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According to Boyle’s Law, the pressure (P) of a given mass of gas is inversely proportional to its 
volume (V), provided that the temperature of the gas remains constant. 

Boyle’s Law 

For an enclosed gas, at constant temperature (T) and mass (n); 

V α  
1
𝑃𝑃

 

PV = constant  

P1V1 = P2V2 

describes the relationship between volume and temperature of gases at constant pressure and mass, 
With the same amount of gas he found that as the volume increases the temperature also increases. 
If the temperature decreases than the volume also decreases 

V α T 
𝑉𝑉1

𝑇𝑇1
 =

𝑉𝑉2

𝑇𝑇2
 

 

Charles’ Law 

The pressure and absolute temperature (K) of a gas are directly related at constant mass & volume. 

P α T 

𝑃𝑃1

𝑇𝑇1
 =

𝑃𝑃2

𝑇𝑇2
 

 

Gay-Lussac’s Law 

Avogadro’s Principle 

Equal volumes of gases contain equal numbers of molesat constant temp & pressure its true for 
any ideal gas 
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V α n 
𝑣𝑣1

𝑛𝑛1
 =

𝑣𝑣2

𝑛𝑛2
 

 

SoV  α  
𝑛𝑛  𝑇𝑇
𝑃𝑃

 

V = 𝑛𝑛  𝑅𝑅𝑇𝑇
𝑃𝑃

   ………………. PV = nRT 

 n = w / Mwt 

 P Mwt = (w/V) R T   

P Mwt = ρ R T   

Mwt = ρ (RT / P) 

 

Dalton’s Law of Partial Pressures 

The total pressure of a mixture of gases equals the sum of the partial pressures of the individual 
gases. 

PT = P1 + P2 +…. 

PT = 𝑛𝑛1
𝑅𝑅𝑇𝑇
𝑉𝑉

+  𝑛𝑛2
𝑅𝑅𝑇𝑇
𝑉𝑉

 

P1 = 
𝑛𝑛1

𝑛𝑛1 + 𝑛𝑛2
𝑃𝑃𝑇𝑇    = X1PT 

P2 = 
𝑛𝑛2

𝑛𝑛1 + 𝑛𝑛2
𝑃𝑃𝑇𝑇    = X2PT     ……..Pi=Xi PT 

Amagat law for partial volumes  

V1 = 𝑛𝑛1
𝑅𝑅𝑇𝑇
𝑃𝑃

     ,  V2

V

 = 𝑛𝑛2
𝑅𝑅𝑇𝑇
𝑃𝑃

     ,  ……. 

1+ V2 +V3 = 𝑛𝑛1 +  𝑛𝑛2 + 𝑛𝑛3(𝑅𝑅𝑇𝑇
𝑃𝑃

)   ……..     Vi = Xi V 
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Thermodynamics System and its type  

 
Thermodynamic system (or simply ‘system’) is a definite macroscopic region or space in the 
universe, in which one or more thermodynamic processes take place, everything external to a 
thermodynamic system is called surroundings. 
System and surroundings are separated by a definite border called boundary. System, surroundings 
and boundary constitute the universe. 

thermodynamic systems can be broadly classified into three types. They are: 

Open System: which allows both mass and energy to flow in and out of it, across its boundary.  
Example of open system: Water heated in an open container – Here, heat is the energy transferred, 
water is the mass transferred and container is the thermodynamic system. Both heat and water can 
pass in and out of the container. 

Closed System: A closed system allows only energy (heat and work) to pass in and out of it. It 
does not allow mass transfer across its boundary 

Example of closed system: Water heated in a closed vessel – Here only heat energy can pass in 
and out of the vessel 
 
 

Isolated System:An isolated system does not interact with its surroundings. It does not allow both 
mass and energy transfer across its boundary. It is more restrictive 
 

 

Zeroth law of Thermodynamic 

The zeroth law of thermodynamics states that if two systems, A and B, are in thermal equilibrium 
with a third system, C, then A and B are in thermal equilibrium with each other. Another way of 
stating the zeroth law is that every object has a certain temperature, and when two objects are in 
thermal equilibrium, their temperatures are equal 
 

The First Law of Thermodynamics states that energy can be converted from one form to another 
with the interaction of heat, work and internal energy, but it cannot be created nor destroyed, under 
any circumstances. Mathematically, this is represented as 

http://mechteacher.com/engineering-thermodynamics/�
http://mechteacher.com/engineering-thermodynamics/�
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ΔU=q±w 

ΔU  is the total change in internal energy of a system, 

q  is the heat exchanged between a system and its surroundings, and 

w  is the work done by or on the system. 

 

Work is also equal to the negative external pressure on the system multiplied by the change in 
volume: 

W=−P ΔV 

where  P  is the external pressure on the system, and  ΔV  is the change in volume. This is 
specifically called "pressure-volume" work. 

The internal energy of a system would decrease if the system gives off heat or does work. 
Therefore, internal energy of a system increases when the heat increases (this would be done by 
adding heat into a system). The internal energy would also increase if work were done onto a 
system. Any work or heat that goes into or out of a system changes the internal energy. However, 
since energy is never created nor destroyed (thus, the first law of thermodynamics), the change in 
internal energy always equals zero. If energy is lost by the system, then it is absorbed by the 
surroundings. If energy is absorbed into a system, then that energy was released by the 
surroundings:ΔUsystem=−ΔUsurroundings 

 

 

Type of process 

An isothermal process is one in which there is no temperature change (ΔT=0). There may be 
energy flow into and out of the system, however only the amount required to keep the temperature 
of the system constant. For Example: 

Isothermal 

• Phase changes - melting solids and boiling liquids of pure substances requires substantially 
energy transfer, but does not change temperature. 
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Adiabatic 

An adiabatic process is one in which no heat or mass is transferred between the system and its 
surroundings (Δm=0, ΔQ=0). In practice this assumption is most often used for rapidly acting 
systems (i.e. the thermodynamic process occurs in a short period) or as a method for obtaining 
conservative results. For example: 

 

Analyzing the stroke of a piston where heat transfer outside of the system can be minimal due to 
the short period of time analyzed. 

Analysis of a combustion reaction using the adiabatic assumption to give an upper limit 
(conservative) estimate of the flame temperature (referred to as the adiabatic flame temperature). 

 

Isobaric 

An isobaric process is one in which the pressure is held constant (ΔP=0). Assuming that the 
quantity of gas in an isobaric process remains constant the work done by the system is directly 
promotional to the change in volume or temperature of the system. 

 

The ratio of heat capacity of a gas in an isobaric system with the heat capacity of the gas in an 
isochoric system makes up the ratio of specific heats for gases k=Cp/Cv. 

 

Isochoric 

An isochoric system is one in which volume is held constant (ΔV=0). Isochoric processes can also 
be referred to as isometric or isovolumetric. For Example: 

In calorimetry the energy of a reaction may be measured in a "bomb calorimeter". This device 
does not change volume during the reaction so that the temperature change can be measured as a 
single variable, and used to calculate the energy released. 
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infinite. Thus in the limit as the pressure approaches zero, the equation of state assumes the
same simpleform as for thehypotheticalcase of B : C : ... : 0; i.e.,

Z:l PV:RT
We know from the phase rule that the internal energy of a real gas is a function of

pressrue as well as of temperature. This pressure dependency is the result of forces between

the molecules. If such forces did not exist, no energy would be required to alter the average

intermoleculardistance, and therefore no energy would be required to bring about volume and

pressurechanges in a gas at constanttemperature.We concludethat in the abscnceof molecular
interactions, the intenral energy of a gas depends on temperature only. These considerations
of thc behavior of a hypothetical gas in which no intermolecularforces exist and of a real gas

in thc limit as pressure approaches zero lead to the definition of an ideal gas as one whose
macroscopic behavior is characterized by:

o The equation of state:
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lmplied Property Relations for an ldeal Gas

The definitionof hcat capacity at constant volume, Eq. (2.16), lcads for an ideal gas to the

conclusion that Cy is a function of temperature only:

.', = (#) ,:# : cv(T')

(ideal gas)

o An internal erlergy that is a function of temperature only

(ideal gas)

(3. r3)

,ft) ),.-(f , -G')r i tLJ t
- ,rut - (3,14)

(3. r 8)

g

(3.1s)

Thc dcfining cquation for cnthalpy, Eq. (2.11 ), applied to an ideal gas, lcads to the conclusion
that H also is a function of temperafure only:

H: U i PV = UQ)+ RT :11171 (3. r 6)

Thc heat capacity at constant pressure Cp, defined by Eq. (2.20), like Cv, is a function of
terrperature only:

(3.17)

A useful relation betrvccn Cp and Cy for an idcal gas comes frorn differentiationof Eq. (3.16):

., = (#) ,,:#: cp(r)

dII dtlCe:5:V*R:Cv*f

This equation does not implythat Cp and Cy arethemselvesconstant
for an ideal gas, but only that they vary with temperaturein such a way
that their difference is equal to R.

For any change of state of an ideel gas Eq. (3.15)may be written:

dU : Cv d7' , (3.19a)
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Whence,

By Eq. (3.1'1),

Whence,

ou = I cvdr

dH =CpdT

AH: I "O'

(3.19b)

(3,20a)

(3.20b)

Figure 3.5 lnternal energy changes for an ideal gas

Since both the internal energy and Cv of an ideal gas are functions of temperature only,
A U for an ideal gas is always given by Eq. (3. I 9b), regardless of the kind of process causing the

change. This is demonstrated in Fig. 3.5, which shows a graph of internai energy as a function
of molar volume with temperature as parameter. Since U is independent of V, a plot of U
vs. V at constant temperature is a horizontal line. For different temperatures, U has different
values, with a separate line for each temperature. Two such lines are shown in Fig. 3.5, one

for temperafure fi and one for a higher temperature Iz. The dashed line connecting points a
and b represents a constant-volumeprocess for which the temperature increases from Ir to 7z

and the internal energy changes by AU - U2 - U1. This change in internal energy is given

by Eq. (3.19b) as AU : I C, dT . The dashed lines connecting points a and c and points a
and d represent other processes not occurring at constant volume but which also lead from
an initial temperature Ty to a final temperattreT2. The graph shows that the change in U for
these processes is the same as for the constant-volumeprocess, and it is therefore given by the

same equation, namely, L,tJ : I Cv df . However, LIJ is not equal to Q for these processes,

because Q depends not only on fi and 72 but also on the path of the process. An entirely
analogous discussion applies to the enthalpy ll of an ideal gas. (See Sec. 2.1 6.)

The ideal gas is a modelfluiddescribedby simpleprop erty relations, which are frequently
good approximationswhen applied to actual gases. Inprocess calculatior?s, gases at pressures

up to a few bars may often be considered ideal, and simple equations then apply.

Equations for Process Galculations: ldeal Gases

For an ideal gas in any mechanicallyreversibleclosed-system process, Eq. (2.6), written for a
unit mass or a mole, may be combined with Eq. (3.19a):

dQ+aW = CvdT
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The work for a mechanically reversible closed-system process is given by Eq. ( I .2), also written
for one mole or a unit mass:

Whence,

dW: -P dV

dQ:CvdT+Pdv

The two preceding equations for an ideal gas undergoing a reversible process in a closed
system take several forms through elimination of one of the variables p, v , or ?. by Eq. (3.13).
Thus, with P : RT /V they become:

-

dQ:Cvdr + Rr{
v

dW : -P7dVv

Altenratively,let V : RT /P :

d8=cvdr+P(;.r-#rr)

With Eq. (3.18) this reduces to:

dQ: Crdf - Rf4;

(3.2r)

(.1.22)

(3.23)

(3.24)

(3.?s)

Also, dW:-RdT+Rr4!
P

Finally,letT: PV/R:

do: cv (Ir, + L*dv) + P dv

Again with Eq. (3.18) this becomes:

ao=*var+ffrav

dW=-PdVThe work is simply:

These equations may be applied to various processes, as described in what follows. The
general restrictionsimplicit in their derivation are:

o The equations are valid for ideal gases.
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. The process is mechanically reversible.
o The system is closed.

lsothermal Process

By Eqs. (3.19b) and (3.20b), A,U : AH : O

ByEqs. (3.21)and (3.23), 
e: RTln L: _^rrn2- h -----Pl

ByEqs. (3.22)and(3.24), 
W: _RTtnY P,

- v:: Rrln 
o

Note that Q : -W, a result that also follows from Eq. (2.3). Therefore,

e: -w: RTln b: - P"

vt -nr n O (const r)

lsobaric Process

By Eqs. (3.19b) and (3.20b),

AU: I cvdT and AH= [ ,nnJJ
and by Eqs. (3.23) and (3.24),

a: 
S 

CrdT and W: -R(Iz - Ir)
Note that Q : AH, a resulr also given by Eq. (2.13). Therefore,

f
8 = LH = J Crdf (const p)

lsochoric (Constant- V) Process
Equations (3.19b) and (3.20b) again apply:

L,(J : [ ,, o, and f
J AH: 

J CPIT

By Eqs. (3.21)and (1.3),

e: I CvctT and w:o
.t

Note that Q : AU, a result also given by Eq. (2. l0). Therefore,

f
Q : LU : I Cv dT (const V)

J

(3.26)

(3.27)

(3.28)
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Adiabatic Process: Constant Heat Gapacities
An adiabatic process is one for which there is no heat transfer befween the system and its
surroundings;that is, dQ:0. Each of Eqs. (3.21), (3.23), and (3.25) may thereforebe set
equal to zero. Integration with Cy and, Cp constant then yields simple relations among the
variables T, P,andV.For example, Eq. (3.2l)becomes:

d7'__ R dv
T CvV

Integration with Cy constant then gives:

h : (v,\*,,,
rr: \v, )

Similarly, Eqs. (3.23) and (3.25) lead to:

*: (#)^'" and * = (2)"'"
These equations may also be expressed as:

7t

TVY-t = constant

7 plr-v\ir = constant

PVY = constant

(3.29a)

(3.29b')

(3.29c)

(3.30)
Where by definition,3

Equations (3.29) apply to an ideal gas with constant heat capacities
undergoing a mechanically reversible adiabatic process.

The work of an adiabatic process may be obtained from the relation:

dW-dU:CvdT
ff Cy is constant, integration gives:

W : LU : Cv LT (3.i1)

Alternativeforms of Eq. (3.3 I ) are obtained when Cy is eliminated in favor of the heat-capacity
ratio y:

u:Ct -C'*R - ,'R'CvCyCv

llf Cy and C p arc constant, y is necessarily constant. For an ideal gas, the assumption of constant y is equivalent
to the assumption that the heat capacities themselves are constant. This is the only way that the ratio C p / Cy : y and
the difference C p - Cv : R can bolhbe constant. Except for the monotonic gases, both Cp and Cy actually increase
with temperature, but the ratio y is less sensitive to temperature than the heat capacities themselves.
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Whence,

Therefore

^RLv=-
y -1

W:CuLT:RAT
v-l

Since R ?'1 : PlVl and RT2 = p2V2, this expression may be written:

w = 
RT2_ R\ _ P2V2 _ nvl

y -l y -1

P Y' : constant

For an ideal gas equations analogous to Eqs. (3.29a) and (3.29b) are readily derived:

TVd-l = constant

Ip(l-r)/6 = constant

w=#[(f)*"'-,]

_ 
Equations (3.31) and (3.32) are general for an adiabatic process, whether reversibre or

not. However, V2 is usually not known, and is eliminatedfrom iq. (3.3i) by Eq. (3.29c), valid
only for mechanically reversible processes. This leads to the expiession:

w : !,![(;).-'*- 
] 

= * [(;j)*-""-,] (333,

The same result is obtained when the relation between p and Iz given by Eq. (3.29c) is used
for integralion ofthe expression \ft : - J p dV -

Equations (3.29)' (3.31), (3.32), and (3.33) are for ideal gases with constant heat
capacities. Fquations (3.29) and (3.33) also require the process to be mechanically reversible;
processes which are adiabatic but not mechanically reversibre are ,ol described bv these
equations.

. . 
When applied to real gases, Eqs. (3.29) through (3.33) often yield satisfactory approx_

imations, provided the deviations from_ideality urJ r"iutiu.ty ..nuil. Fo, monatomic gases,y = 1.67.; appro,ximate values of y are L4 for diatomic gases and 1.3 for simple polyalmic
gases such as CO2, SOz, NH:, and CIIr.

Polytropic Process
Since p-olytr_o-pic means ,'tuming 

many vzls:, polylropic process suggests a model of some
versatility. With 6 a constant, it is defined as a process ior which

(3.32)

(3.34a)

(3.34b)

(3.34c)

When the relarion between p and V is given by Eq. (3.34a), evaluationof/ pdV yields
Eq. (3.33) with _r, replaced by 6r

(3.35)
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Moreover, for constant heat capacities, the first law solved for e yields:

o* (6 - y)Rrr
(6-lXy-l) (3.36)

The several processes already described correspond to the four paths shown on Fig. 3.6 for
specific values of 6:

o Isobaric process: By Eq. (3.34a),6 : 0.
o Isothermal process: By Eq. (3.34b), 6 = l.
o Adiabatic process: 6 : y.
o Isochoric process: By Eq. (3.34a), dV /dp : V / p6;for constant V, 6 : *oo.

[(f,)'-"^ -,]

Figure 3.6 Paths of polytropic processes characterized by specific values of 6

lrreversible Process
The equations developed in this section have been derived for rnechanicallyreversible, closed-
system processes for ideal gases. However, those equations which relate changes in state func-
tions only are valid for ideal gases regardlessofthe process. They apply equally to reversible
and irreversible processes in both closed and open systems, becars" 

"hung", 
in state fimctions

depend only on the initial and final states of the system. On the other hand, an equation for e
or W is specific to thc process considered in its derivation.

The work of an irreversible process is calculated by a two-step procedure. First, W is
determined for a mechanically reversible process that accomplishes the same change of state
as the actual ireversibleprocess. Second, this resultis multipliedor dividedby an efficiency to
give the actual work. If the process produces work, the absolute value for the riversiblep.o..r,
is too large and must be multiplied by an effrciency. If the process requires work, the value for
the reversible process is too small and must be divided by an efficiency.

Applications of the concepts and equations developed in this section are illustrated in the
examples that follow. In particular, the u ork of irreversible processes is treated in the last part
of Ex. 3.3.
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3.4 APPLICATION OF THE VIRIAL EQUATIONS

The two forms of the virial expansion given by Eqs. (3.11) and (3.12) are infinite series. For
engineering purposes their use is practical only where convergenceis very rapid, that is, where
two or three tetms suffice for reasonably close approximations to the values of the series. This
is realized for gases and vapors at low to moderate pressures.

Figure 3. I 0 shows a compressibility-factorgraph for methane. Values of the compressibil-
ityfactorZ(ascalculatedfi'omPVTdataformethanebythedefiningequationZ= PV/RT)
are plotted vs. pressurefor variousconstant temperatures.The resultingisotherms show graphi-
cally rvhat the virial expansionin P is intended to represent analytically.All isotherms originate
at the value Z = 7 for P : 0. In addition the isotherms are nearly straight lines at lorv prcs-
sures. Thus the tangent to an isotherm at P = 0 is a good approximation of the isotherm from
P -+ 0 to some finite pressure. Differentiation of Eq. (3.1I ) for a given temperature gives:

(#), : B' *2C'P +3D'P2 +...
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