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Physics in general: 

By dr. falak O. Abas 

Motion: 

In this chapter, you will learn more about motion, a field of study called kinematics. 

You will become familiar with concepts such as velocity, acceleration and 

displacement. For now, the focus is on how things move, not what causes them to 

move. Later, you will study dynamics, which centers on forces and how they affect 

motion. Dynamics and kinematics make up mechanics, the study of force and motion. 

Two key concepts in this chapter are velocity and acceleration. Velocity is how fast 

something is moving (its speed) and in what direction it is moving. Acceleration is 

the rate of change in velocity. In this chapter, you will have many opportunities to 

learn about velocity and acceleration and how they relate. To get a feel for these 

concepts, you can experiment by using the two simulations on the right. These 

simulations are versions of the tortoise and hare race. In this classic parable, the 

steady tortoise always wins the race. With your help, though, the hare stands a chance. 

(After all, this is your physics course, not your literature course.) 

In the first simulation, the tortoise has a head start and moves at a constant velocity of 

three meters per second to the right. The hare is initially stationary; it has zero 

velocity. You set its acceleration � in other words, how much its velocity changes 

each second. The acceleration you set is constant throughout the race. Can you set the 

acceleration so that the hare crosses the finish line first and wins the race? To try, 

click on Interactive 1, enter an acceleration value in the entry box in the simulation, 

and press GO to see what happens. Press RESET if you want to try again. Try 

acceleration values up to 10 meters per second squared. (At this acceleration, the 

velocity increases by 10 meters per second every second. Values larger than this will 

cause the action to occur so rapidly that the hare may quickly disappear off the 

screen.) It does not really matter if you can cause the hare to beat this rather fast-

moving tortoise. However, we do want you to try a few different rates of acceleration 

and see how they affect the hare’s velocity. Nothing particularly tricky is occurring 

here; you are simply observing two basic properties of motion:  

 

 



velocity and acceleration. 

In the second simulation, the race is a round trip. To win the race, a contestant needs 

to go around the post on the right and then return to the starting line. The tortoise has 

been given a head start in this race. When you start the simulation, the tortoise has 

already rounded the post and is moving at a constant velocity on the homestretch back 

to the finish line. In this simulation, when you press GO the hare starts off moving 

quickly to the right. Again, you supply a value for its acceleration. The challenge is to 

supply a value for the hare's acceleration so that it turns around at the post and races 

back to beat the tortoise. We have given you a fair number of concepts in this 

introduction. These fundamentals are the foundation of the study of motion, and you 

will learn much more about them shortly. The definition of displacement is precise: 

the direction and length of the shortest path from the initial to the final position of an 

object’s motion. As you may recall from your mathematics courses, the shortest path 

between two points is a straight line. Physicists use arrows to indicate the direction of 

displacement. In the illustrations to the right, the arrow points in the direction of the 

mouse’s displacement. Physicists use the Greek letter � (delta) to indicate a change or 

difference. A change in position is displacement, and since x represents position, we 

write �x to indicate displacement. You see this notation, and the equation for 

calculating displacement, to the right. In the equation, xf represents the final position 

(the subscript f stands for final) and xi represents the initial position (the subscript i 

stands for initial). Displacement is a vector. A vector is a quantity that must be stated 

in terms of its direction and its magnitude. Magnitude means the size or amount. 

“Move five meters to the right” is a description of a vector. Scalars, on the other hand, 

are quantities that are stated solely in terms of magnitude, like “a dozen eggs.” There 

is no direction for a quantity of eggs, just an amount. 

In one dimension, a positive or negative sign is enough to specify a direction. As 

mentioned, numbers to the right of the origin are positive, and those to the left are 

negative. This means displacement to the right is positive, and to the left it is negative. 

For instance, you can see in Example 1 that the mouse’s car starts at the position +3.0 

meters and moves to the left to the position �1.0 meters. (We measure the position at 

the middle of the car.) Since it moves to the left 4.0 meters, its displacement is �4.0 

meters. Displacement measures the distance solely between the beginning and end of 

motion. We can use dance to illustrate this point. Let’s say you are dancing and you 

take three steps forward and two steps back. Although you moved a total of five steps, 



your displacement after this maneuver is one step forward. It would be better to use 

signs to describe the dance directions, so we could describe forward as “positive” and 

backwards as “negative.” Three steps forward and two steps back yield a 

displacement of positive one step. Since displacement is in part a measure of distance, 

it is measured with units of length. Meters are the SI unit for displacement 

Velocity: Speed and direction. 

You are familiar with the concept of speed. It tells you how fast something is going: 

55 miles per hour (mi/h) is an example of speed. The speedometer in a car measures 

speed but does not indicate direction. When you need to know both speed and 

direction, you use velocity. Velocity is a vector. It is the measure of how fast and in 

which direction the motion is occurring. It is represented by v. In this section, we 

focus on average velocity, which is represented by v with a bar over it, as shown in 

Equation 1. A police officer uses the concepts of both speed and velocity in her work. 

She might issue a ticket to a motorist for driving 36 mi/h (58 km/h) in a school zone; 

in this case, speed matters but direction is irrelevant. In another situation, she might 

be told that a suspect is fleeing north on I-405 at 90 mi/h (149 km/h); now velocity is 

important because it tells her both how fast and in what direction. 

To calculate an object’s average velocity, divide its displacement by the time it takes 

to move that displacement. This time is called the elapsed time, and is represented by 

�t. The direction for velocity is the same as for the displacement. For instance, let’s 

say a car moves positive 50 mi (80 km) between the hours of 1 P.M. and 3 P.M. Its 

displacement is positive 50 mi, and two hours elapse as it moves that distance. The 

car’s average velocity equals +50 miles divided by two hours, or +25 mi/h (+40 

km/h). Note that the direction is positive because the displacement was positive. If the 

displacement were negative, then the velocity would also be negative. At this point in 

the discussion, we are intentionally ignoring any variations in the car’s velocity. 

Perhaps the car moves at constant speed, or change direction. In other words, their 

velocity can change. For example, if you drop an egg off a 40-story building, the 

egg’s velocity will change: It will move faster as it falls. Someone on the building’s 

39th floor would see it pass by with a different velocity than would someone on the 

30th. When we use the word “instantaneous,” we describe an object’s velocity at a 

particular instant. In Concept 1, you see a snapshot of a toy mouse car at an instant 

when it has a velocity of positive six meters per second. 

The fable of the tortoise and the hare provides a classic example of instantaneous 



versus average velocity. As you may recall, the hare seemed faster because it could 

achieve a greater instantaneous velocity than could the tortoise. But the hare’s long 

naps meant that its average velocity was less than that of the tortoise, so the tortoise 

won the race. When the average velocity of an object is measured over a very short 

elapsed time, the result is close to the instantaneous velocity. The shorter the elapsed 

time, the closer the average and instantaneous velocities. Imagine the egg falling past 

the 39th floor window in the example we mentioned earlier, and let’s say you wanted 

to determine its instantaneous velocity at the midpoint of the window. You could use 

a stopwatch to time how long it takes the egg to travel from the top to the bottom of 

the window. If you then divided the height of the window by the elapsed time, 

Velocity at a specific  

 

Acceleration: Change in velocity. 

When an object’s velocity changes, it accelerates. Acceleration measures the rate at 

which an object speeds up, slows down or changes direction. Any of these variations 

constitutes a change in velocity. The letter a represents acceleration. Acceleration is a 

popular topic in sports car commercials. In the commercials, acceleration is often 

expressed as how fast a car can go from zero to 60 miles per hour (97 km/h, or 27 

m/s). For example, a current model Corvette® automobile can reach 60 mi/h in 4.9 

seconds. There are even hotter cars than this in production. 

To calculate average acceleration, divide the change in instantaneous velocity by the 

elapsed time, as shown in Equation 1. To calculate the acceleration of the Corvette, 

divide its change in velocity, from 0 to 27 m/s, by the elapsed time of 4.9 seconds. 

The car accelerates at an average rate of 5.5 m/s per second. We typically express this 

as 5.5 meters per second squared, or 5.5 m/s2. (This equals 18 ft/s2, and with this 

observation we will cease stating values in both measurement systems, in order to 

simplify the expression of numbers.) Acceleration is measured in units of length 

divided by time squared. Meters per second squared (m/s2) express acceleration in SI 



units. Let’s assume the car accelerates at a constant rate; this means that each second 

the Corvette moves 5.5 m/s faster. At one second, it is moving at 5.5 m/s; at two 

seconds, 11 m/s; at three seconds, 16.5 m/s; and so forth. The car’s velocity increases 

by 5.5 m/s every second. Since acceleration measures the change in velocity, an 

object can accelerate even while it is moving at a constant speed. For instance, 

consider a car moving around a curve. Even if the car’s speed remains constant, it 

accelerates because the change in the car’s direction means its velocity (speed plus 

direction) is changing. Acceleration can be positive or negative. If the Corvette uses 

its brakes to go from +60 to 0 mi/h in 4.9 seconds, its velocity is decreasing just as 

fast as it was increasing before. This is an example of negative acceleration. 

You may want to think of negative acceleration as “slowing down,” but be careful! 

Let’s say a train has an initial velocity of negative 25 m/s and that changes to 

negative 50 m/s. The train is moving at a faster rate (speeding up) but it has negative 

acceleration. To be precise, its negative acceleration causes an increasingly negative 

velocity. Velocity and acceleration are related but distinct values for an object. For 

example, an object can have positive velocity and negative acceleration. In this case, 

it is slowing down. An object can have zero velocity, yet be accelerating. For 

example, when a ball bounces off the ground, it experiences a moment of zero 

velocity as its velocity changes 

 
 

 



 

 
 

 
 

Instantaneous acceleration: Acceleration at a particular moment. 

You have learned that velocity can be either average or instantaneous. Similarly, you 

can determine the average acceleration or the instantaneous acceleration of an object. 

We use the mouse in Concept 1 on the right to show the distinction between the two. 

The mouse moves toward the trap and then wisely turns around to retreat in a hurry. 

The illustration shows the mouse as it moves toward and then hurries away from the 

trap. It starts from a rest position and moves to the right with increasingly positive 

velocity, which means it has a positive acceleration for an interval of time. Then it 

slows to a stop when it sees the trap, and its positive velocity decreases to zero (this is 

negative acceleration). It then moves back to the left with increasingly negative 

velocity (negative acceleration again). If you would like to see this action occur again 

in the Concept 1 graphic, press the refresh button in your browser. We could calculate 

an average acceleration, but describing the mouse's motion with instantaneous 

acceleration is a more informative description of that motion. At some instants in 

time, it has positive acceleration and at other instants, negative acceleration. By 

knowing its acceleration and its velocity at an instant in time, we can determine 

whether it is moving toward the trap with increasingly positive velocity, slowing its 

rate of approach, or moving away with increasingly negative velocity. Instantaneous 



acceleration is defined as the change in velocity divided by the elapsed time as the 

elapsed time approaches zero. This concept is stated mathematically in Equation 1 on 

the right. Earlier, we discussed how the slope of the tangent at any point on a position-

time graph equals the instantaneous velocity at that point. We can apply similar 

reasoning here to conclude that the instantaneous acceleration at any point on a 

velocity-time graph equals the slope of the tangent, as shown in Equation 2. Why? 

Because slope equals the rate of change, and acceleration is the rate of change of 

velocity. In Example 1, we show a graph of the velocity of the mouse as it approaches 

the trap and then flees. You are asked to determine the sign of the instantaneous 

acceleration at four points; you can do so by considering the slope of the tangent to 

the velocity graph at each point. 

 
 

�  

t = elapsed time (approaches 0) 



 



 
Strategy 

First, we will discuss our strategy for this derivation. That is, we will describe our 

overall plan of attack. These strategy points outline the major steps of the derivation. 

1. We start with the definition of acceleration and rearrange it. It includes the terms 

for initial and final velocity, as well as elapsed time.  

2. We derive another equation involving time that can be used to eliminate the time 

variable from the acceleration equation. The condition of constant acceleration will be 

crucial here. 



3. We eliminate the time variable from the acceleration equation and simplify. This 

results in an equation that depends on other variables, but not time. 

Physics principles and equations 

Since the acceleration is constant, the velocity increases at a constant rate. This means 

the average velocity is the sum of the initial and final 

 
velocities divided by two. 

We will use the definition of acceleration,  

a = (vf � vi)/t 

We will also use the definition of average velocity, 

 
Step-by-step derivation 

We start the derivation with the definition of  average acceleration, solve it for the 

final velocity and do some algebra. This creates an equation with the square of the 

final velocity on the left side, where it appears in the equation we want to derive. 

 

 



 

 



 

 

 



  

 



 

 



 

 



 

 

Knowing “how far” or “how fast” can often be useful, but “which way” sometimes 

proves even more valuable. If you have ever been lost, you understand that direction 

can be the most important thing to know. Vectors describe “how much” and “which 

way,” or, in the terminology of physics, magnitude and direction. You use vectors 

frequently, even if you are not familiar with the term. “Go three miles northeast” or 

“walk two blocks north, one block east” are both vector descriptions. Vectors prove 

crucial in much of physics. For example, if you throw a ball up into the air, you need 

to understand that the initial velocity of the ball points “up” while the acceleration due 

to the force of gravity points “down.”  In this chapter, you will learn the fundamentals 

of vectors: how to write them and how to combine them using operations such as 

addition and subtraction. On the right, a simulation lets you explore vectors, in this 

case displacement vectors. In the simulation, you are the pilot of a small spaceship. 

There are three locations nearby that you want to visit: a refueling station, a diner, and 

the local gym. To reach any of these locations, you describe the displacement vector 

of the spaceship by setting its x (horizontal) and y (vertical) components. In other 

words, you set how far horizontally you want to travel, and how far vertically. This is 

a common way to express a two-dimensional vector. 



There is a grid on the drawing to help you determine these values. You, and each of 

the places you want to visit, are at the intersection of two grid lines. Each square on 

the grid is one kilometer across in each direction. Enter the values, press GO, and the 

simulation will show you traveling in a straight line � along the displacement vector 

� according to the values you set. See if you can reach all three places. You can do 

this by entering displacement values to the nearest kilometer, like (3, 4) km. To start 

over at any time, press RESET. 

 

Scalar: A quantity that states only an amount. 

Scalar quantities state an amount: “how much” or “how many.” At the right is a 

picture of a dozen eggs. The quantity, a dozen, is a scalar. Unlike vectors, there is no 

direction associated with a scalar � no up or down, no left or right � just one 

quantity, the amount. A scalar is described by a single number, together with the 

appropriate units. Temperature provides another example of a scalar quantity; it gets 

warmer and colder, but at any particular time and place there is no “direction” to 

temperature, only a value. Time is another commonly used scalar. 

Speed and distance are yet other scalars. A speed like 60 kilometers per hour says 

how fast but not which way. Distance is a scalar since it tells you how far away 

something is, but not the direction. 

Scalars 

Amount 

Only one value 



 
direction, a negative angle a clockwise direction. For example, 90° represents a 

quarter turn counterclockwise from the positive x axis. In other words, a vector with 

a 90° angle points straight up. We could also specify this angle as �270°. The radian 

is another unit of measurement for angles that you may have seen before. We will use 

degrees to specify angles unless we specifically note that we are using radians. 

(Radians do prove essential at times.) 

 

 

 



 

 

Adding and subtracting vectors by components 

You can combine vectors graphically, but it may be more precise to add up their 

components. You perform this operation intuitively outside physics. If you were a 

dancer or a cheerleader, you would easily understand the following choreography: 

“Take two steps forward, four steps to the right and one step back.” These are vector 

instructions. You can add them to determine the overall result. If asked how far 

forward you are after this dance move, you would say “one step,” which is two steps 



forward plus one step back. You realize that your progress forward or back is 

unaffected by steps to the left or right. You correctly process left/right and 

forward/back separately. If a physics-oriented dance instructor asked you to describe 

the results of your “dancing vector” math, you would say, “One step forward, four 

steps to the right.” You have just learned the basics of vector addition, which is 

reasonably straightforward: Break the vector into its components and add each 

component independently. In physics though, you concern yourself with more than 

dance steps. You might want to add the vector (20, �40, 60) to (10, 50, 10). Let’s 

assume the units for both vectors are meters. As with the dance example, each 

component is added independently. You add the first number in each set of 

parentheses: 20 plus 10 equals 30, so the sum along the x axis is 30. Then you add 

�40 and 50 for a total of 10 along the y axis. The sum along the z axis is 60 plus 10, 

or 70. The vector sum is (30, 10, 70) meters. If following all this in the text is hard, 

you can see another problem worked in Example 1 on the right. Although we use 

displacement vectors in much of this discussion since they may be the most intuitive 

to understand, it is important to note that all types of vectors can be added or 

subtracted. You can add two velocity vectors, two acceleration vectors, two force 

vectors and so on. As illustrated in the example problem, where two velocity vectors 

are added, the process is identical for any type of vector. Vector subtraction works 

similarly to addition when you use components. For example, (5, 3) minus (2, 1) 

equals 5 minus 2, and 3 minus 1; the result is the vector (3, 2). 

 

 



 

 

 



 

 



 

 



 

and the y component by multiplying 3.0 km by sin 35°. Here, x = (3.0 km)(0.82) and y 

= (3.0 km)(0.57), so the vector in rectangular coordinates is (2.5, 1.7) km. Using the 

same method with the other vector, 2.0 km at �15° equals (1.9, �0.52) km. The 

positive x component and negative y component indicate that this vector points down 

and to the right, the correct direction for a vector with an angle of �15°. We began 

this section by asking you how you would add these two vectors. Our work has made 

this an easier problem: (2.5, 1.7) plus (1.9, �0.52) equals (4.4, 1.2). The units are 

kilometers. 

The x and y components can be positive or negative. For instance, the x component 

will be negative when the cosine is negative, which it is for angles between 90° and 

270°. This corresponds to vectors that have an x component which points to the left. 

The y component will be positive when the sine is positive (between 0° and 180°, the 

vector has an upward y component) and negative when the sine is negative (between 

180° and 360°, the vector has a downward y component). Since it is easy to err, it is a 

good practice to compare directions and the signs of the components. In Example 1, 

the negative x component is correct, since the car is moving to the left. If we had 

calculated a negative y component, we have erred in our calculations, since the car is 

clearly moving “up” in the positive y direction. 

 

 



 

 



 

 



 

 



 

 

 



 

 

 

 



 

 

 

 



 



 

Introduction 

Objects can speed up, slow down, and change direction while they move. In short, 

they accelerate. A famous scientist, Sir Isaac Newton, wondered how and why this 

occurs. Theories about acceleration existed, but Newton did not find them very 

convincing. His skepticism led him to some of the most important discoveries in 

physics. Before Newton, people who studied motion noted that the objects they 

observed on Earth always slowed down. According to their theories, objects 

possessed an internal property that caused this acceleration. This belief led them to 

theorize that a force was required to keep things moving. 

This idea seems like common sense. Moving objects do seem to slow down on their 

own: a car coasts to a stop, a yo-yo stops spinning, a soccer ball rolls to a halt. 

Newton, however, rejected this belief, instead suggesting the opposite: The nature of 



objects is to continue moving unless some force acts on them. For instance, Newton 

would say that a soccer ball stops rolling because of forces like friction and air 

resistance, not because of some property of the soccer ball. He would say that if these 

forces were not present, the ball would roll and roll and roll. A force (a kick) is 

required to start the ball’s motion, and a force such as the frictional force of the grass 

is required to stop its motion. Newton proposed several fundamental principles that 

govern forces and motion. Nearly 300 years later, his insights remain the foundation 

for the study of forces and much of motion. This chapter stands as a testament to a 

brilliant scientist. At the right, you can use a simulation to experience one of 

Newton’s fundamental principles: his law relating a net force, mass and acceleration. 

In the simulation, you can attempt some of the basic tasks required of a helicopter 

pilot. To do so, you control the net force upward on the helicopter. When the 

helicopter is in the air, the net force equals the lift force minus its weight. (The lift 

force is caused by the interaction of the spinning blades with the air, and is used to 

propel the helicopter upward.) The net force, like all forces, is measured in newtons 

(N). When the helicopter is in the air, you can set the net force to positive, negative, 

or zero values. The net force is negative when the helicopter’s lift force is less than its 

weight. When the helicopter is on the ground, there cannot be a negative net force 

because the ground opposes the downward force of the helicopter’s weight and does 

not allow the helicopter to sink below the Earth’s surface. The simulation starts with 

the helicopter on the ground and a net force of 0 N. To increase the net force on the 

helicopter, press the up arrow key (�) on your keyboard; to decrease it, press the 

down arrow key (�). This net force will continue to be applied until you change it. To 

start, apply a positive net force to cause the helicopter to rise off the ground. Next, 

attempt to have the helicopter reach a constant vertical velocity. For an optional 

challenge, have it hover at a constant height of 15 meters, and finally, attempt to land 

(not crash) the helicopter. Once in the air, you may find that controlling the craft is a 

little trickier than you anticipated � it may act a little skittish. Welcome to (a) the 

challenge of flying a helicopter and (b) Newton’s world. Here are a few hints: Start 

slowly! Initially, just use small net forces. You can look at the acceleration gauge to 

see in which direction you are accelerating. Try to keep your acceleration initially 

between plus or minus 0.25 m/s2. This simulation is designed to help you experiment 

with the relationship between force and acceleration. If you find that achieving a 



constant velocity or otherwise controlling the helicopter is challenging � read on! 

You will gain insights as you do.  

1 – Force Force: Loosely defined as “pushing” or “pulling.” 

Your everyday conception of force as pushing or pulling provides a good starting 

point for explaining what a force is. There are many types of forces. Your initial 

thoughts may be of forces that require direct contact: pushing a box, hitting a ball, 

pulling a wagon, and so on. Some forces, however, can act without direct contact. For 

example, the gravitational force of the Earth pulls on the Moon even though hundreds 

of thousands of kilometers separate the two bodies. The gravitational force of the 

Moon, in turn, pulls on the Earth. 

 

observe no net force acting on the cup. However, the nature of observations made in 

an accelerating reference frame is a topic far removed from this chapter’s focus, and 

this marks the end of our discussion of reference frames in this chapter. 

3 – Mass Mass: A property of an object that determines how much it will resist a 

change in velocity. 

Newton’s second law summarizes the relationship of force, mass and acceleration. 

Mass is crucial to understanding the second law because an object’s mass determines 

how much it resists a change in velocity. More massive objects require more net force 

to accelerate than less massive objects. An object’s resistance to a change in velocity 

is called its inertial mass. It requires more force to accelerate the bus on the right at, 

say, five m/s2 than the much less massive bicycle. 

A common error is to confuse mass and weight. Weight is a force caused by gravity 

and is measured in newtons. Mass is an object’s resistance to change in velocity and is 



measured in kilograms. An object’s weight can vary: Its weight is greater on Jupiter’s 

surface than on Earth’s, since Jupiter’s surface gravity is stronger than Earth’s. In 

contrast, the object's mass does not change as it moves from planet to planet. The 

kilogram (kg) is the SI unit of mass. 

 
Gravitational force: weight Weight: The force of gravity on an object. 

We all experience weight, the force of gravity. On Earth, by far the largest component 

of the gravitational force we experience comes from our own planet. To give you a 

sense of proportion, the Earth exerts 1600 times more gravitational force on you than 

does the Sun. As a practical matter, an object’s weight on Earth is defined as the 

gravitational force the Earth exerts on it. Weight is a force; it has both magnitude and 

direction. At the Earth' surface, the direction of the force is toward the center of the 

Earth. The magnitude of weight equals the product of an object’s mass and the rate of 

free fall acceleration due to gravity. On Earth, the rate of acceleration g due to gravity 

is 9.80 m/s2. The rate of free fall acceleration depends on a planet’s mass and radius, 

so it varies from planet to planet. On Jupiter, for instance, gravity exerts more force 

than on Earth, which makes for a greater value for free fall acceleration. This means 

you would weigh more on Jupiter’s surface than on Earth’s. 

Scales, such as the one shown in Concept 1, are used to measure the magnitude of 

weight. The force of Earth’s gravity pulls Kevin down and compresses a spring. This 

scale is calibrated to display the amount of weight in both newtons and pounds, as 

shown in Equation 1. Forces like weight are measured in pounds in the British system. 

One newton equals about 0.225 pounds. A quick word of caution: In everyday 

conversation, people speak of someone who “weighs 100 kilograms,” but kilograms 

are units for mass, not weight. Weight, like any force, is measured in newtons. A 

person with a mass of 100 kg weighs 980 newtons. 

 



 

 

 



 

 

 

 



 

 



 

 



 

 



 

Newton's second and third laws 

It might seem that Newton’s third law could lead to the conclusion that forces do not 

cause acceleration, because for every force there is an equal but opposite force. If for 

every force there is an equal but opposite force, how can there be a net non-zero 

force? The answer lies in the fact that the forces do not act on the same object. The 

pair of forces in an action-reaction pair acts on different objects. In this section, we 

illustrate this often confusing concept with an example. balance as well. By 

considering the forces acting in both the horizontal and vertical directions, the 

tensions of the ropes can be determined. In Example 1, one of the forces shown is 

friction, f. Friction acts to oppose motion when two objects are in contact. 

 



 

 

 

 

 



 

 

 

The mass of the block is 5.0 kg. The tension force T is 78 N and the force of friction f 

is 23 N. The friction force acts opposite to the direction of the motion. Calculate the 

magnitudes of the weight mg and the normal force FN to the nearest newton, and then 

drag the heads of the vectors to the correct positions, or click on the up and down 

arrow buttons, and press GO. If you are correct, the block will accelerate to the right 

at 11 m/s2. If not, the block will move based on the net force as determined by your 

vectors as well as its mass. Press RESET to try again. There is more than one way to 

arrange the vectors to create the same acceleration, but there is only one arrangement 

that agrees with all the information given. If you have difficulty solving this problem, 

review the sections on weight and normal force, and the section on free-body 

diagrams 

Step-by-step solution 

As noted, we use the convention that forces to the right are positive and those to the 

left are negative. A more rigorous approach would be to calculate the vector 



components of these forces using the cosine of 0° for the frictional force and the 

cosine of 180° for the pushing force. The result would be x components of 18.0 N and 

�34.0 N (the same conclusion we reached via inspection and convention). Many 

instructors prefer this approach. It does not change the answer to the problem, but the 

component method is more rigorous, and is required to solve more difficult problems. 

 

 



 

 

 



 

The amount of friction depends on the materials in contact. For example, the box 

would slide more easily over ice than wood. Friction is also proportional to the 

normal force. For a box on the floor, the greater its weight, the greater the normal 

force, which increases the force of friction. Humans expend many resources to 

combat friction. Motor oil, Teflon™, WD-40™, Tri-Flo™ and many other products 

are designed to reduce this force. However, friction can be very useful. Without it, a 

nail would slip out of a board, the tires of a car would not be able to “grip” the road, 

and you would not be able to walk. Friction exists even between seemingly smooth 

surfaces. Although a surface may appear smooth, when magnified sufficiently, any 

surface will look bumpy or rough, as the illustration in Concept 2 on the right shows. 

The magnified picture of the “smooth” crystal reveals its microscopic “rough” texture. 

Friction is a force caused by the interaction of molecules in two surfaces. maximum 

amount of static friction is constant. Why? With the greater contact area, the normal 

and frictional forces per unit area diminish proportionally. 

 



 

 

 



 

 



 

 

 

 



 

Starting this type of problem with a free-body diagram usually proves helpful. 

Draw a free-body diagram 

 

 

 

 

 



The forces on the ball are its weight down and the force of the bat at the angle � to 

the x axis. 

Variables 

 

 

 

  



 

 

 

Above, you see a toy car going down an inclined plane. The diagram shows the mass 

of the car and the angle the plane makes with the horizontal. You are asked to 

calculate the car’s acceleration. In this problem, ignore any friction or air resistance, 

as well as any energy consumed by the rotation of the wheels. 

Draw a free-body diagram 

 



By rotating the axes so that the x axis is parallel to the car’s motion down the ramp, 

we make the forces along the y axis sum to zero. (These two forces are the y 

component of the car’s weight and the normal force from the ramp.) Rotating the axes 

means there is a net force only along the x axis, and this reduces the steps required to 

solve the problem. It may be a little difficult to see why �, the angle that the plane 

makes with the horizontal, is the same as the angle � in the free-body diagram. The 

drawing to the right of the free-body diagram uses two similar right triangles to show 

why this is true. The triangle ABC has one leg (AC) that is the weight vector, and its 

hypotenuse (AB) lies along the x axis. The hypotenuse of the smaller triangle ACD is 

the weight vector. These are both right triangles and share a common angle at A, so 

they are similar. It is often useful to check this angle with the situation shown. At a 

30° angle, the y component of the weight is larger than the x component (the cosine of 

30° is greater than the sine of 30°). Looking at the picture above, this is what you 

would expect. The component of the weight down the plane is less than the 

component on the plane. It may help to push it to the extreme: What would you 

expect at a 0° angle? At 90°? 

Variables 

With the axes rotated and � as shown, the x component of the weight is computed 

using the sine, and the y component with the cosine. (Without the rotation, the x 

component would be calculated with the cosine, and the y component with the sine.) 

 

What is the strategy? 

1. Draw a free-body diagram, rotating the axes so the x axis is parallel to the motion 

of the car. 

2. Use trigonometry to calculate the net force on the car. 



3. Use Newton’s second law to determine the acceleration of the car. 

Physics principles and equations 

Newton’s second law 

�F = ma 

What is the strategy? 

1. Draw a free-body diagram. 

2. Calculate the net force on the ball along each axis by finding the components of the 

two forces using trigonometry. 

3. Use Newton’s second law to find the acceleration of the ball along each axis. 

Physics principles and equations 

Newton’s second law 

�F = ma 

Step-by-step solution 

We begin by calculating the net force along the x axis. 

 

 



 

 

 



 

 

You see a block hanging from a rope attached to a spring. The block is stationary. 

You are asked to determine the tension in the rope and the position of the end of the 

spring relative to its rest point 

 

 

 



 

What is the strategy? 

1. Draw a free-body diagram. 

2. Apply Newton’s second law to calculate the tension force in the rope. 

3. Then apply Newton’s second law with Hooke’s law to find the position of the end 

of the spring. 

Research has actually determined that cats reach terminal velocity after falling six 

stories. In fact, they tend to slow down after six stories. Here’s why this occurs: The 

cat achieves terminal velocity and then relaxes a little, which expands its cross 

sectional area and increases its drag force. As a result, it slows down. One has to 

admire the cat for relaxing in such a precarious situation (or perhaps doubt its 

intelligence). If you think this may be an urban legend, consult the Journal of the 

American Veterinary Association, volume 191, page 1399. 

 



 

 

Introduction 

Now, you will get some additional practice applying Newton’s laws. More 

specifically, you will use them in situations where multiple forces are acting on a 

single object. If the application of multiple forces results in a net force acting on an 

object, it accelerates. On the other hand, if the forces acting on it sum to zero in every 

dimension, the result is equilibrium. The object does not accelerate; it either maintains 

a constant velocity, or remains stationary. (Forces can also cause an object to rotate, 



but rotational motion is a later topic in mechanics.) Equilibrium is an important topic 

in engineering. The school buildings you study in, the bridges you travel across � all 

such structures require careful design to ensure that they remain in equilibrium. The 

simulation on the right will help you develop an understanding for how forces in 

different directions combine when applied to an object. The 5.0 kg ball has two forces 

acting on it, F1 and F2. They act on it as long as the ball is on the screen. You control 

the direction and magnitude of each force. In the simulation, you set a force vector's 

direction and magnitude by dragging its arrowhead; You will notice the angles are 

restricted to multiples of 90°. You can also adjust the magnitude of each vector with a 

controller in the control panel. The net force is shown in the simulation; it is the 

vector sum of F1 and F2. 

You can check the box “Display vectors head to tail” if you would like to see them 

graphically combined in that fashion. Press GO to start the simulation and set the ball 

moving in response to the forces on it. Here are some challenges for you. First, set the 

forces so that the ball does not move at all when you press GO. The individual forces 

must be at least 10 newtons, so setting them both to zero is not an option! Next, hit 

each of the three animated targets. The center of one is directly to the right of the ball 

and the center of another is at a 45° angle above the horizontal from the ball. Set the 

individual vectors and press GO to hit the center of each target in turn. The target to 

the left is at a 150° angle. It is the “extra credit” target. Determining the correct ratio 

of vectors will require a little thought. We allow for rounding with this target; if you 

set one of the vectors to 10 N, you can solve the problem by setting the other one to 

the appropriate closest integer value. 

Sample problem: a mass on ropes 

Since it is stationary, the monkey is not accelerating, which means no net force is 

acting on it. This section shows you a useful technique for solving problems that 

involve multiple forces acting on a single object. To calculate the overall force on an 

object like the rope, the x and y components of each force need to be determined. 

Since there is no acceleration in any direction, there is no net force along any 

dimension. Two equations can be developed: The sum of the x components equals 

zero, and the sum of the y components equals zero. We will use a consistent approach 

to solving multi-force problems. First we draw a free-body diagram to help us identify 

the variables and the force components. Then we state the variables and their values 

when they are known. Next, we use Newton’s second law, relating the net force to the 



acceleration and the mass of objects in the problem. Finally, we perform the algebraic 

and mathematical steps needed to solve the problem. 

 

 

 



 

 

 

 



 

 



 

What is the strategy? 

1. Draw a free-body diagram for each block. 

2. Calculate the net force on each block. Block A moves only in the horizontal 

direction, so we can ignore the vertical forces on it. Block B moves only vertically, 

and there are no horizontal forces on it. 

3. Use Newton’s second law for each block to find two expressions for the tension 

force in the rope, and set the expressions equal to find the acceleration. 

Physics principles and equations 

Newton’s second law relates the net force and acceleration. Block A moves only 

horizontally, so we will consider only the x direction for it; similarly, we consider 

only the y direction for block B. 

�F = ma 

Step-by-step solution 

We start by considering block A, and use Newton's second law to find an equation 

that gives an expression for the tension force in the rope. 



 
Then we apply Newton's second law to block B to find another expression for the 

tension. Since block B falls, we assign its acceleration a negative value. 

We set the two expressions for the tension equal. The rest is algebra. 

 
The steps above determine the magnitude of the acceleration. Since the question 

asked for the acceleration of the block on the table, the full answer is 5.64 m/s2 to the 

right. 



 

What is the strategy? 

1. Draw a free-body diagram of the forces on the plane, rotating the axes so three of 

the forces lie along an axis. 

2. Calculate the net force on the plane along the axis of the lift force, and solve for the 

lift force. 

Physics principles and equations 

Newton’s second law 

�F = ma 

When the acceleration is zero, the forces along every dimension must sum to zero. 

Step-by-step solution 

The lift force acts in the y dimension. In the y column of the variables table, all the 

values are known except the lift force. So, we need only apply equilibrium in the y 

dimension to solve this problem. 

 



 

 

A classic physics lab exercise asks you to use a block on a plane to calculate the 

coefficient of static friction for two materials. You see that configuration shown 

above, although instead of a block, we are using Surfer Bob. You are given Bob’s 

weight and the angle the plane makes with the horizontal just before Bob begins to 

slide. From this information, you are asked to calculate the coefficient of static 

friction. Since Bob is not accelerating, no net force is acting on him. 

You may have performed a lab experiment like this at some point during your studies. 

You incline a plane until the force of gravity just overcomes friction and causes a 

block on the plane to slide. You then incline it a little less until the plane is at the 

angle at which the force of static friction balances the force of gravity down the plane. 

At this point, the static friction is at its maximum and you can calculate the 

coefficient. As you see below, we can solve this problem in fewer steps by rotating 

the axes. Two of the forces are acting along the inclined plane. By rotating the axes so 

the x axis is parallel to the plane, we can reduce the amount of trigonometry required. 

The rotation means that two of the forces act solely along an axis. If we did not do the 

rotation, each force we analyzed would have to be decomposed into its x and y 

components with the use of sines and cosines in order for us to solve the problem. If 

you do not like this axis rotation “trick,” then you can always solve the problem by 

keeping the axes horizontal and vertical and using components. Now we substitute the 

expression for the normal force from step 6 into the equation of step 3 and find the 

coefficient of static friction. 



 
Even though we were given the weight of the dude, it turns out the coefficient of 

static friction does not depend on weight, but solely on the angle of the plane. 

 

 

The illustration above shows two blocks connected by a rope passing over a pulley. 

Because the blocks partially counterbalance each other, the force required to lift either 

of them is less than its weight. This type of system is called an Atwood machine. An 

application can be found in elevators, where a massive block partly counterbalances 

the weight of the elevator car to reduce the force required from the motor that lifts the 

car. In this sample problem, you are asked to find the rate at which the blocks 

accelerate. As usual, the rope and pulley are massless, the rope does not stretch, and 

the pulley has no friction. The rope exerts an equal tension force on both blocks. The 

blocks’ accelerations are equal in magnitude but opposite in direction. 



We set the two expressions for tension equal and solve for the acceleration. 

 
Equation 8 can be profitably analyzed by considering a couple of special cases. If mL 

equals zero, equation 8 states that the acceleration equals g. This makes sense: The 

block on the right would be in free fall, since no force would be opposing the force of 

its weight. Also, if mR = mL, the acceleration would be zero, since there would be no 

net force. If we let mR go to infinity, equation 8 states that the acceleration equals g. 

This too makes sense. If mR is very much bigger than mL, then mL will hardly slow 

down mR as it falls in free fall. 

 

 



 

 

 



 

 

 



 

Initially, the ball is stationary. It has zero kinetic energy because it has zero speed. 

The foot applies a force to the ball as it moves through a short displacement. This 

force accelerates the ball. The ball now has a speed greater than zero, which means it 

has kinetic energy. The work-kinetic energy theorem states that the work done by the 

foot on the ball equals the change in the ball’s kinetic energy. In this example, the 

work is positive (the force is in the direction of the displacement) so the work 

increases the kinetic energy of the ball. As shown in Concept 2, a goalie catches a ball 

kicked directly at her. The goalie’s hands apply a force to the ball, slowing it. The 

force on the ball is opposite the ball’s displacement, which means the work is 

negative. The negative work done on the ball slows and then stops it, reducing its 

kinetic energy to zero. Again, the work equals the change in energy; in this case, 

negative work on the ball decreases its energy. In the scenarios described here, the 

ball is the object to which a force is applied. But you can also think of the soccer ball 

doing work. The ball applies a force on the goalie, causing the goalie’s hands to move 

backward. The ball does positive work on the goalie because the force it applies is in 

the direction of the displacement of the goalie’s hands. 

  

Derivation: work-kinetic energy theorem 

In this section, we show that the net work done on an object and its change in kinetic 

energy are equal by using the definition of work and Newton’s second law. We will 

again use the illustration of a soccer ball being kicked and model the ball as a particle. 

The ball starts at rest and we assume the force applied by the foot equals the net force 

on the ball, and that the ball moves without rotating. 



 
 

Variables 

 
Strategy 

1. Start with the definition of work. 



2. Use Newton’s second law to replace the net force in the definition of work by mass 

times the acceleration. 

3. Use a motion equation from the study of kinematics to replace acceleration times 

displacement with one-half the speed squared. 

Physics principles and equations 

We will use the definition of work for when the force is in the direction of 

displacement. 

W = F�x 

Newton’s second law 

F = ma 

Linear motion equation 

v2 = vi 

2 + 2a�x 

The definition of kinetic energy 

KE = ½mv2 

Step-by-step derivation 

State the definition of work and use Newton’s second law to substitute ma for force. 

 
We need to replace the acceleration and displacement terms with speed squared to end 

up with the definition of kinetic energy. We use a 



 

Use the work-kinetic energy theorem to find the work done on the sled. Then, use the 

definition of work to determine how much force was 

exerted on the sled. 

tep Reason 

 
 

Interactive problem: work-kinetic energy theorem 

In this simulation, you are a skier and your challenge is to do the correct amount of 

work to build up enough energy to soar over the canyon and land near the lip of the 



slope on the right. You, a 50.0 kg skier, have a flat 12.0 meter long runway leading up 

to the lip of the canyon. In that stretch, you must apply a force such that at the end of 

the straightaway, you are traveling with a speed of 8.00 m/s. Any slower, and your 

jump will fall short. Any faster, and you will overshoot. How much force must you 

apply, in newtons, over the 12.0 meter flat stretch? Ignore other forces like friction 

and air resistance 

 

 

 



 

 



 

 

Although the paint bucket in Concept 1 is not moving, it makes up part of a system 

that has a form of energy called potential energy. In general, potential energy is the 

energy due to the configuration of objects that exert forces on one other. In this 

section, we focus on one form of potential energy, gravitational potential energy. The 

paint bucket and Earth make up a system that has this form of potential energy. A 

system is some “chunk” of the universe that you wish to study, such as the bucket and 

the Earth. You can imagine a boundary like a bubble surrounding the system, 

separating it from the rest of the universe. The particles within a system can interact 

with one another via internal forces or fields. Particles outside the system can interact 

with the system via external forces or fields. Gravitational potential energy is due to 

the gravitational force between the bucket and Earth. As the bucket is raised or 

lowered, its change in potential energy (�PE) equals the magnitude of its weight, mg, 

times its vertical displacement, �h. (We follow the common convention of using �h 

for change in height, instead of �y.) The weight is the amount of force exerted on the 

bucket by the Earth (and vice versa). This formula is shown in Equation 1. A change 

in PE can be positive or negative. The magnitude of weight is a positive value, but 

change in height can be positive (when the bucket moves up) or negative (when it 



moves down). To define a system’s PE, we must define a configuration at which the 

system has zero PE. Unlike kinetic energy, where zero KE has a natural value (when 

an object’s speed is zero), the configuration with zero PE is defined by you, the 

physicist. In the diagrams to the right, it is convenient to say the system has zero PE 

when the bucket is on the Earth’s surface. This convention means its PE equals its 

weight times its height above the ground, mgh. Only the bucket’s distance above the 

Earth, h, matters here; if the bucket moves left or right, its PE does not change. In 

Example 1, we calculate the paint bucket’s gravitational potential energy as it sits on 

the scaffolding, four meters above the ground. There are other types of potential 

energy. One you will frequently encounter is elastic potential energy, which is the 

energy stored in a compressed or stretched object such as a spring. As you may recall, 

this form of energy was present in the bow that was used to fire an arrow. 

 

 

energy, as seen in Equation 2. Imagine that the painter drops the bucket from the 

scaffolding. Only the force of gravity does work on the bucket as it falls. The system 

has more potential energy when the bucket is at the top of the scaffolding than when it 

is at the bottom, so the work done by gravity has lowered the system’s PE: the change 

in PE due to the work done by gravity is negative. 



 

 

 

 


