaussian Elimination Method 

Step 1. By using elementary row operations  

                



































3

2

1

23

1312

3

2

1

333231

232221

131211

    100

  10

   1

    

  

   

B

B

B

A

AA

b

b

b

aaa

aaa

aaa

 

Step 2. Find solution by back – substitutions.  

 

Example 6.2:  

Solve the system of linear equations by Gaussion- Elimination method 

 

 

 

 

 

 

 

 

 

 

 

1 2 3

1 2 3

1 2 3

3

2 2 6

4 2 3 7

x x x

x x x

x x x
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Solution: 

Step 1.  

Augmented matrix is  



















7

6

3

324

212

111

 

 

133

122

4

2

rrR

rrR




   

 





















5

0

3

120

430

111

 

 

233 23 rrR   

 





















15

0

3

500

430

111

 

 

22 rR   

5

3
3

r
R   

















 3

0

3

100

430

111

 

 

 

 

Equivalent system of equations form is: 

Step 2. Back Substitution   

3

043

3

3

32

321







x

xx

xxx

        

23433

43/123/4

3

321

32

3







xxx

xx

x

 

Solutions are 1 2 32, 4, 3x   x  x     

 

Example 6.3:  

For the below figure calculate the values of the unknown flow rates F1, F2 and F3 by 

using Gaussion- Elimination method 

 

. 
 

 

 

 

 

  

 

 

 

 

F=1000 kg/hr 

 

40% Benzene 

40% Toluene 

20% Xylene 

T
o
w

er
 1

 

F3=? 

10% Toluene 

90% Xylene 

F2=? 

5% Benzene 

92% Toluene 

 3 % Xylene 

F1=? 

99% Benzene 

1% Toluene 

 

T
o
w

er
 2
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Component material balance gives these three equations of three variables 

4001.092.001.0

400005.099.0

1000

321

321

321







FFF

FFF

FFF

 

Augmented matrix is  

















400   1.092.001.0

400    005.099.0

1000    111

 

 

 

R2=r2 – (0.99/1)×r1 

R3=r3 – (0.01/1)×r1 



















390   .09091.00

590-    .99094.00

1000    111

 

 

R3=r3-(0.91/(-0.94))r2 



















181.17-    0.8684-00

590-    .99094.00

1000    111

 

 

R2=r2/(-0.94) 

R3=r3/( -0.8684) 

















208.6253      100

627.6596    1.053210

1000    111

 

 

 

 

 

Equivalent system of equations form is: 

F1 + F2 + F3 = 1000                    

    F2 +1.0532F3 = 627.6596  

        F3 = 208.6253 

Step 2. Back Substitution   

F3 = 208.6253 

F2 = 627.6596-1.0532F3 =627.6596-1.0532×208.6253 =407.9354 

F1 =1000- F2-F3 =1000 -208.6253 - 407.9354= 383.4393  
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6.5.2 Gauss - Jorden Elimination Method 

Gauss - Jorden Method 

By using elementary row operations  



































3

2

1

3

2

1

333231

232221

131211

    100

  010

   001

    

  

   

B

B

B

b

b

b

aaa

aaa

aaa

 

 

 

Example 6.4:  

Solve the system of linear equations by Gauss-Jorden elimination method 

x1 + x2 + 2x3 = 8                    

- x1 - 2x2 + 3x3 = 1  

3x1 -7x2 + 4x3 = 10 

Solution:       

Augmented matrix is  





















10   473

1    321

8    211

 

 

 

R2= r2+r1 

R3= r3-3r1 





















14-   2100

9    510

8    211

 

 

R2=-r2 

R3=r3-10r2 





















104-     5200

9-       510

8        211

 

 

R3=-r3/52 



















2100

9510

8211

 

R1=r1-2r3 

R2=r2+5r3 

















2100

1010

4011

 

 

R1=r1-r2 

















2100

1010

3001

 

 

Equivalent system of equations form is: 

x1 = 3                    
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x2 = 1  

x3 = 2 

is the solution of the system. 

 

 

 

 

 

Example 6.5:  

Total and component material balance on a system of distillation columns gives the 

flowing equations:- 

   F1 +   F2 +    F3+  F4= 1690                    

0.4F1 + 0.15F2 + 0.25F3+ 0.2F4= 412.5                   

0.25F1 + 0.8F2 + 0.3F3+ 0.45F4= 701                    

0.08F1 + 0.05F2 + 0.45F3+ 0.3F4= 487.3    

Use Gauss - Jorden method to compute the four un-known's in above equations:- 

Solution:       

Augmented matrix is  



















3.4873.045.005.008.0

70145.03.08.025.0

5.4122.025.015.04.0

16901111

 

 

 

R2= r2-(0.4/1)r1 

R3=r3-(0.25/1)r1 

R4=r4-(0.08/1)r1 























1.35222.037.003.00

5.2782.005.055.00

5.2632.015.025.00

16901111

 

 

 

R3=r3-(0.55/(-0.25))r2 

R4=r4-((-0.03)/(-0.025))r2 























72.383244.0388.000

2.30124.028.000

5.2632.015.025.00

16901111

 

 

 

 

R4=r4-((0.0388)/(-0.028))r3 

























657.3308857.0000

2.30124.028.000

5.2632.015.025.00

16901111

 

 

R2= r2/(-0.25) 

R3=r3/(-0.028) 

R4=r4/(-0.0887) 
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3801000

74.107585714.0100

10548.06.010

16901111

 

R1= r1-r4 

R2=r2-(0.8/1)r4 

R3=r3-(0.85714/1)r4 

 



















3801000

7500100

75006.010

13100111

 

R1= r1-r3 

R2=r2-((-0.6)/1)r3 

 



















3801000

7500100

3000010

5600011

 

 

R1=r1-r2 



















3801000

7500100

3000010

2600001

 

 

Equivalent system of equations form: 

F1 = 260 , F2 = 300 , F3 = 750 and 

F4 = 380  is the solution of the system. 

 

Example 6.6 

Balance the following chemical equation: 

x1 P2I4 + x2 P4+ x3 H2O x4 PH4I + x5 H3PO4 

Solution: 

P balance: 2x1+ 4x2=x4+ x5  

I balance: 4x1=x4+ x5  

H balance: 2x3=4x4+3x5  

O balance: x3=4x5  

Re-write these as homogeneous equations, each having zero on its right hand 

side: 

2x1+ 4x2- x4- x5= 0 

4x1- x4 - x=0 

2x3- 4x4- 3x5=0 

x3- 4x5= 0 

At this point, there are four equations in five unknowns. To complete the system, 

we define an auxiliary equation by arbitrarily choosing a value for one of the 

coefficients: 

x1= 1 

We can easily solve the above equations to balance this reaction using MATLAB 

such in table 6.1  
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Table (6.1) Matlab code and results for solution example (6.6) 

Matlab 

Code 

A = [2 4 0 -1 -1 

4 0 0 -1 0 

0 0 2 -4 -3 

0 0 1 0 -4  

1 0 0 0 0]; 

B= [0;0;0;0;1]; 

X = A\B 

Results 

X = 

    1.0000 

    1.3000 

   12.8000 

    4.0000 
    3.2000 

This does not yield integral coefficients, but multiplying by 10 will do the trick: 

The balanced equation will be: 

10P2I4 + 13 P4 + 128 H2O 40 PH4I + 32 H3PO4 
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Iterative Methods for Solving System of Linear Equation 
 

7.1 Jacobi Method 

Let the given equation be  

3333

2222

1111

dzcybxa

dzcybxa

dzcybxa







 

If the given system of equation is diagonally dominant then      

    iii zcybd
a

x 111

1

)1( 1
  

    iii zcxad
b

y 222

2

)1( 1
  

    iii ybxad
c

z 333

3

)1( 1
  

7.1.1 Condition for Jacobi method of converges:  

The sufficient condition is   

333

222

111

bac

cab

cba







 

The absolute value of the diagonal element in each row of the coefficient matrix must 

be greater than the sum of the absolute values of the off-diagonal elements in the 

same row.  

 

Example 7.1:  

Use the Jacobi iteration method to obtain the solution of the following equations: 

 6x1 -2 x2 + x3 = 11   

  x1 +2x2 -5x3 = -1  

-2x1 +7 x2 +2x3 = 5 

 

Solution 

Step 1: Re-write the equations such that each equation has the unknown with largest 

coefficient on the left hand side: 

6x1= 11+2 x2-x3  

7x2= 5+2x1 -2x3 

5x3 =1+x1 +2x2  

6

112 32
1




xx
x   
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7

522 31
2




xx
x   

5

12 21
3




xx
x   

Step 2: Assume the initial guesses 00
3

0
2

0
1  xxx  then calculate

1
3

1
2

1
1, xandxx : 

833.1
6

11)0()0(2

6

11)()(2 0
3

0
21

1 






xx

x  

714.0
7

5)0(2)0(2

7

5)(2)(2 0
3

0
11

2 






xx

x  

200.0
5

1)0(2)0(

5

1)(2)( 0
2

0
11

3 






xx

x  

Step 3: Use the values obtained in the first iteration, to calculate the values for the 2
nd

 

iteration: 

038.2
6

11)200.0()714.0(2

6

11)()(2 1̀
3

1
22

1 






xx

x  

181.1
7

5)200.0(2)833.1(2

7

5)(2)(2 1
3

1
12

2 






xx

x  

852.0
5

1)714.0(2)833.1(

5

1)(2)( 1
2

1
12

3 






xx

x  

and so on for the next iterations so that the next values are calculated using the 

current values: 

6

11)()(2 321
1




ii
i xx

x  

7

5)(2)(2 311
2




ii
i xx

x  

5

1)(2)( 211
3




ii
i xx

x  

The results for 9 iterations are: 

 Unknowns 

Iter. x1 x2 x3 

1 1.833 0.714 0.200 

2 2.038 1.181 0.852 

3 2.085 1.053 1.080 

4 2.004 1.001 1.038 

. . . . 

. . . . 

9 2.000 1.000 1.000 
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Example 7.2:  

Solve the equations by Jacobi method 

  20x1 + x2 – 2x3 = 17 

  3x1 + 20x2 – x3 = –18 

  2x1 – 3x2 + 20x3 = 25 

Solution 

Rewrite the given equation in the form: 

)3225(
20

1

)318(
20

1

)217(
20

1

21

1

3

31

1

2

32

1

1

iii

iii

iii

xxx

xxx

xxx













 

Using 0 0 0

1 2 3
x x x  = 0, we obtain 

1

1

1

2

1

3

17
x 0.85

20

18
x 0.90

20

25
x 1.25

20

 


  

 

 

Putting these values on the right of equations to obtain 

 

 

 

 

2 1 1

1 2 3

2 1 1

2

2 1 1

3

1 3

1 2

1
x 17 x 2x 1.02

20

1
x 18 3x x 0.965

20

1
x 25 2x 3x 1.1515

20

   

     

   

 

These and further iterates are listed in the table below: 

i ix1  ix2  ix3  

0 0 0 0 

1 0.85 –0.90 1.25 

2 1.02 –0.965 1.1515 

3 1.0134 –0.9954 1.0032 

4 1.0009 –1.0018 0.9993 

5 1.0000 –1.0002 0.9996 

6 1.0000 –1.0000 1.0000 

          

The values in 5
th

 and 6
th

 iterations being practically the same, we can stop. Hence the 

solutions are: 

    x1 = 1, x2 = –1 and x3 = 1 
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7.2 Gauss-Seidel Method 

If the given system of equation is diagonally dominant then  

    iii zcybd
a

x 111

1

)1( 1
  

    iii zcxad
b

y 2
1

22

2

)1( 1
   

    1
3

1
33

3

)1( 1   iii ybxad
c

z  

 

Example 7.3:  
Use the Gauss-Seidel method to obtain the solution of the following equations: 

6x1 -2 x2 + x3 = 11        (1)  

 x1 +2 x2 -5x3 = -1        (2) 

-2x1 +7 x2 +2x3 = 5        (3) 

Solution 

Step 1: Re-write the equations such that each equation has the unknown with largest 

`coefficient on the left hand side: 

6

112 32
1




xx
x  from eq. (1) 

7

522 31
2




xx
x  from eq. (3) 

5

12 21
3




xx
x   from eq. (2) 

Step 2: Assume the initial guesses 00
3

0
2  xx , then calculate 1

1x : 

833.1
6

11)0()0(2

6

11)()(2 0
3

0
21

1 






xx

x  

Use the updated value 833.11
1 x  and 00

3 x to calculate 1
2x   

238.1
7

5)0(2)833.1(2

7

5)(2)(2 0
3

1
11

2 






xx

x

 
Similarly, use 833.11

1 x  and 238.11
2 x to calculate 1

3x  

062.1
5

1)238.1(2)833.1(

5

1)(2)( 1
2

1
11

3 






xx

x  

 

Step 3: Repeat the same procedure for the 2
nd

 iteration 

069.2
6

11)062.1()238.1(2

6

11)()(2 1
3

1
22

1 






xx

x

002.1
7

5)062.1(2)069.2(2

7

5)(2)(2 1
3

2
12

2 






xx

x  
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015.1
5

1)002.1(2)069.2(

5

1)(2)( 2
2

2
12

3 






xx

x  

and so on for the next iterations so that the next values are calculated using the 

current values: 

6

11)()(2 321
1




ii
i xx

x  

7

5)(2)(2 3
1

11
2







ii
i xx

x  

5

1)(2)( 1
2

1
11

3







ii
i xx

x  

and continue the above iterative procedure until [(xk)
i+1 

- (xk)
i
]/ (xk)

i+1
 < Є for i=1,2 and 

3. 

The procedure yields the exact solution after 5 iterations only: 

 

 Unknown 

Iter. x1 x2 x3 

1 1.833 1.238 1.062 

2 2.069 1.002 1.015 

3 1.998 0.995 0.998 

4 1.999 1.000 1.000 

5 2.000 1.000 1.000 

 

 

Example 7.4: 

Solve by Gauss – Seidel method, the equations: 

  20x1 + x2 – 2x3 = 17 

  3x1 + 20x2 – x3 = – 18 

  2x1 – 3x2 + 20x3 = 25 

Solution 

As before, we start with initial estimate 
0 0 0

1 2 3
x x x  = 0. We write the given 

equation in the form 

)3225(
20

1

)318(
20

1

)217(
20

1

1
2

1
1

1
3

3
1

1
1

2

32
1

1













iii

iii

iii

xxx

xxx

xxx

 

 

These and further iterates are listed in the table below: 
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i ix1  ix2  ix3  

0 0 0 0 

1 0.8500 –1.0275 1.0109 

2 1.0025 –0.9998 0.9998 

3 1.0000 –1.0000 1.0000 

The value in the 2
nd

 and 3
rd

 iterations being particularly the same, we can stop. Hence 

the solutions is x1 = 1, x2 = – 1 and x3 = 1. 

 

Example 7.5: 

For the below figure calculate the values of the unknown flow rates F1, F2 and F3 by 

using Gauss-Seidel Method 

. 

 

 

 

 

 

  

 

 

 

Component material balance gives these three equations of three variables 

2009.003.00

4001.092.001.0

400005.099.0

321

321

321







FFF

FFF

FFF

 
Re-arranging the above equations 

9.0/)03.0200(

92.0/)1.001.0400(

99.0/)05.0400(

23

312

21

FF

FFF

FF







 
Starting with F1=F2=F3=1000/3 

Iteration F1 F2 F3 

 333.3333 333.3333 333.3333 

1.0000 387.2054 394.3420 209.0775 

2.0000 384.1241 407.8815 208.6262 

3.0000 383.4403 407.9380 208.6243 

4.0000 383.4375 407.9383 208.6243 

5.0000 383.4375 407.9383 208.6243 

 

 

F=1000 kg/hr 

 

40% Benzene 

40% Toluene 

20% Xylene 

T
o
w

er
 1

 

F3=? 

10% Toluene 

90% Xylene 

F2=? 

5% Benzene 

92% Toluene 

 3 % Xylene 

F1=? 

99% Benzene 

1% Toluene 

 

T
o
w

er
 2
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A Matlab program for solving the above equations using Gauss-Seidel method is 

listed in Table 7.1 

Table (7.1) Matlab code and results for solution example (7.5) 

Matlab 

Code 

F1=333.33; F2=333.33; F3=333.33 

for i=1:4 

F1=(400-0.05*F2)/0.99; 

F2=(400-0.01*F1-0.1*F3)/0.92; 

F3=(200-0.03*F2)/0.9; 

disp([ i, F1, F2, F3]) 

end 

Results 

1.0000  387.2056  394.3423  209.0775 

2.0000  384.1241  407.8815  208.6262 

3.0000  383.4403  407.9380  208.6243 

4.0000  383.4375  407.9383  208.6243 
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Solutions of Non-Linear Equations in One Variable (Root Finding) 

 

 

8.1 Graphical Methods 

A simple method for obtaining a root of the equation f(x) = 0 is to plot the function 

and observe where it crosses the x axis. There is much available software that will 

facilitate making a plot of a function. We will use Matlab exclusively for the course 

notes; however you can use other software such as Excel or Matcad for your work. 

 

Example 8.1 

Solve 
x

600
 (1  e

0.15x
) =50 using the graphical method. 

Solution 

The function f(x) =
x

600
 (1  e

0.15x
)  50 can be plotted in Figure 8.1 using the 

Matlab statements listed in table (8.1).  

 

Table (8.1) Matlab code for solving example (8.1) using graphical method 

Matlab 

Code 

x=4:0.1:20; 

fx=600*(1-exp(-0.15*x))./x-50; 

plot(x,fx,[0 20],[0 0]) 

xlabel('x'); 

ylabel('f(x)') 

grid on; zoom on 

0 2 4 6 8 10 12 14 16 18 20
-25

-20

-15

-10

-5

0

5

10

15

20

x

f(
x)

 
Figure 8.1 The graphical method for roots finding. 
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The Matlab Zoom on statement allows the function to be zoomed in at the cursor 

with left mouse click (right mouse click will zoom out). Each time you click the axes 

limits will be changed by a factor of 2 (in or out). You can zoom in as many times as 

necessary for the desired accuracy. Figure 8.2 shows the approximate root x to be 

8.79 

8.75 8.76 8.77 8.78 8.79 8.8 8.81 8.82

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

x

f(
x)

 

Figure 8.2 The graphical method for roots finding with Matlab Zoom on. 

 

The plot of a function between x1 and x2 is important for understanding its behavior 

within this interval. More than one root can occur within the interval when f(x1) and 

f(x2) are on opposite sides of the x axis. The roots can also occur within the interval 

when f(x1) and f(x2) are on the same sides of the x axis. Since the functions that are 

tangent to the x axis satisfy the requirement f(x) = 0 at this point, the tangent point is 

called a multiple root. 

 

8.2 The Bisection Method 

The bisection method or interval halving can be used to determine the solution to f(x) 

= 0 on an interval [x1 = a, x2 = b] if f(x) is real and continuous on the interval and f(x1) 

and f(x2) have opposite signs. We assume for simplicity that the root in this interval is 

unique. The location of the root is then calculated as lying at the midpoint of the 

subinterval within which the functions have opposite signs. The process is repeated to 

any specified accuracy.  

The procedure can be summarized in the following steps 
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Let f(x1) f(x2) < 0 on an interval [x1 = a, x2 = b] 

Step 1 Let xx = 
2

1
(x1 + x2); f1 = f(x1); f2 = f(x2) 

Step 2 Evaluate fx = f(xx)  

 If fx f1 > 0 then  

      x1 = xx; f1 = fx  

 else 

      x2 = xx; f2 = fx  

          end 

Step 3 If abs(x2  x1) > an error tolerance, go back to Step 1  

 

Figure 8.3 shows first three iterations x3, x4, and x5 of the bisection method.  

4 6 8 10 12 14 16
-15

-10

-5

0

5

10

15

x

f(
x)

x3 

x4 

x5 

x1 = a 

x2=b 

 

Figure 8.3 The first three iterations x3, x4, and x5 of the bisection method. 

 

x1=6    f(x1) =9.3430   and    x2=14     f(x2) = -12.3910 

x3 = 
2

1
(x1 + x2) = 

2

1
(6 + 14) = 10    f(x3) = -3.3878 

f(x1) f(x3) < 0  x4 = 
2

1
(x1 + x3) = 

2

1
(6 + 10) = 8    f(x4) =2.4104 

f(x3) f(x4) < 0  x5 = 
2

1
(x3 + x4) = 

2

1
(10 + 8) = 9    f(x5) = -0.6160 
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Since f(x1) and f(x2) bracket the root and x3 = 
2

1
(x1 + x2) = 

2

1
(a + b), the error after 

the first iteration is less than or equal to 
2

1
(b  a).  

A Matlab program for solving example 8.1 using bisection method is listed in Table 

8.2 where the function f(x) is an input to the program.  

 

Table (8.2) Matlab code and results for solving example (8.1) using bisection method 

Matlab 

Code 

fun=inline('600*(1-exp(-0.15*x)) /x-50') 

x1=6; 

f1= fun (x1); 

x2=14; 

f2= fun (x2); 

tol=1e-5; 

for i=1:100 

    x3=(x1+x2)/2; 

    f3= fun(x3); 

    if f1*f3<0 

    x2=x3; 

    f2=f3; 

    else 

    x1=x3; 

    f1=f3; 

    end 

    if abs(x2-x1)<tol; break;end 

end 

x3 

Results 
x3 = 

    8.7892 

The statement Inline is used to define the function at a given value of x. 
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Example 8.2 

Use the bisection method to find the root of the equation x-cos(x) = 0 with a percent 

relative error |εt|≤ 1%. (The exact value is 0.7391) 

Solution 

f(x)= x-cos(x) 

We have seen before that there is a single root lies in the interval [0,1]. Therefore, we 

start with xl=0 and x2=1, then iterate using the same procedure followed in example 8.1 

to get the following tabulated results: 

Iter Xl X2 X3 f(Xl) f(X2) f(X3) |εt| 

1 

 

0.0 1.0 0.5 -1.0000 0.4597 -0.3776 32.35 

2 

 

0.5 1.0 0.75 -0.3776 0.4597 0.0183 1.48 

3 

 

0.5 0.75 0.625 -0.3776 0.0183 -0.1860 15.44 

4 

 

0.625 0.75 0.6875 -0.1860 0.0183 -0.0853 6.98 

5 

 

0.6875 0.75 0.7188 -0.0853 0.0183 -0.0339 2.75 

6 0.7188 0.75 0.7344 -0.0339 0.0183 -0.0079 0.64 

Then x=0.7344 

 

Example 8.3 

The friction factor f depends on the Reynolds number Re for turbulent flow in smooth 

pipe according to the following relationship. 

)ln(Re340.0
1

f
f



 
Use the bisection method to compute f for Re = 25200 that lies between [0.001 ,0.1 ]. 

 

Solution 

Re-write the above equation in the form 

f
ffE

1
)25200ln(340.0)(   

Iter fl f2 f3 E(fl) E(f2) E(f3) 

1 

 

0.0010 0.1000 0.0505 -20.4514 11.9973 10.1179 

2 

 

0.0010 0.0505 0.0258 -20.4514 10.1179 7.7528 

3 

 

0.0010 0.0258 0.0134 -20.4514 7.7528 4.7705 

4 

 

0.0010 0.0134 0.0072 -20.4514 4.7705 1.0841 

5 

 

0.0010 0.0072 0.0041 -20.4514 1.0841 -3.2373 



Numerical Analysis /Lec. 8      - 66 -                   

Third Class                                                  

6 0.0041 0.0072 0.0056 -3.2373 1.0841 -0.6453 

7 0.0056 0.0072 0.0064 -0.6453 1.0841 0.2946 

8 0.0056 0.0064 0.0060 -0.6453 0.2946 -0.1536 

Then according to above table f = 0.006 

 

8.3 Secant Method (Linear Interpolation Method) 

The bisection method is generally inefficient, it requires more function evaluations in 

comparison with the secant method which is linear interpolation using the latest two 

points. Figure 8.4 shows graphically the root x3 obtained from the intersection of the 

line BA with the x-axis. 

x1

x2

x3 x4

x5

f(x)

f(x )1

f(x )2

A

B

 

Figure 8.4 Graphical depiction of the secant method. 

 

The intersection of the straight line with the x-axis can be obtained by using similar 

triangles x3 x1 A and x3 x2 A or by using linear interpolation with the following points. 

x x1 x3 x2 

f(x) f(x1) 0 f(x2) 

 
12

23

xx

xx




 = 

)()(

)(0

12

2

xfxf

xf




    x3 = x2  f(x2) 

)()( 12

12

xfxf

xx




 

The next guess is then obtained from the straight line through two points [x2, f(x2)] 

and [x3, f(x3)]. In general, the guessed valued is calculated from the two previous 

points [xn-1, f(xn-1)] and [xn, f(xn)] as 
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 xn+1 = xn  f(xn) 
)()( 1

1









nn

nn

xfxf

xx
 

The secant method always uses the latest two points without the requirement that they 

bracket the root as shown in Figure 8.4 for points [x3, f(x3)] and [x4, f(x4)]. As a 

consequence, the secant method can sometime diverge. A Matlab program for 

solving example 8.1 using secant method is listed in Table 8.3  

Table (8.3) Matlab code and results for solving example (8.1) using secant method 

Matlab 

Code 

fun=inline('600*(1-exp(-0.15*x))/x-50') 

tol=1e-5; 

x(1)=1; 

f(1)= fun(x(1)); 

x(2)=14; 

f(2)= fun(x(2)); 

for i=2:20 

    x(i+1)=x(i)-f(i)*(x(i)-x(i-1))/(f(i)-f(i-1)) 

    f(i+1)= fun(x(i+1)); 

    if abs(x(i+1)-x(i))<tol;  

break; 

end 

end 

x 

Results 

x = 

    1.0000 

   14.0000 

   10.4956 

    8.3724 

    8.8209 

    8.7897 

    8.7892 

    8.7892 

The last value of x vector is the solution of the equation 
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Example 8.4 

Use secant method to estimate the root of f(x)=e
-x

-x. with the two initial guesses x0 = 

0. and x1 = 1.  

Solution:  

Iter x f(x) 

Starting 

Values 

0 1.0000 

1.0 -0.6321 

1 0.6127 -0.0708 

2 0.563838 0.00518 

3 0.56717 -0.0000418 

 

 

 

 

Example 8.5 

Repeat Examples 8.4 using the secant method with the two initial guesses x0 = 2. and 

x1 = 3.  

Solution:  

Iter x f(x) 

Starting 

Values 

2 -1.8647 

3 -2.9502 

1 0.2823 0.4718 

2 0.6570 -0.1385 

3 0.5719 -0.0075 

4 0.5671 

 
This method converges with the required accuracy after 5 iterations. 

Example 8.6 

Use secant method with initial guesses T = 300 and T = 350 to calculate the bubble 

point of binary system (VCM 18 mol%, Water 82 mol%). The vapor pressure for this 

components is calculated by: 

VCM       P
o

vcm=exp(14.9601-1803.84/(T-43.15)) 

Water      P
o

w    =exp(18.3036-3816.44/(T-46.13)) 

Where:  Ki= P 
o

i /Pt  

Pt=760 

yi =Ki×xi  

At Bubble point  ∑yi=∑Ki×xi =1 

Solution 



Numerical Analysis /Lec. 8      - 69 -                   

Third Class                                                  

f(T)= Ki×xi -1 1-
760

0.82
e+

760

0.18
e

)
46.13-T

3816.44
-(18.3036)

43.15-T

1803.84
-(14.9601

  

Iter T f(T) 

Initial 

Values 

300.0000 -0.3086 

350.0000 1.4192 

1 308.9299 -0.1132 

2 311.9636 -0.0378 

3 313.4866 0.0018 

4 313.4157 -0.000028 

Then at bubble point T=313.457  K      

                   

8.4 The Newton-Raphson Method 

The Newton-Raphson method and its modification is probably the most widely used 

of all root-finding methods. Starting with an initial guess x1 at the root, the next guess 

x2 is the intersection of the tangent from the point [x1, f(x1)] to the x-axis. The next 

guess x3 is the intersection of the tangent from the point [x2, f(x2)] to the x-axis as 

shown in Figure 8.5. The process can be repeated until the desired tolerance is 

attained. 

 

x1

f(x)
f(x )1

B

x2x3

 

Figure 8.5 Graphical depiction of the Newton-Raphson method. 

 

The derivative or slope f(xn) can be approximated numerically as 

 f ’(xn) = 
x

xfxxf nn



 )()(
 

 

The Newton-Raphson method can be derived from the definition of a slope 
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 f ’(x1) = 
21

1 0)(

xx

xf




  x2 = x1  

)('

)(

1

1

xf

xf
 

 

In general, from the point [xn, f(xn)], the next guess is calculated as 

 xn+1 = xn  
)('

)(

n

n

xf

xf
 

 

 

A Matlab program for solving example 8.1 using Newton- Raphson method is listed 

in Table 8.4 .  

Table (8.4) Matlab code and results for solving example (8.1) using Newton- 

Raphson method 

Matlab 

Code 

f=inline('600*(1-exp(-0.15*x))/x-50'); 

df=inline('(90.0*exp(-0.15*x))/x + (600*exp(-0.15*x) - 600)/x^2'); 

tol=1e-5; 

x(1)=1; 

for i=2:20 

    x(i+1)=x(i)-f(x(i))/df(x(i)); 

    if abs(x(i+1)-x(i))<tol;  

break; 

end 

end 

x' 

Results 

x = 

    1.0000 

    0.0031 

    5.9278 

    8.4473 

    8.7840 

    8.7892 

    8.7892 

The last value of x vector is the solution of the equation 
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Example 8.7 

Use Newton-Raphson method to estimate the root of f(x)=e
-x

-x. Show all details of 

the iterations. Hint: the root is located between 0 and 1. 

Solution:  

Iter Xi f(Xi) f’(Xi) Xi+1 |εa(%)| 

1 0.0 1.0 -2.0 0.5 100.00 

2 0.5 0.1065 -1.6065 0.5663 11.71 

3 0.5663 0.0013 -1.5676 0.5671 0.15 

4 0.5671 0.0000 -1.5676 0.5671 0.00 

 

Example 8.8 

Repeat Example 8.7 starting with xo = 5. 

Solution:  

Iter Xi f(Xi) f’(Xi) Xi+1 |εa (%)| 

1 5.0 -4.9933 -1.0067 0.04016 12351 

2 0.04016 0.92048 -1.9606 0.5096 92.12 

3 0.5096 0.0911 -1.6007 0.5665 10.04 

4 0.5665 0.0010 -1.5675 0.5671 0.000 

 

Example 8.9 

Apply Newton-Raphson method to solve Redlich-Kwong equation which used to 

estimate the molar volume of saturated vapor of methyl chloride at 333.15 K and 

13.76 bar 

)(5.0 bVVT

a

bV

RT
P





  

If you know that:- 

A=1.5651×10
8 
cm

6
 bar mol

-2 
K

1/2  

b=44.891 cm
3
 mol

-1 

R=83.14 cm 
3
.bar.K

-1
.mol

-1
  

 

Solution 

P
bVVT

a

bV

RT
Vf 







)(
)(

5.0
 

76.13
)891.44(15.333

105651.1

891.44

15.33314.83
)(

5.0

8












VVV
Vf  

76.13
)891.44(

18574764.13

891.44

27698
)( 







VVV
Vf  

)891.44V(V

18574764.13

)891.44V(V

18574764.13

)891.44V(

27698-
)V(f

222 






  

It’s better to start with ideal molar volume as initial value of V 
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2012.943
76.13

15.33314.83





P

RT
V   

Iter Vi f(Vi) f’(Vi) Vi+1 

1 2012.943 -1.75623 -0.00512 1669.717 

2 1669.717 0.291628 -0.00695 1711.673 

3 1711.673 0.005731 -0.00668 1712.531 

4 1712.531 0.00000231 -0.00667 1712.531 

The molar volume equal to 1712.531
 
cm

3
 mol

-1 
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Solving System of Non-Linear Systems of Equations 
 

A nonlinear system of equations has at least one equation which is not first degree. 

 

Examples: x
2
 + y

2
 = 25 y = 3x

2
 – 4x + 2         xy = 9 

       2x + 3y = 7 x
2
 + y = 8         3x

2
 – y

2
 = 12 

The solutions of a nonlinear system are the points of intersection of the graphs of the 

equations. Some systems have one point of intersection; some have more than one 

point of intersection; and some have no points of intersection. 

 

                       
  

9.1 Analytical Methods for Solving Systems of Equations 

Solutions of nonlinear systems of equations can be found using the substitution or the 

elimination method. The substitution method is preferable for a system with one 

linear equation. The elimination method is preferable in most, but not all, cases when 

both equations are nonlinear. 

 

9.1.1. The Substitution Method 

Solve one of the equations for a first degree variable. Substitute the resulting 

expression in for that variable in the other equation. Solve for the remaining variable. 

Back substitute to find the value(s) of the first variable. Write your solutions as 

ordered pairs. 

 

Example 9.1    

Solve x
2
 + 2x = y + 6 

        x + y = –2 

Solution 

x + y = –2   y = –2 – x   x
2
 + 2x = –2 – x + 6   

x
2
 + 3x – 4 = 0     (x + 4) (x – 1) = 0   x = –4 & x = 1   

y = –2 – (–4) = 2   &   y = –2 – 1 = –3     

Solution:  (–4, 2)   (1, –3) 

 

To check graphically, enter y1 = x
2
 + 2x – 6   &   y2 = –2 – x 

Find the points of intersection. 
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9.1.2. The Elimination Method 

Line the equations up vertically so like terms are underneath each other. If needed, 

multiply each equation by a number so that when the equations are added together one 

of the variables is eliminated. Solve for the remaining variable. Back substitute to find 

the value(s) of the eliminated variable. Write your solutions as ordered pairs. 

Example 9.2 

Solve 3x
2
 + 5y

2
 = 17 

        2x
2
 – 3y

2
 = 5 

Solution: 

3x
2
 + 5y

2
 = 17 3R1     9x

2
 + 15y

2
 = 51 

2x
2
 – 3y

2
 = 5 5R2    10x

2 
– 15y

2
 = 25 

        19x
2 
= 76 

x
2
 = 4       x = –2   &   x = 2 

3(–2)
2
 + 5y

2
 = 17       12 + 5y

2
 = 17     

5y
2
 = 5       y

2
 = 1       y = –1   &   y = 1 

3(2)
2
 + 5y

2
 = 17       12 + 5y

2
 = 17     

5y
2
 = 5       y

2
 = 1       y = –1   &   y = 1 

Solutions:  (–2, –1)   (–2, 1)   (2, –1)   (2, 1) 

 

  

9.2 Numerical Methods for Solving Systems of Equations 

9.2.1 Fixed point iteration for systems of non-linear equations 

Using an initial guess, solve for each variable in the system and use fixed-point 

iteration to estimate the solution. 

One of the most important drawbacks of the fixed iteration method is that the 

convergence of the method is dependent on how the equations are formulated. May 

diverge quickly, in that case try solving for the variables in a different way. 

 

It can be shown that sufficient convergence criteria for two equations are: 

1

1

2

2

1

2

2

1

1

1





















x

f

x

f

and

x

f

x

f

 

This represents a very restrictive criteria and that’s why fixed point iteration method 

is not used to solve systems of non-linear equations. 
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Example 9.3 

Solve using 5 iteration of successive substitution where x = y = 1.5 initially: 

  










1

5

2

22

xy

yx
 

Solution 

Using 25 yx   and y = x
2 
– 1 it is easy to show the following iterations: 

Iteration xn yn 

0 1.5 1.5 

1 1.658 1.75 

2 1.392 0.9375 

3 2.030 3.121 

4 Non-real Non-real 

5   

So it is apparent that successive substitution this will not work using these formulas. 

Using 25 xy   and yx  1 we can just as easily show the following iterations: 

Iteration xn yn 

0 1.5 1.5 

1 1.5811 1.5811 

2 1.607 1.555 

3 1.599 1.564 

4 1.601 1.561 

5 1.600 1.562 

Which is rapidly converging on the true solution of 












 

2

171
,

2

171
 

As with the Jacobi iterative process, convergence is assured only for a system of 

diagonally dominant linear equations.  For systems that are neither linear nor 

diagonally dominant, convergence is a function of the equations themselves as well 

as the values of x’s chosen to start the iterations. 

 

Example 9.4 

As an example of applying the Jacobi method to a system of non-linear equations, 

consider the following system: 

 

  1552

2184

74

2

321

3

2

21

321







xxx

xxx

xxx

 

Solving the equations for each of the unknowns (x’s), we have the following: 
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5

215

8

421

4

7

21

3

31

2

2

32

1

xx
x

xx
x

xx
x
















 


 

Using these relationships in a Jacobi algorithm with starting values of x1 = x2 = x3 = 0, 

we can show the convergence of the algorithm over ten iterations in the following 

table: 

Itr x1 x2 x3 

0 0 0 0 

1 3.0625 1.620185 1.732051 

2 2.9654 2.091114 1.975086 

3 3.164866 2.086764 1.941118 

4 3.191267 2.109519 1.961783 

5 3.193133 2.113257 1.963314 

6 3.195105 2.113523 1.963314 

7 3.195343 2.113757 1.963501 

8 3.195385 2.113790 1.963514 

9 3.195403 2.113796 1.963516 

10 3.195406 2.113798 1.963518 

 

9.2.2 Newton-Raphson for solving systems of non-linear equations 

The Newton-Raphson formula is the following: 

 
 i

i
ii

xf

xf
xx

'1   

This formula can be obtained using Taylor series expansion. We can do the same 

approach for a system of equations, but considering a Taylor series that account for 

the presence of both variables: 

          
      

          
      

...

...

2

2

212

1

2

111212

2

1

212

1

1

111111



























x

f
xx

x

f
xxff

and

x

f
xx

x

f
xxff

i

ii

i

iiii

i

ii

i

iiii

  

For the root estimate  11 if and  12 if must be equal zero. 

Therefore: 
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Finally; 
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1

i1

1

i2

i1

1

i1

i2

i21i2

1

i2
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2
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x
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Which is an iterative method to solve the system of nonlinear equations. 

 

Note also that the Newton-Raphson method can be generalized to solve N 

simultaneous equations. 

 

Example 9.5 

Solve the following system using Newton-Raphson method: 

075x20yx

011y4x8yx

22

22




 

By tacking a starting point as (x=2; y=4) and 510 . 
Solution 

   

 
 

 
 

       

   

 
 

 
 

       

x

f

y

f

y

f

x

f
x

f
f

x

f
f

yy

x

f

y

f

y

f

x

f

y

f
f

y

f
f

xx

i2i1i2i1

i2

i1

i1

i2

i1i

i2i1i2i1

i1

i2

i2

i1

i1i




























































 

Let 11y4x8yxf 22

1
  and 75x20yxf 22

2
  

Thus: ,8x2
x

f
i,1 




  ,4y2

y

f
i,1 




   ,20x2

x

f
i,2 




  and  y2

y

f
i,2 




 

Hence when x =2 and y = 4 we find that: 
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,48)2(2
x

f
0,1 




 ,44)4(2

y

f
0,1 




 ,1620)2(2

x

f
0,2 




  and  8)4(2

y

f
0,2 




 

Also 111)4(4)2(842f 22

0,1
  and 5575)2(2042f 22

0,2
  

32)16)(4()8)(4(
x

f

y

f

y

f

x

f
0,20,10,20,1 

















  

So for the first iteration we see that: 

9.1250
32

)4)(55()8)(1(
2x

1



  

11.3750
32

)16)(1()4)(55(
4y

1



  

5625.3
2

125.92

x

xx

0

10 





  

Now we find that iteration 2 produces: 

,10.258)9.1250(2
x

f
1,1 




 ,18.754)11.375(2

y

f
1,1 




 ,-1.7520)9.1250(2

x

f
1,2 




  

and  22.75)11.375(2
y

f
1,2 




 

Also 105.156311)11.375(4)9.125(811.3759.125f 22

1,1
  and 

105.156375)9.125(2011.3759.125f 22

1,2
  

266)75.1)(18.75()75.22)(10.25(
x

f

y

f

y

f

x

f
1,21,11,21,1 

















  

So for the second iteration we see that: 

7.543703
266

)18.75)(105.1563()22.75)(105.1563(
9.125x

2



  

6.631109
266

)-1.75)(105.1563()10.25)(105.1563(
11.375y

2



  

0.173293
125.9

7.543703125.9

x

xx

0

10 





  

Itr 1
f  

2
f  

x

f
1




 

y

f
1




 

x

f
2




 

y

f
2




 x y s

  

       2 4  

1 -1 55 -4 4 -16 8 9.125 11.375 3.5625 

2 105.1563 105.1563 10.25 18.75 -1.75 22.75 7.543703 6.631109 0.173293 

3 25.005 25.005 7.087406 9.262218 -4.91259 13.26222 6.826694 4.480083 0.095047 

4 5.141014 5.141014 5.653389 4.960166 -6.34661 8.960166 6.576327 3.728981 0.036675 

5 0.626838 0.626838 5.152654 3.457963 -6.84735 7.457963 6.535955 3.607865 0.006139 

6 0.016299 0.016299 5.07191 3.215731 -6.92809 7.215731 6.534848 3.604543 0.000169 

7 1.23E-05 1.23E-05 5.069696 3.209087 -6.9303 7.209087 6.534847 3.604541 1.28×10
-7
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Solving System of Non-Linear Systems of Equations 
 

A nonlinear system of equations has at least one equation which is not first degree. 

 

Examples: x
2
 + y

2
 = 25 y = 3x

2
 – 4x + 2         xy = 9 

       2x + 3y = 7 x
2
 + y = 8         3x

2
 – y

2
 = 12 

The solutions of a nonlinear system are the points of intersection of the graphs of the 

equations. Some systems have one point of intersection; some have more than one 

point of intersection; and some have no points of intersection. 

 

                       
  

9.1 Analytical Methods for Solving Systems of Equations 

Solutions of nonlinear systems of equations can be found using the substitution or the 

elimination method. The substitution method is preferable for a system with one 

linear equation. The elimination method is preferable in most, but not all, cases when 

both equations are nonlinear. 

 

9.1.1. The Substitution Method 

Solve one of the equations for a first degree variable. Substitute the resulting 

expression in for that variable in the other equation. Solve for the remaining variable. 

Back substitute to find the value(s) of the first variable. Write your solutions as 

ordered pairs. 

 

Example 9.1    

Solve x
2
 + 2x = y + 6 

        x + y = –2 

Solution 

x + y = –2   y = –2 – x   x
2
 + 2x = –2 – x + 6   

x
2
 + 3x – 4 = 0     (x + 4) (x – 1) = 0   x = –4 & x = 1   

y = –2 – (–4) = 2   &   y = –2 – 1 = –3     

Solution:  (–4, 2)   (1, –3) 

 

To check graphically, enter y1 = x
2
 + 2x – 6   &   y2 = –2 – x 

Find the points of intersection. 
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9.1.2. The Elimination Method 

Line the equations up vertically so like terms are underneath each other. If needed, 

multiply each equation by a number so that when the equations are added together one 

of the variables is eliminated. Solve for the remaining variable. Back substitute to find 

the value(s) of the eliminated variable. Write your solutions as ordered pairs. 

Example 9.2 

Solve 3x
2
 + 5y

2
 = 17 

        2x
2
 – 3y

2
 = 5 

Solution: 

3x
2
 + 5y

2
 = 17 3R1     9x

2
 + 15y

2
 = 51 

2x
2
 – 3y

2
 = 5 5R2    10x

2 
– 15y

2
 = 25 

        19x
2 
= 76 

x
2
 = 4       x = –2   &   x = 2 

3(–2)
2
 + 5y

2
 = 17       12 + 5y

2
 = 17     

5y
2
 = 5       y

2
 = 1       y = –1   &   y = 1 

3(2)
2
 + 5y

2
 = 17       12 + 5y

2
 = 17     

5y
2
 = 5       y

2
 = 1       y = –1   &   y = 1 

Solutions:  (–2, –1)   (–2, 1)   (2, –1)   (2, 1) 

 

  

9.2 Numerical Methods for Solving Systems of Equations 

9.2.1 Fixed point iteration for systems of non-linear equations 

Using an initial guess, solve for each variable in the system and use fixed-point 

iteration to estimate the solution. 

One of the most important drawbacks of the fixed iteration method is that the 

convergence of the method is dependent on how the equations are formulated. May 

diverge quickly, in that case try solving for the variables in a different way. 

 

It can be shown that sufficient convergence criteria for two equations are: 

1

1

2

2

1

2

2

1

1

1





















x

f

x

f

and

x

f

x

f

 

This represents a very restrictive criteria and that’s why fixed point iteration method 

is not used to solve systems of non-linear equations. 
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Example 9.3 

Solve using 5 iteration of successive substitution where x = y = 1.5 initially: 

  










1

5

2

22

xy

yx
 

Solution 

Using 25 yx   and y = x
2 
– 1 it is easy to show the following iterations: 

Iteration xn yn 

0 1.5 1.5 

1 1.658 1.75 

2 1.392 0.9375 

3 2.030 3.121 

4 Non-real Non-real 

5   

So it is apparent that successive substitution this will not work using these formulas. 

Using 25 xy   and yx  1 we can just as easily show the following iterations: 

Iteration xn yn 

0 1.5 1.5 

1 1.5811 1.5811 

2 1.607 1.555 

3 1.599 1.564 

4 1.601 1.561 

5 1.600 1.562 

Which is rapidly converging on the true solution of 












 

2

171
,

2

171
 

As with the Jacobi iterative process, convergence is assured only for a system of 

diagonally dominant linear equations.  For systems that are neither linear nor 

diagonally dominant, convergence is a function of the equations themselves as well 

as the values of x’s chosen to start the iterations. 

 

Example 9.4 

As an example of applying the Jacobi method to a system of non-linear equations, 

consider the following system: 

 

  1552

2184

74

2

321

3

2

21

321







xxx

xxx

xxx

 

Solving the equations for each of the unknowns (x’s), we have the following: 



Numerical Analysis /Lec. 9               - 75 -                    

Third Class                                                  

5

215

8

421

4

7

21

3

31

2

2

32

1

xx
x

xx
x

xx
x
















 


 

Using these relationships in a Jacobi algorithm with starting values of x1 = x2 = x3 = 0, 

we can show the convergence of the algorithm over ten iterations in the following 

table: 

Itr x1 x2 x3 

0 0 0 0 

1 3.0625 1.620185 1.732051 

2 2.9654 2.091114 1.975086 

3 3.164866 2.086764 1.941118 

4 3.191267 2.109519 1.961783 

5 3.193133 2.113257 1.963314 

6 3.195105 2.113523 1.963314 

7 3.195343 2.113757 1.963501 

8 3.195385 2.113790 1.963514 

9 3.195403 2.113796 1.963516 

10 3.195406 2.113798 1.963518 

 

9.2.2 Newton-Raphson for solving systems of non-linear equations 

The Newton-Raphson formula is the following: 

 
 i

i
ii

xf

xf
xx

'1   

This formula can be obtained using Taylor series expansion. We can do the same 

approach for a system of equations, but considering a Taylor series that account for 

the presence of both variables: 
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For the root estimate  11 if and  12 if must be equal zero. 

Therefore: 
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Finally; 
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Which is an iterative method to solve the system of nonlinear equations. 

 

Note also that the Newton-Raphson method can be generalized to solve N 

simultaneous equations. 

 

Example 9.5 

Solve the following system using Newton-Raphson method: 

075x20yx

011y4x8yx

22

22




 

By tacking a starting point as (x=2; y=4) and 510 . 
Solution 
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Let 11y4x8yxf 22

1
  and 75x20yxf 22

2
  

Thus: ,8x2
x

f
i,1 




  ,4y2

y

f
i,1 




   ,20x2

x

f
i,2 




  and  y2

y

f
i,2 




 

Hence when x =2 and y = 4 we find that: 
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So for the first iteration we see that: 
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Now we find that iteration 2 produces: 
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1,1
  and 
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So for the second iteration we see that: 
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f
1
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2




 x y s

  

       2 4  

1 -1 55 -4 4 -16 8 9.125 11.375 3.5625 

2 105.1563 105.1563 10.25 18.75 -1.75 22.75 7.543703 6.631109 0.173293 

3 25.005 25.005 7.087406 9.262218 -4.91259 13.26222 6.826694 4.480083 0.095047 

4 5.141014 5.141014 5.653389 4.960166 -6.34661 8.960166 6.576327 3.728981 0.036675 

5 0.626838 0.626838 5.152654 3.457963 -6.84735 7.457963 6.535955 3.607865 0.006139 

6 0.016299 0.016299 5.07191 3.215731 -6.92809 7.215731 6.534848 3.604543 0.000169 

7 1.23E-05 1.23E-05 5.069696 3.209087 -6.9303 7.209087 6.534847 3.604541 1.28×10
-7
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Solution of First-Order Ordinary Differential Equations 

 

An equation that consists of derivatives is called a differential equation. Differential 

equations have applications in all areas of science and engineering. Mathematical 

formulation of most of the physical and engineering problems lead to differential 

equations. So, it is important for engineers and scientists to know how to set up 

differential equations and solve them. Differential equations are of two types  

1) Ordinary differential equation (ODE).  

2) Partial differential equations (PDE). 

An ordinary differential equation is that in which all the derivatives are with respect 

to a single independent variable. Examples of ordinary differential equation include: 

1) )sin(xy
dx

dy
  , 1)0( y , 

2) 02
2

2

 y
dx

dy

dx

yd
 , 2)0( 

dx

dy
 , 4)0( y  

3) ,sin53
2

2

3

3

xy
dx

dy

dx

yd

dx

yd
  12)0(

2

2


dx

yd
 , 2)0( 

dx

dy
 , 4)0( y  

First order ordinary differential equations are of the form: 

0( , )  with  (0) 
dx

f x t x x
dt

                                                                                      

On the left hand side is the derivative of the dependent variable x with respect to 

the independent variable t. On the right hand side, there is a function that may depend 

on both x and t.  

Many differential equations cannot be solved exactly. Numerical methods have 

been developed to approximate solutions. Numerical analysis is a field in mathematics 

that is concerned with developing approximate numerical methods and assessing their 

accuracy, for instance for solving differential equations. We will discuss the most basic 

method such Taylor, Euler and Runge-Kutta methods. 

 

10.1 Taylor Series Method 

Function )(xy  can be expanded over a small interval x using the Taylor series from a 

start or reference point x  

 )x(yh
!4

1
)x(yh

!3

1
)x(yh

!2

1
)x(yh)x(y)hx(y )4(432                     (1) 

Where iii xxh  1  = h, a constant.   
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Example 10.1 

Solve the following ordinary differential equation (ODE) using Taylor’s method of 

order 2 with h= 0.2 

dx

dy
 = y  x

2
 + 1  ,  for 0  x  2  ,  with y(0) = 0.5  

Solution 

2

2

dx

yd
 = 

dx

dy
 2x = y  x

2
 + 1  2x 

yn+1 = yn + (yn  xn
2
 + 1)h + 

2

1
( yn  xn

2
  2xn + 1)h

2
 

i x y 

1     

2     

3     

4     

5     

6     

7     

8     

9    

10    

11 

0    

0.2000    

0.4000    

0.6000    

0.8000    

1.0000    

1.2000    

1.4000 

1.6000    

1.8000    

2.0000 

0.5000    

0.8300    

1.2158    

1.6521    

2.1323    

2.6486    

3.1913    

3.7486 

4.3061    

4.8463    

5.3477 

 

10.2. Euler’s Method 

Euler’s method is the simplest and least useful of these three methods. If we are 

solving a first-order differential equation of the form 
dy

dt
f t y ( , )  with the initial 

condition y(0)=A, Euler’s method begins by approximating the first derivative as 

dy

dt

y t t y t

t


 ( ) ( )


 

Setting this equal to f(t,y) and solving for )( tty   yields the following algorithm for 

advancing the numerical solution of an ordinary differential equation: 

0y)0(y)y,x(f
dx

dy
                                                               

),(1 yxfhyy nn   
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Using Euler’s method we have the following consideration: 
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Exercise 10.2:  

Apply Euler’s method to approximate the solution of the initial value problem 

5)0(with2  yy
dx

dy
                                                          (2) 

Solution 

We know that the analytical solution of equation (2) is , )2exp(5 xy  . We numerically 

solve equation (2) using Euler’s method with h=0.1 in the time interval [0, 0.5], and 

then check how well this method performs. We have yyf 2)(  . Then 

5.01.04.0
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       We summarize this in the following table. If h=0.1, then 

x y Exact Difference 

0 5 5 0 

0.1 6 6.107014 0.107014 

0.2 7.2 7.459123 0.259123 

0.3 8.64 9.110594 0.470594 

0.4 10.368 11.1277 0.759705 

0.5 12.4416 13.59141 1.149809 
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The third column contains the exact values, )2exp(5 xy  . The last column contains 

the absolute error after each step, computed as |y-yExact|. We see that when h=0.1, the 

numerical approximation is not very good after five steps. If we repeat the same 

approximation with a smaller value for h, say h=0.01, the following table results for 

the first five steps: 

x y Exact Difference 

0 5 5 0 

0.01 5.1 5.101007 0.001007 

0.02 5.202 5.204054 0.002054 

0.03 5.30604 5.309183 0.003143 

0.04 5.412161 5.416435 0.004275 

0.05 5.520404 5.525855 0.005451 

 

Doing five steps only gets us to x=0.05. We can do more steps until we reach x=0.5. 

We find that the final point will be: 

x y Exact Difference 

0.5 13.45794 13.59141 0.133469 

 

Choosing a smaller value for h resulted in a better approximation at x=0.5 but also 

required more steps. One source of error in the approximation comes from the 

approximation itself. 

 

10.3 Fourth order Runge-Kutta Method 

To find numerical solution to the initial value problem 0)0(),,( yyyxf
dx

dy
 using 

Runge-Kutta method we have the following consideration: 

 hkkkkyy ii 43211 22
6

1
                                                                 

 ii yxfk ,1                                                                                                     









 hkyhxfk ii 12

2

1
,

2

1
                                                                            









 hkyhxfk ii 23

2

1
,

2

1
                                                                            

 hkyhxfk ii 34 ,   

This method gives more accurate result compared to Euler’s method                                                                                   
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Example 10.3: 

Solve the following ordinary differential equation (ODE) using fourth order 

Runge-Kutta method to calculate y(x=0.2) 

dx

dy
 = x + y ;  y(0) = 1  ,  h = 0.1 

Solution: 

k1 = 0 + 1= 1  

k2 = (0+0.05)+(1+1×0.05)=1.10 

k3 = (0+0.05) +(1+1.1×0.05)= 1.1050  

k4 = (0+0.1)+(1+1.1050×0.1) = 1.2105 

)kk2k2k(
6

h
yy

4321o1
  

1.11034 = 1.2105) + 1.105×2 + 1.1×2 + (1×
6

0.1 
+ 1 = y(0.1)  

k1 = 0.1 + 1.11034 = 1.21034  

k2 = (0.1+0.05)+(1.11034+1.21034×0.05) = 1.3209 

k3 = (0.1+0.05) +(1.11034+1.3209×0.05)= 1.3264  

k4 = (0.1+0.1)+( 1.11034+1.3264×0.1) = 1.4430 

1.2428 = 1.4430) +1.3264×2 +1.3209×2 + (1.21034×
6

0.1
 + 1.11034 = y(0.2)  

at x=0.2   y=1.2428 

 

Example 10.4: 

A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K.  

Assuming heat is lost only due to radiation, the differential equation for the 

temperature of the ball is given by  

    K12000T,1081T102067.2
dt

dT 8412    

where T is in K and t  in seconds.  Find the temperature at 480t  seconds using 

Runge-Kutta 4th order method.  Assume a step size of  240h  seconds. 
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Solution 

  8412 1081T102067.2
dt

dT
 

 

    8412 1081T102067.2T,tf  
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3004

   240894.31200,2400f   10.265,240f  
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 )kk2k2k(
6

h
TT
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       069750.08954.3238347.025579.4
6
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 K65.675  

 

1
T  is the approximate temperature at t=t1 

   2402400htt
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For K65.675T,240t,1i
11
  

  
111
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 31372.0  
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2
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tfk
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      00.638,360f  

  8412 108100.638102067.2    

 34775.0  

       19.592,480f24034775.065.675,240240fhkT,htfk
3114

  

            8412 108119.592102067.2  
          

           25351.0  

 )kk2k2k(
6

h
TT

432112
  

       25351.034775.0231372.0244199.0
6

240
65.675   

 K91.594  

 

2
T  is the approximate temperature at time t2 

   htt
12
  240240  480  

 

Table 1 and Figure 2 show the effect of step size on the value of the calculated 

temperature at 480t  seconds.  

 

Table 1 Value of temperature at time, 480t s for different step sizes 

Step size, h  T(480) tE  %|| t  

480 

240 

120 

60 

30 

-90.278 

594.91 

646.16 

647.54 

647.57 

737.85 

52.660 

1.4122 

0.033626 

0.00086900 

113.94 

8.1319 

0.21807 

0.0051926 

0.00013419 

 

Example 10.5 

Using Matlab Commands solve the following equation using both Eular and 

Runge-Kutta method and to approximate the solution of the initial value problem 

1)0(,  yyx
dx

dy
 with step size h = 0.1. 

 

Solution:  
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Eular Runge Kutta 

clear all, clc,format short 

x(1)=0; 

y(1)=1; 

h=0.5 

for i=1:5 

x(i+1)=x(i)+h; 

dy=x(i)+y(i); 

y(i+1)=y(1)+h*dy; 

end 

y_exact= -1-x+2*exp(x); 

error=y_exact-y 

table=[x',y',y_exact',error'] 

 

clear all, clc,format short 

x(1)=0;y(1)=1;h=0.1; 

f=inline('x+y'); 

% f(x,y) = x+y 

for i=1:5 

x(i+1)=x(i)+h; 

k1 = f(x(i),y(i)); 

k2 = f(x(i)+h/2,y(i)+k1*h/2); 

k3 = f( x(i) + h/2,y(i)+k2*h/2); 

k4 = f( x(i) + h,y(i)+k3*h); 

y(i+1)=y(i)+(1/6)*h*(k1 +2*k2 + 2*k3 +k4); 

end 

y_exact= -1-x+2*exp(x); error=y_exact-y 

table=[x',y',y_exact',error'] 

table = 

0         1.0000    1.0000    0 

0.1000    1.1000    1.1103    0.0103 

0.2000    1.1200    1.2428    0.1228 

0.3000    1.1320    1.3997    0.2677 

0.4000    1.1432    1.5836    0.4404 

0.5000    1.1543    1.7974    0.6431 

table = 

0          1.0000     1.0000   0 

0.1000    1.1103    1.1103    0.0000 

0.2000    1.2428    1.2428    0.0000 

0.3000    1.3997    1.3997    0.0000 

0.4000    1.5836    1.5836    0.0000 

0.5000    1.7974    1.7974    0.0000 
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Solving Simultaneous First-Order Ordinary Differential Equations 

 

11.1 Integration two simultaneous first-order ordinary differential equations 

Consider the following system of first-order ODE’s describing the dependence of two 

dependent variables y and z on one independent variable x: 

),,(

),,(

zyxg
dx

dz

zyxf
dx

dy





 

These two differential equations are coupled and must be integrated simultaneously 

because both equations involve both dependent variables. 

Initial conditions are required giving the values of y and z at the initial value of x. The 

algorithm for 4th-order Runge-Kutta integration of two coupled ODEs is: 
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)hk5.0z,hk5.0y,h5.0x(gk
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22i21ii32

22i21ii32




 

)hkz,hky,hx(gk

)hkz,hky,hx(fk

32i31ii42

32i31ii41




 

 

As example an exothermic reaction in unsteady-state continuous stirred tank reactor 

and exothermic reaction in a plug flow reactor with heat exchange through the reactor 

wall. 

From the one and two ODE examples, you can extend the method to integration of 

three coupled ODE’s. Three coupled ODE’s would be encountered, for example, for 

reaction of gases in a steady-state non-isothermal plug flow reactor with significant 

pressure drop (dC/dx =, dT/dx =, and dP/dx=). 
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11.2 Integration of a system of first-order ordinary differential equations 

)y ,… ,y ,y (x,f =
dx

dy

......................

.....................

)y ,… ,y ,y (x,f =
dx

dy

)y ,… ,y ,y (x,f =
dx

dy

m21m
m

m212
2

m211
1

 

The solution of the above equations is: 

)k + 2k +2k + (k
6

h
yy i4,i3, i2,i1,

n
i

1n
i 

 Where i = 1, 2, ..., m and 

)y ,…y  ,y ,(xf = k n
m

n
2

n
1

n
ii1,  

)
2

hk
y ,…

2

hk
y ,

2
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h
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m
2,1n

2
1,1n

1
n
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2

hk
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2

h
(xf = k m,2n

m
2,2n

2
1,2n

1
n

ii3,   

)hky ,…hky ,hky ,h(xf = k m,3
n
m2,3

n
21,3

n
1

n
ii4,   

The idea of the solution to a system of differential equations is similar to a solution of a 

single differential equation.  

 

Example 11.1:  

Using fourth order Runge-Kutta method with step size h = 0.1 solve   

dx

dy1 = y1y2 + x   ,   y1(0) = 1 

dx

dy2  = xy2 + y1   ,    y2(0) = -1 

To calculate y1(0.1) and y2(0.1)  

Solution 

At x = 0, y1 = 1, y2 = -1 

k1,1 = y1y2 + x = (1)(-1) + 0 = -1 

k1,2 = xy2 + y1 = (0)(-1) + 1= 1  

k2,1 = (y1+0.5hk1,1)(y2+0.5hk1,2) + (x+0.5h) =(0.95)(-0.95) + 0.05 = -0.8525  
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k2,2 = (x+0.5h)(y2+0.5hk1,2) +(y1+0.5hk1,1) =(0.05)(-0.95) + 0.95 = 0.9025  

k3,1 = (y1+0.5hk2,1)(y2+0.5hk2,2) + (x+0.5h) =(0.9574)(-0.9549) + 0.05= -0.8642 

k3,2 = (x+0.5h)(y2+0.5hk2,2) +(y1+0.5hk2,1) =(0.05)(-0.9549) + 0.9574 = 0.9096  

k4,1 = (y1+hk3,1)(y2+hk3,2) + (x+h) =(0.9136)(-0.9091) + 0.1 = -0.7305  

k4,2 = (x+h)(y2+hk3,2) +(y1+hk3,1) =(0.1)(-0.9091) + 0.9136= 0.8227 

at x=0.1 

y1(0.1) = y1(0) + (h/6)(k1,1 + 2k2,1 + 2k3,1 + k4,1) 

y1(0.1) = 1 +(0.1/6) [(-1) + 2(-0.8525) + 2(-0.864) + (-0.730)]= 0.9139 

y2(0.1) = y2(0) +(h/6) (k1,2 + 2k2,2 + 2k3,2 + k4,2) 

y2(0.1) = -1 + [(1) + 2(0.9025) + 2(0.909) + (0.823)]= -0.9092 

 

Example 11.2 

Use ode45 Matlab Command to solve the following first order system for y1 and y2 at 

1x0  . 

 
dx

dy1 = y1y2 + x      , y1(0) = 1 

 
dx

dy2  = xy2 + y1    , y2(0) = -1 

Using fourth order Runge-Kutta method with step size h = 0.1 

Solution 

The Matlab routines ode45 can be used to solve the system. A Matlab function must 

be created to evaluate the slopes as a column vector. The function name in this 

example is exode(x, y) which must be saved first in the hard drive with the same 

name exode.m. 

 

The command ode45 is then evaluated from the command windows. Matlab will set 

the step size to achieve a preset accuracy that can be changed by user.  

The independent variable can also be specified at certain locations between the initial 

and final values and Matlab will provide the dependent value at these locations.  

 

function dydx = exode(x,y) 

dydx (1,1)=y(1)*y(2)+x; 

dydx (2,1)=x*y(2)+y(1); 
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C  B A 21 kk


xspan=0:0.1:1; 

[x,y]=ode45('exode',xspan,[1 , -1]) 

x = 

         0 

    0.1000 

    0.2000 

    0.3000 

    0.4000 

    0.5000 

    0.6000 

    0.7000 

    0.8000 

    0.9000 

    1.0000 

y = 

    1.0000   -1.0000 

    0.9139   -0.9092 

    0.8522   -0.8341 

    0.8106   -0.7711 

    0.7863   -0.7174 

    0.7772   -0.6705 

    0.7817   -0.6283 

    0.7987   -0.5889 

    0.8274   -0.5504 

    0.8675   -0.5108 

    0.9188   -0.4681 

 

Exercise 11.3: 

Let’s consider a simple example of a model of a plug flow reactor that is described by a 

system of ordinary differential equations. A plug flow reactor is operated as shown in 

Figure (9.1) below.  

 

 

 

 

 

 

Figure (9.1) Isothermal plug flow reactor 

The plug flow initially has only reactant A, the components A react to form component 

B. The mole balance for each component is given by the following differential 

equations 

B2

C

B2A1

B

A1

A

Ck
dz

dC
u

CkCk
dz

dC
u

Ck
dz

dC
u







 

With the following initial values 

CA (z=0) =1 kmol/m
3
         CB (z=0) =0    CC (z=0) =0     and k1=2    k2=3 
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If u=0.5 m/s and reactor length z=3 m. Solve the differential equations and plot the    

concentration of each species along the reactor length 

Solution: 

We’ll start by writing the function defining the right hand side (RHS) of the ODEs. The 

following function file ‘example3’ is used to set up the ode solver. 

 

Now we’ll write a main script file to call ode45. CA, CB and CC must be defined 

within the same matrix, and so by calling CA as C(1), CB as C(2) and CC as c(3), they 

are listed as common to matrix C. 

The following run file is created to obtain the solution: 

 

The produced plot is as in Figure (9.2) 

Figure (9.2): A, B and C concentrations along plug flow reactor 

 

function dC= Example4 ( z, C)  

u = 0.5; 

k1=2; k2=3; 

dC(1,1) = -k1 *C(1) / u;  

dC(2,1) = (k1 *C(1)-k2 *C(2)) / u;  

dC(3,1) = k2 *C(2)/ u;  

clear all, clc 

[z , C] = ode45(' Example3', [0:0.1:3], [1 0 0])  

plot (z,C(:,1),'k+-',z,C(:,2),'k*:',z,C(:,3),'kd-.')  

xlabel ('Length (m)');  

ylabel ('Concentrations (kmol/m^3) ');  

legend ('A', 'B', 'C') 
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11.3 Solving Higher Order Ordinary Differential Equations 

We have learned Euler’s and Runge-Kutta methods to solve first order ordinary 

differential equations of the form 

     00,, yyyxf
dx

dy
    

What do we do to solve differential equations that are higher than first order? For 

example an thn order differential equation of the form 

  xfya
dx

dy
a

dx

yd
a

dx

yd
a on

n

nn

n

n 




 11

1

1   

with 1n initial conditions can be solved by assuming 

 1zy                                               (1) 

 2
1 z

dx

dz

dx

dy
                                          (2) 

 3
2

2

2

z
dx

dz

dx

yd
                                         (3) 

  

 n
n

n

n

z
dx

dz

dx

yd
 




1

1

1

                                        (n) 

 

 















 xfya
dx

dy
a

dx

yd
a

a

dx

dz

dx

yd

n

n

n

n

n

n

n

011

1

1

1


           

         =    xfzazaza
a

nn

n

  10211

1
                           (n+1) 

The above Equations from (2) to (n+1) represent n  first order differential equations as 

follows 

 xzzfz
dx

dz
,,, 2112

1                                    

 xzzfz
dx

dz
,,, 2123

2        

  

   
1

  10211 xfzazaza
adx

dz
nn

n

n     

Each of the n first order ordinary differential equations is accompanied by one initial 

condition. These first order ordinary differential equations are simultaneous in nature 

but can be solved by the methods used for solving first order ordinary differential 

equations that we have already learned. 
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Higher Order Ordinary Differential 

Equations 

System of first Order Ordinary 

Differential Equations
 

xey
dx

dy

dx

yd x sin22 2

2

2

   

with  

y(0)= -0.4 ,  6.0)0( 
dx

dy
 

z
dx

dy


    
  ,   4.0)0( y  

zyxe
dx

dz x 22sin2 
 
 ,  6.0)0( z  

,yx
dx

dy
3

dx

yd
2

dx

yd 2

2

2

3

3


 

with  

,1)0(
dx

yd
2

2


 

2)0( 
dx

dy
, 4)0( y  

 

z
dx

dy
 ,   4)0( y  

u
dx

dz
 ,   2)0( z  

z3u2yx
dx

du 2  ,   1)0(u   

,3
4

4

x

y
y

dx

dy

dx

yd


 

with 

,5.0)0(
3

3


dx

yd
,25.0)0(

2

2


dx

yd
1)0( 

dx

dy
, 1)0( y  

 

z
dx

dy
 ,   1)0( y  

u
dx

dz
 ,   1)0( z  

v
dx

du
 ,   25.0)0( u  

zy
x

y

dx

dv
 3 ,   5.0)0( v  

 

Example 11.4 

Re-write the following differential equation as a set of first order differential equations. 

    70,50,523
2

2

  yyey
dx

dy

dx

yd x   

Solution 

The ordinary differential equation would be rewritten as follows. Assume 

,z
dx

dy
    Then 

dx

dz

dx

yd


2

2

 

Substituting this in the given second order ordinary differential equation gives 

 xeyz
dx

dz  523  

  yze
dx

dz x 52
3

1
   

The set of two simultaneous first order ordinary differential equations complete with 

the initial conditions then is 
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   50,  yz
dx

dy
 

     70,52
3

1
  zyze

dx

dz x . 

Now one can apply any of the numerical methods used for solving first order ordinary 

differential equations. 

 

Example 11.5 

Given the third-order ordinary differential equation and associated initial conditions 

2

2

2

3

3

xy
dx

dy
5

dx

yd
3

dx

yd
   ,  ,4)0( y ,6.0

dx

dy

0x




22.0
dx

yd

0x

2

2




 

a. Write this differential equation as a system of first-order ordinary differential 

equations 

b. Using fourth order Runge-Kutaa method to estimate y(0.1) and y(0.2) taking  

Δx=0.1  

 

a) 

z
dx

dy
 ,   4)0(y   

u
dx

dz
 ,   6.0)0(z   

yz5u3x
dx

du 2  ,   22.0)0(u   

b) Solution (1) 

First step of integration  x=0 , y=4 , z=0.6 , u=0.22 , Δx=0.1 

k11= z =0.6000 

k21= u= 0.2200 

k31=x2-3×u-5×z-y= 02-3×0.22-5×0.6-4=-7.6600 

k12=z+0.5×Δx×k21=0.6+0.5×0.1×0.22= 0.6110 

k22=(u+0.5×Δx×k31) =(0.22+0.5×0.1×(-7.6600)) = -0.1630 

k32=(x+0.5×Δx)2 -3×(u+0.5×Δx×k31)-5×(z+0.5×Δx×k21)-(y+0.5×Δx×k11) 

=(0+0.5×0.1) 2-3×(0.22+0.5×0.1×(-7.66))-5×(0.6+0.5×0.1×0.22)-(4+0.5×0.1×0.6) 

= -6.5935 

k13=z+0.5×Δx×k22=0.6+0.5×0.1×(-0.1630)= 0.5918 

k23=u+0.5×Δx×k32 =0.22+0.5×0.1×(-6.5935) = -0.1097 

k33=(x+0.5×Δx) 2 -3×(u+0.5×Δx×k32)-5×(z+0.5×Δx×k22)-(y+0.5×Δx×k12) 
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=(0+0.5×0.1)2-3×(0.22+0.5×0.1×(-6.5935))-5×(0.6+0.5×0.1×(-0.1630))-(4+0.5×0.1×

0.6110) = -6.6583 

k14=z+Δx×k23=0.6+0.1×(-0.1097)= 0.5890 

k24=u+Δx×k33=0.22+0.1×(-6.6583) = -0.4458 

k34=(x+Δx) 2 -3×(u+Δx×k33)-5×(z+Δx×k23)-(y+Δx×k13) 

=(0+0.1)2-3×(0.22+0.1×(-6.6583))-5×(0.6+0.1×(-0.1097))-(4+0.1×0.5918) = -5.6569 

x=x+Δx=0+0.1= 0.1000 

y=y+Δx/6×(k11+2×k12+2×k13+k14)=4+0.1/6×(0.6+2×0.6110+2×0.5918+0.5890) 

= 4.0599 

z=z+Δx/6*(k21+2*k22+2*k23+k24)=0.6+0.1/6×(0.2200+2×(-0.1630)+2×(-0.1097)+

( -0.4458))= 0.5871 

u=u+Δx/6*(k31+2*k32+2*k33+k34)=u+0.1/6×(-7.6600+2×(-6.5935)+2×(-6.6583)+ 

(-5.6569))=-0.4437 

Then at x=0.1 , y=4.0599,  0.5871
dx

dy
z  ,    -0.4437=

dx

yd

dx

dz
u

2

2

  

 

Second step of integration  x=0.1  ,   z=0.5871  ,  u=-0.4437  ,  Δx=0.1 

k11= z = 0.5871 

k21= u= -0.4437 

k31=x2-3×u-5×z-y= 0.12-3×(-0.4437)-5×(0.5871)- 4.0599=-5.6546 

k12=z+0.5×Δx×k21=0.5871+0.5×0.1×(-0.4437)= 0.5650 

k22=(u+0.5×Δx×k31) =((-0.4437)+0.5×0.1×(-5.6546)) = -0.7264 

k32=(x+0.5×Δx)2-3×(u+0.5×Δx×k31)-5×(z+0.5×Δx×k21)-(y+0.5×Δx×k11) 

=(0.1+0.5×0.1)2-3×(-0.4437+0.5×0.1×(-5.6546))-5×(0.5871+0.5×0.1×(-0.4437))-( 

4.0599+0.5×0.1×0.5871) = -4.7124 

k13=z+0.5×Δx×k22=0.5871+0.5×0.1×(-0.7264)= 0.5508 

k23=u+0.5×Δx×k32 =-0.4437+0.5×0.1×(-4.7124) = -0.6793 

k33=(x+0.5×Δx)2 -3×(u+0.5×Δx×k32)-5×(z+0.5×Δx×k22)-(y+0.5×Δx×k12) 

=(0.1+0.5×0.1)2-3×(-0.4437+0.5×0.1×(-4.7124))-5×(0.5871+0.5×0.1×(-0.7264))-( 

4.0599+0.5×0.1×0.5650) = -4.7819 

k14=z+Δx×k23=0.5871+0.1×(-0.6793)= 0.5192 

k24=u+Δx×k33=-0.4437+0.1×(-4.7819) = -0.9219 

k34=(x+Δx)2-3×(u+Δx×k33)-5×(z+Δx×k23)-(y+Δx×k13) 

=(0.1+0.1)2-3×(-0.4437+0.1×(-4.7819))-5×(0.5871+0.1×(-0.6793))-(4.0599+0.1×0.5

508) = -3.9055 
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x=x+Δx=0.1+0.1= 0.2 

y=y+Δx/6×(k11+2×k12+2×k13+k14)= 

4.0599+0.1/6×(0.5871+2×0.5650+2×0.5508+0.5192)= 4.1155 

z=z+Δx/6*(k21+2*k22+2*k23+k24)= 

0.5871+0.1/6×((-0.4437)+2×(-0.7264)+2×(-0.6793)+( -0.9219))= 0.5175 

u=u+Δx/6*(k31+2*k32+2*k33+k34) = 

 -0.4437 +0.1/6×((-5.6546) +2×( -4.7124 )+2×(-4.7819)+ (-3.9055 ))= -0.9195 

Then at x=0.2 , y=4.1155, 0.5175
dx

dy
z  ,    -0.9195

dx

yd

dx

dz
u

2

2

  

 

Solution (2) Using Matlab: 

We’ll start by writing the function defining the right hand side (RHS) of the ODEs. The 

following function file ‘Ex’ is used to set up the ode solver. 

 

The following run file is created to obtain the solution: 

 

The produced results will be 

x = 

         0 

    0.1000 

    0.2000 

q = 

    4.0000    0.6000    0.2200 

    4.0599    0.5871   -0.4437 

    4.1155    0.5175   -0.9195 

y = 

    4.0000 

    4.0599 

    4.1155 

function dq = Ex(x,q) 

y=q(1);z=q(2);u=q(3); 

dq(1,1)=z; 

dq(2,1)=u; 

dq(3,1)=x^2-3*u-5*z-y; 

clear all,clc,format compact 

[x,q]=ode45('Ex',[0:0.1:0.2],[4,0.6,0.22]) 

y=q(:,1) 
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