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What is the strategy? 

1. Use the definition of power as the rate of work done to define an equation for the 

power of the falls. 

2. Use the fact that work done by gravity equals the negative of the change in 

gravitational potential energy to solve for the power. 

Physics principles and equations 

Power is the rate at which work is performed. 

 
Change in gravitational PE 

�PE = mg�h 

Work done by gravity 

W = ��PE 

kg cannonball straight up. The barrel of the cannon is 2.00 m long, and it exerts an 

average force of 6,250 N while the cannonball is in the cannon. We will ignore air 



resistance. Can we determine the cannonball’s velocity when it has traveled 125 

meters upward? As you may suspect, the answer is “yes”. The cannon does 12,500 J 

of work on the cannonball, the product of the force (6,250 N) and the displacement 

(2.00 m). (We assume the cannon does no work on the cannonball after it leaves the 

cannon.) At a height of 125 meters, the cannonball’s increase in PE equals mg�h, or 

3,920 J. Since a total of 12,500 J of work was done on the ball, the rest of the work 

must have gone into raising the cannonball’s KE: The change in KE is 8,580 J. 

Applying the definition of kinetic energy, we determine that its velocity at 125 m is 

73.2 m/s. We could further analyze the cannonball’s trip if we were so inclined. At the 

peak of its trip, all of its energy is potential since its velocity (and KE) there are zero. 

The PE at the top is 12,500 J. Again applying the formula mg�h , we can determine 

that its peak height above the cannon is about 399 m. 

 

 

 



 

 

 

Conservative and non-conservative forces Earlier, when discussing potential energy, 

we mentioned that we would explain conservative forces later. The concept of 

potential energy only applies to conservative forces. Gravity is an example of a 

conservative force. It is conservative because the total work it does on an object that 

starts and finishes at the same point is zero. For example, if a 20 kg barbell is raised 

2.0 meters, gravity does �40 J of work, and when the barbell is lowered 2.0 meters 

back to its initial position, gravity does +40 J of work. When the barbell is returned to 



its initial position, the sum of the work done by gravity on the one that has no 

interactions with its environment. The particles within the system may interact with 

one another, but no net external force or field acts on an isolated system. Only 

external forces can change the total energy of a system. If a giant spring lifts a car, 

you can say the spring has increased the energy of the car. In this case, you are 

considering the spring as supplying an external force and not as part of the system. If 

you include the spring in the system, the increase in the energy of the car is matched 

by a decrease in the potential energy contained of the spring, and the total energy of 

the system remains the same. For the law of conservation of energy to apply, there 

can be no non-conservative forces like friction within the system. The law of 

conservation of energy can be expressed mathematically, as shown in Equation 1. The 

equation states that an isolated system’s total energy at any final point in time is the 

same as its total energy at an initial point in time. When considering mechanical 

energy, we can state that the sum of the kinetic and potential energies at some final 

moment equals the sum of the kinetic and potential energies at an initial moment. 

In the case of the boy on the rope, if you know his mass and height on the riverbank, 

you can calculate his gravitational potential energy. In this example, rather than 

saying his PE equals zero on the ground, we say it equals zero at the bottom of the 

arc. This simplifies matters. Using the law of conservation of energy, you can then 

determine what his kinetic energy, and therefore his speed, will be when he reaches 

the bottom of the arc, nearest to the water, since at that point all his energy is kinetic. 

Let’s leave the boy swinging for a while and switch to another example: You drop a 

weight. When the weight hits the ground it will stop moving. At this point, the weight 

has neither kinetic energy nor potential energy because it has no motion and its height 

off the Earth’s surface is zero. Does the law of conservation of energy still hold true? 

Yes, it does, although we need to broaden the forms of energy included in the 

discussion. With careful observation you might note that the ground shakes as the 

weight hits it (more energy of motion). The weight and the ground heat up a bit 

(thermal energy). The list can continue: energy of the motion of flying dirt, the energy 

of sound and so on. The amount of mechanical energy does decline, but when you 

include all forms of energy, the overall energy stays constant. There is a caveat to the 

law of conservation of energy. Albert Einstein demonstrated that there is a 

relationship between mass and energy. Mass can be converted into energy, as it is 

inside the Sun or a nuclear reactor, and energy can be converted into mass. It is the 



sum of mass and energy that remains constant. Our current focus is on much less 

extreme situations. Using the principle of conservation of energy can have many 

practical benefits, as automotive engineers are now demonstrating. When it comes to 

energy and cars, the focus is often on how to cause the car to accelerate, how fast they 

will reach say a speed of 100 km/h. Of course, cars also need to slow down, a task 

assigned to the brakes. As conventional cars brake, the energy is typically dissipated 

as heat as the brake pads rub on the rotors. Innovative new cars, called hybrids, now 

capture some of the kinetic energy and convert it to chemical energy stored in 

batteries or mechanical energy stored in flywheels. The engine then recycles that 

energy back into kinetic energy when the car needs to accelerate, saving gasoline 

 

 

 



 

 

 



Sam is jumping up and down on a trampoline. He bounces to a maximum height of 

0.25 m above the surface of the trampoline. How fast will he be traveling when he hits 

the trampoline? We define Sam’s potential energy at the surface of the trampoline to 

be zero. 

 

 

The law of conservation of energy states that the total energy in an isolated system 

remains constant. In the simulation on the right, you can use this law and your 

knowledge of potential and kinetic energies to help a soapbox derby car make a jump. 

A soapbox derby car has no engine. It gains speed as it rolls down a hill. You can drag 

the car to any point on the hill. A gauge will display the car’s height above the 

ground. Release the mouse button and the car will fly down the hill. In this 

interactive, if the car is traveling 12.5 m/s at the bottom of the ramp, it will 

successfully make the jump through the hoop. Too slow and it will fall short; too fast 

and it will overshoot. You can use the law of conservation of energy to figure out the 

vertical position needed for the car to nail the jump. 

 



 
 

Friction and conservation of energy 

In this section, we show how two principles we have discussed can be combined to 

solve a typical problem. We will use the principle of conservation of energy and how 

work done by an external force affects the total energy of a system to determine the 

effect of friction on a block sliding down a plane. Suppose the 1.00 kg block shown to 

the right slides down an inclined wooden plane. Since the block is released from rest, 

it has no initial velocity. It loses 2.00 meters in height as it slides, and it slides 6.00 

meters along the surface of the inclined plane. The force of kinetic friction is 2.00 N. 

You want to know the block’s speed when it reaches the bottom position. 

To solve this problem, we start by applying the principle of conservation of energy. 

The block’s initial energy is all potential, equal to the product of its mass, g and its 

height (mgh). At a height of 2.00 meters, the block’s PE equals 19.6 J. The potential 

energy will be zero when the block reaches the bottom of the plane. Ignoring friction, 

the PE of the block at the top equals its KE at the bottom. 

Now we will factor in friction. The force of friction opposes the block’s motion down 

the inclined plane. The work it does is negative, and that work reduces the energy of 

the block. We calculate the work done by friction on the block as the force of friction 

times the displacement along the plane, which equals �12.0 J. The block’s energy at 

the top (19.6 J) plus the �12.0 J means the block has 7.6 J of kinetic energy at the 

bottom. Using the definition of kinetic energy, we can conclude that the 1.00 kg block 

is moving at 3.90 m/s. You can also calculate the effect of friction by determining 

how fast the block would be traveling if there were no friction. All 19.6 J of PE would 



convert to KE, yielding a speed of 6.26 m/s. Friction reduces the speed of the block by 

approximately 38%. 

 

Review of forces, work and energy 

In this chapter we have discussed the work done when a force is exerted on a particle 

(the work-kinetic energy theorem). We have discussed work and energy with respect 

to a system of objects (potential energy). We have also covered conservative and non-

conservative forces. 

We further categorized forces by stating that some are external forces, forces from a 

source outside the objects that make up the system. For example, we talked about a 

foot applying force to a soccer ball, and a painter hoisting up a paint bucket. In both 

these examples, the foot and painter are considered external to the system, which 

consists either of a single particle (the ball) or multiple objects (the bucket and the 

Earth). In contrast, other forces are internal forces in a system. In the bucket/Earth 

system, for example, the force of gravity is an internal force. It arises from the objects 

that make up the system. 

In this section, we review and summarize the effect on mechanical energy from all 

these types of forces: external and internal, conservative and non-conservative. We 

want to consider how the work done by these various types of forces affects the 

mechanical energy of a system. We will start with external forces, and consider the 

effect of the work done by an external force on the total energy of a system. Any net 



external force acting on a particle or system changes the system’s energy. Positive 

work done on a system by an external force increases the system’s total energy, and 

negative work done on a system by an external force decreases its total energy. This is 

illustrated in the diagram in Concept 1. If the system consists of one particle, then the 

work equals the change in kinetic energy. This is the work-kinetic energy theorem. A 

single particle cannot have potential energy, so positive work on the particle increases 

its KE, and negative work done on the particle (or work done by the particle) 

decreases its KE. The work done on any system by an external force changes the 

system’s total mechanical energy. Let’s consider a system that consists of an apple 

and the Earth. Positive work may increase the PE (you lift the apple upwards at a 

constant rate), or KE (you run faster and faster with the apple held at a constant 

height), or both (you throw an initially stationary apple skyward). 

You need to be careful of the sign of the work done by considering whether the force 

is in the direction of the displacement (positive work) or the opposite direction 

(negative work). If you throw a ball, you increase its energy, and when you catch it, 

you decrease its energy. Non-conservative forces decrease the mechanical energy of a 

system. (There are scenarios where they can be considered as increasing the 

mechanical energy, but we will ignore them here.) If you slide a block down a plane, 

the non-conservative forces of kinetic friction and air resistance act in the opposite 

direction of the block’s displacement. This means they do negative work, and reduce 

the mechanical energy of the system. 

Now let’s consider the effect of internal forces on the energy of a system. We will 

start with internal conservative forces. These forces do not change the total 

mechanical energy of a system. Consider a system consisting of a block, an inclined 

plane, and the Earth. The block is sliding down the plane. The force of gravity is 

conservative, and the decrease in gravitational potential energy as the block slides 

down the plane is matched by an increase in kinetic energy. This is the law of 

conservation of energy. The conservative force of gravity does not change the total 

mechanical energy of the system. We will foreshadow thermodynamics here. The 

force of friction will increase the temperature of the block and plane. It increases the 

internal 



 

 

Introduction 

“The more things change, the more they stay the same” is a well-known French 

saying. However, though witty and perhaps true for many matters on which the 

French have great expertise, this saying is simply not good physics. Instead, a 

physicist would say: “Things stay the same, period. That is, unless acted upon by a net 

force.” Perhaps a little less joie de vivre than your average Frenchman, but 



nonetheless the key to understanding momentum. What we now call momentum, 

Newton referred to as “quantity of motion.” The linear momentum of an object equals 

the product of its mass and velocity. (In this chapter, we focus on linear momentum. 

Angular momentum, or momentum due to rotation, is a topic in another chapter.) 

Momentum is a useful concept when applied to collisions, a subject that can be a lot 

of fun. In a collision, two or more objects exert forces on each other for a brief instant 

of time, and these forces are significantly greater than any other forces they may 

experience during the collision. At the right is a simulation � a variation of 

shuffleboard � that you can use to begin your study of momentum and collisions. 

You can set the initial velocity for both the blue and the red pucks and use these 

velocity settings to cause them to collide. The blue puck has a mass of 1.0 kg, and the 

red puck a mass of 2.0 kg. The shuffleboard has no friction, but the pucks stop 

moving when they fall off the edge. Their momenta and velocities are displayed in 

output gauges. Using the simulation, answer these questions. First, is it possible to 

have negative momentum? If so, how can you achieve it? Second, does the collision 

of the pucks affect the sum of their velocities? In other words, does the sum of their 

velocities remain constant? Third, does the collision affect the sum of their momenta? 

Remember to consider positive and negative signs when summing these values. Press 

PAUSE before and after the collisions so you can read the necessary data. For an 

optional challenge: Does the collision conserve the total kinetic energy of the pucks? 

If so, the collision is called an elastic collision. If it reduces the kinetic energy, the 

collision is called an inelastic collision. 

 

 
 



Momentum Momentum (linear): Mass times velocity. 

An object’s linear momentum equals the product of its mass and its velocity. A fast 

moving locomotive has greater momentum than a slowly moving ping-pong ball. The 

units for momentum are kilogram·meters/second (kg·m/s). A ping-pong ball with a 

mass of 2.5 grams moving at 1.0 m/s has a momentum of 0.0025 kg·m/s. A 100,000 

kg locomotive moving at 5 m/s has a momentum of 5×105 kg·m/s. Momentum is a 

vector quantity. The momentum vector points in the same direction as the velocity 

vector. This means that if two identical locomotives are moving at the same speed and 

one is heading east and the other west, they will have equal but opposite momenta, 

since they have equal but oppositely directed velocities. 

 

 

 



If you feel as though you spend your life spinning around in circles, you may be 

pleased to know that an entire branch of physics is dedicated to studying that kind of 

motion. This chapter is for you! More seriously, this chapter discusses motion that 

consists of rotation about a fixed axis. This is called pure rotational motion. There are 

many examples of pure rotational motion: a spinning Ferris wheel, a roulette wheel, 

or a music CD are three instances of this type of motion. In this chapter, you will 

learn about rotational displacement, rotational velocity, and rotational acceleration: 

the fundamental elements of what is called rotational kinematics. You will also learn 

how to relate these quantities using equations quite similar to those used in the study 

of linear motion. The simulation on the right features the “Angular Surge,” an 

amusement park ride you will be asked to operate in order to gain insight into 

rotational kinematics. The ride has a rotating arm with a “rocket” where passengers 

sit. You can move the rocket closer to or farther from the center by setting the 

distance in the simulation. You can also change the rocket’s period, which is the 

amount of time it takes to complete one revolution. By changing these parameters, 

you affect two values you see displayed in gauges: the rocket’s angular velocity and 

its linear speed. The rocket’s angular velocity is the change per second in the angle of 

the ride’s arm, measured from its initial position. Its units are radians per second. For 

instance, if the rocket completes one revolution in one second, its angular velocity is 

2� radians (360°) per second. This simulation has no specific goal for you to achieve, 

although you may notice that you can definitely have an impact on the passengers! 

What you should observe is this: How do changes in the period affect the angular 

velocity? The linear speed? And how does a change in the distance from the center 

(the radius of the rocket’s motion) affect those values, if at all? Can you determine 

how to maximize the linear speed of the rocket? To run the ride, you start the 

simulation, set the values mentioned above, and press GO. You can change the 

settings while the ride is in motion. 

 

 



Angular position Angular position: The amount of rotation from a reference position, 

described with a positive or negative angle. 

When an object such as a bicycle wheel rotates about its axis, it is useful to describe 

this motion using the concept of angular position. Instead of being specified with a 

linear coordinate such as x, as linear position is, angular position is stated as an angle. 

In Concept 1, we use the location of a bicycle wheel’s valve to illustrate angular 

position. The valve starts at the 3 o’clock position (on the positive x axis), which is 

zero radians by convention. As the illustration shows, the wheel has rotated one-

eighth of a turn, or �/4 radians (45°), in a counterclockwise direction away from the 

reference position. In other words, angular position is measured from the positive x 

axis. Note that this description of the wheel’s position used radians, not degrees; this 

is because radians are typically used to describe angular position. The two lines we 

use to measure the angle radiate from the point about which the wheel rotates. 

The axis of rotation is a line also used to describe an object’s rotation. It passes 

through the wheel’s center, since the wheel rotates about that point, and it is 

perpendicular to the wheel. The axis is assumed to be stationary, and the wheel is 

assumed to be rigid and to maintain a constant shape. Analyzing an object that 

changes shape as it rotates, such as a piece of soft clay, is beyond the scope of this 

textbook. We are concerned with the wheel’s rotational motion here: its motion 

around a fixed axis. Its linear motion when moving along the ground is another topic. 

As mentioned, angular position is typically measured with radians (rad) instead of 

degrees. The formula that defines the radian measure of an angle is shown in Equation 

1. The angle in radians equals the arc length s divided by the radius r. As you may 

recall, 2� radians equals one revolution around a circle, or 360°. One radian equals 

about 57.3°. To convert radians to degrees, multiply by the conversion factor 

360°/2�. To convert degrees to radians, multiply by the reciprocal: 2�/360°. The 

Greek letter � 

 



 

 

Angular velocity: Angular displacement per unit time. 

In Concept 1, a ball attached to a string is shown moving counterclockwise around a 

circle. Every four seconds, it completes one revolution of the circle. Its angular 

velocity is the angular displacement 2� radians (one revolution) divided by four 

seconds, or �/2 rad/s. The Greek letter � (omega) represents angular velocity. As is 

the case with linear velocity, angular velocity can be discussed in terms of average 

and instantaneous velocity. Average angular velocity equals the total angular 

displacement divided by the elapsed time. This is shown in the first equation in 

Equation 

1. Instantaneous angular velocity refers to the angular velocity at a precise moment in 

time. It equals the limit of the average velocity as the increment of time approaches 

zero. This is shown in the second equation in Equation 1. The sign of angular velocity 

follows that of angular displacement: positive for counterclockwise rotation and 

negative for clockwise rotation. The magnitude (absolute 

 
 



 

\ 



 

 



 

 

 

What is the strategy? 

1. Calculate the angular displacement. 

2. Convert the elapsed time to seconds. 

3. Use the angular displacement and time to determine the angular velocity and 

angular acceleration. 

Physics principles and equations 

Definition of angular velocity 

for angular displacement, angular velocity and angular acceleration instead of linear 

displacement, velocity and acceleration. As with the linear motion equations, these 



equations hold true when there is constant acceleration. We also show these equations 

below along with their linear counterparts. To apply the equations in physics 

problems, the first step is to identify the known values and which values are being 

asked for. Sketching a diagram of the situation may help you with this. The next step 

is to find an equation that includes both the known and the unknown (asked-for) 

values. Your goal is to find an equation, if possible, that has only one unknown value: 

the one you want to find. When applying the rotational equations, remember that 

positive displacement and velocity represent counterclockwise motion, and negative 

displacement and velocity indicate clockwise motion. Let’s now work an example 

problem. Imagine you have just turned on the blender shown on the right. You let it 

run for 5.0 seconds. During this time period its blade has a constant angular 

acceleration of 44 radians per second squared. What is the angular displacement of the 

blade during this time? This problem implicitly tells you that the initial angular 

velocity is zero, since the blender has just been turned on. The second equation above 

includes time, initial angular velocity and acceleration. It also contains the value you 

seek to calculate: the angular displacement. This makes it the right equation to use. It 

does not include the value for final angular velocity, which is fine because you are not 

told that value, nor are you asked to calculate it. The details of the calculation appear 

on the right. The angular displacement is 550 radians. Because the value is positive, 

the motion is counterclockwise. Here is a table of the rotational motion variables and 

the equations that relate them, along with their linear counterparts. 

 



 

 

 



 

 

Tangential velocity: The instantaneous linear velocity of a point on a rotating object. 

Concepts such as angular displacement and angular velocity are useful tools for 

analyzing rotational motion. However, they do not provide the complete picture. 

Consider the salt and pepper shakers rotating on the lazy Susan shown to the right. 

The containers have the same angular velocity because they are on the same rotating 

surface and complete a revolution in the same amount of time. However, at any 

instant, they have different linear speeds and velocities. Why? They are located at 

different distances from the axis of rotation (the center of the lazy Susan), which 

means they move along circular paths with different radii. The circular path of the 

outer shaker is longer, so it moves farther than the inner one in the same amount of 

time. At any instant, its linear speed is greater. Because the direction of motion of an 

object moving in a circle is always tangent to the circle, the object’s linear velocity is 

called its tangential velocity. To reinforce the distinction between linear and angular 

velocity, consider what happens if you decide to run around a track. Let’s say you are 

asked to run one lap around a circular track in one minute flat. Your angular velocity 

is 2� radians per minute. Could you do this if the track had a radius of 10 meters? 

The answer is yes. The circumference of that track is 2�r, which equals 

approximately 63 meters. Your pace would be that distance divided by 60 seconds, 



which works out to an easy stroll of about 1.05 m/s (3.78 km/h). What if the track had 

a radius of 100 meters? In this case, the one-minute accomplishment would require 

the speed of a world-class sprinter capable of averaging more than 10 m/s. (If the 

math ran right past you, note that we are again multiplying the radius by 2� to 

calculate the circumference and dividing by 60 seconds to calculate the tangential 

velocity.) Even though the angular velocity is the same in both cases, 2� radians per 

minute, the tangential speed changes with the radius. As you see in Equation 1, 

tangential speed equals the product of the distance to the axis of rotation, r, and the 

angular velocity, �. The units for tangential velocity are meters per second. The 

direction of the velocity is always tangent to the path of the object. Confirming the 

direction of tangential velocity can be accomplished using an easy home experiment. 

Let’s say you put a dish on a lazy Susan and then spin the lazy Susan faster and faster. 

Initially, the dish moves in a circle, constrained by static friction. At some point, 

though, it will fly off. The dish will always depart in a straight line, tangent to the 

circle at its point of departure. The tangential speed equation can also be used to 

restate the equation for centripetal acceleration in terms of angular velocity. 

Centripetal acceleration equals v2/r. Since v = r�, centripetal acceleration also equals 

�2r. We derive the equation for tangential speed using the diagram below. To 

understand the derivation, you must recall that the arc length �s (the distance along 

the circular path) equals the angular displacement �� in radians times the radius r. 

Also recall that the instantaneous speed vT equals the displacement divided by the 

elapsed time for a very small increment of time. 

 

 



 

 



 

always toward the center of the circle. Now imagine that the car speeds up as it circles 

the track. It now completes a lap more quickly, so its angular velocity is increasing, 

which means it has positive angular acceleration (when it is moving 

counterclockwise; it is negative in the other direction). The car now has tangential 

acceleration (its linear speed is changing), and this can be calculated by multiplying 

its angular acceleration by the track’s radius. The equation for tangential acceleration 

is derived below from the equations for tangential velocity and angular acceleration. 

We begin with the basic definition of linear acceleration and substitute the tangential 

velocity equation. The result is an expression which contains the definition of angular 

acceleration. We replace this expression with �, angular acceleration, which yields 

the equation we desire. 

 

 



 

 

Tangential and centripetal  acceleration 

In Concept 1, a toy train is shown going around a circular track at steadily increasing 

speed. How can we calculate its overall acceleration at any moment? The train has 

both centripetal and tangential acceleration. The overall acceleration can be broken 

into these two components. The acceleration perpendicular to the direction of motion, 

directed toward the center of the circle, is the centripetal acceleration. Its magnitude at 

any instant is calculated using the equation for centripetal acceleration from a 

previous chapter: speed squared divided by the radius. The acceleration parallel to the 

velocity vector is the tangential acceleration, which is perpendicular to the centripetal 

acceleration. Since the train is increasing in speed, it has non-zero tangential 

acceleration. (This is not uniform circular motion.) The overall acceleration equals the 

vector sum of the centripetal and tangential accelerations. The two vectors are 

perpendicular, so they form two legs of a right triangle. The Pythagorean theorem can 

be used to calculate the magnitude of the overall acceleration, as the first formula in 

Equation 1 shows. The direction of the overall acceleration, measured from the 

centripetal acceleration vector (or the radius line), can be calculated using 

trigonometry. You see that formula in Equation 1 as well. 

Vectors and angular motion 

Although we have not stressed this fact, angular velocity and angular acceleration are 



both vectors. In this section, we discuss the direction in which they point, using the 

right-hand rule to determine their direction. To apply this rule to angular velocity, 

curl your right hand around the axis of rotation, wrapping your fingers in the direction 

of the motion. This is illustrated to the right, where the hand wraps around the axis 

that passes through the center of the record. Your thumb then points in the direction of 

the angular velocity vector, which lies along the axis of rotation. The direction of the 

angular acceleration vector depends on whether the object in question is speeding up 

or slowing down. When an object speeds up, the angular acceleration vector points in 

the same direction as the angular velocity vector, reflecting the change in the velocity 

vector. When an object slows down, the angular acceleration vector points in the 

direction opposite to the angular velocity vector, again reflecting the change in the 

angular velocity vector. You may have noticed that we have not mentioned angular 

displacement. This is because it is not treated as a vector.  

 

?  

 



 
y vector: up 

Interactive summary problem: 11.6 seconds to liftoff 

You are again operating the Angular Surge ride at a local amusement park. The ride 

begins with the arm in the launch position for the rocket. The motor starts the ride by 

providing a constant positive angular acceleration for the first 11.6 seconds. The ride 

has a rocket on a rotating arm, and you can control the arm’s angular acceleration. 

You can also control the distance of the rocket from the axis of rotation. Your goal is 

to set both these values so that 11.6 seconds after startup, the rocket has completed 

one or more complete revolutions and has a tangential velocity of 13.0 m/s. If you do 

this correctly, the rocket will blast off. You can position the rocket from four to 10 

meters from the Torque 

Torque: A force that causes or opposes rotation. 

A net force causes linear acceleration: a change in the linear velocity of an object. A 

net torque causes angular acceleration: a change in the angular velocity. For instance, 

if you push hard on a wrench like the one shown in Concept 1, you will start it and the 

nut rotating. We will use a wrench that is loosening a nut as our setting to explain the 

concept of torque in more detail. In this section, we discuss two of the factors that 



determine the amount of torque. One factor is how much force F is exerted and the 

other is the distance r between the axis of rotation and the location where the force is 

applied. We assume in this section that the force is applied perpendicularly to the line 

from the axis of rotation and the location where the force is applied. (If this 

description seems cryptic, look at Concept 1, where the force is being applied in this 

manner.) When the force is applied as stated above, the torque equals the product of 

the force F and the distance r. In Equation 1, we state this as an equation. The Greek 

letter � (tau) represents torque. Your practical experience should confirm that the 

torque increases with the amount of force and the distance from the axis of rotation. If 

you are trying to remove a “frozen” nut, you either push harder or you get a longer 

wrench so you can apply the force at a greater distance. 

The location of a doorknob is another classic example of factoring in where force is 

applied. A torque is required to start a door rotating. The doorknob is placed far from 

the axis of rotation at the hinges so that the force applied to opening the door results 

in as much torque as possible. If you doubt this, try opening a door by pushing near its 

hinges. The wrench and nut scenario demonstrates another aspect of torque. The 

angular acceleration of the nut is due to a net torque. Let's say the nut in Concept 1 is 

stuck: the force of static friction between it and the bolt creates a torque that opposes 

the torque caused by the force of the hand. If the hand pushes hard enough and at a 

great enough distance from the nut, the torque it causes will exceed that caused by the 

force of static 

 

 



 

product in Equation 1. 

Children are sophisticated about torques, whether they know it or not. They 

understand that torques can be added. For example, if two children sit on the same 

side of a seesaw, their torques combine to create a larger net torque than that supplied 

by one child alone. If they sit on opposite sides, the net torque is less than either 

child’s torque alone. Children also learn that they can adjust the amount of torque 

they apply by moving toward or away from the axis of rotation. This means two 

children with different weights can balance each other, since both torques are a 

function of their weights and their distances from the axis of rotation. The heavier 

child slides closer to the axis, and the net torque is zero. 

 



 

 



 

 

Several physics properties, including torque, are calculated using the cross product. 

The cross product is a way to multiply two vectors. The result is a vector that is 

sometimes called their vector product. To determine the magnitude of the cross 

product, multiply the product of the magnitudes of the two vectors by the sine of the 

angle between them. This formula is shown on the right. As the diagram shows, 

placing vectors tail-to-tail will allow you to determine the correct angle. The angle 

used is the smaller angle between the two vectors. A technique called the right-hand 

rule will help you determine the direction of the vector that results from the cross 

product. (Right-hand rules are also frequently used in the study of electricity and 



magnetism.) How to apply the right-hand rule is shown on the right (you and your 

classmates may 

 

 

Calculating the moment of inertia 

If you were asked whether the same amount of torque would cause a greater angular 

acceleration with a Ferris wheel or a bicycle wheel, you would likely answer: the 

bicycle wheel. The greater mass of the Ferris wheel means it has a greater moment of 

inertia. It accelerates less with a given torque. But more than the amount of mass is 

required to determine the moment of inertia; the distribution of the mass also matters. 



Consider the case of a boy sitting on a seesaw. When he sits close to the axis of 

rotation, it takes a certain amount of torque to cause him to have a given rate of 

angular acceleration. When he sits farther away, it takes more torque to create the 

same rate of acceleration. Even though the boy’s (and the seesaw's) mass stays 

constant, he can increase the system’s moment of inertia by sitting farther away from 

the axis. When a rigid object or system of particles rotates about a fixed axis, each 

particle in the object contributes to its moment of inertia. The formula in Equation 1 

to the right shows how to calculate the moment of inertia. The moment equals the sum 

of each particle’s mass times the square of its distance from the axis of rotation. 

A single object often has a different moment of inertia when its axis of rotation 

changes. For instance, if you rotate a baton around its center, it has a smaller moment 

of inertia than if you rotate it around one of its ends. The baton is harder to accelerate 

when rotated around an end. Why is this the case? When the baton rotates around an 

end, more of its mass on average is farther away from the axis of rotation than when it 

rotates around its center. If the mass of a system is concentrated at a few points, we 

can calculate its moment of inertia using multiplication and addition. You see this in 

Example 1, where the mass of the object is concentrated in two balls at the ends of the 

rod. The moment of inertia of the rod is very small compared to that of the balls, and 

we do not include it in our calculations. We also consider each ball to be concentrated 

at its own center of mass when measuring its distance from the axis of rotation 

(marked by the ×). This is a reasonable approximation when the size of an object is 

small relative to its distance from the axis. 

Not all situations lend themselves to such simplifications. For instance, let’s assume 

we want to calculate the moment of inertia of a CD spinning about its center. In this 

case the mass is uniformly distributed across the entire CD. In such a case, we need to 

use calculus to sum up the contribution that each particle of mass makes to the 

moment, or we must take advantage of a table that tells us the moment of inertia for a 

disk rotating 

 



 

 

 



 

  

 

 



 

What is the strategy? 

1. Calculate the moment of inertia of the system: the sum of the moments for the 

children, and the moment of the plank. 

2. Calculate the net torque by summing the torques created by each child. The torques 

of the left and right sides of the plank cancel, so you do not have to consider them. 

3. Divide the net torque by the moment of inertia to determine the initial angular 

acceleration. 

Physics principles and equations 

We will use the definitions of torque and moment of inertia. 

� = rF sin �, I = �mr2 

To calculate the moments of inertia of the children, we consider the mass of each to 

be concentrated at one point. The plank can be considered as a slab rotating on an axis 

parallel to an edge through the center, with moment of inertia 

 



 

Here we consider an Atwood machine, factoring in the moment of inertia of the 

pulley. We will model the pulley as a uniform solid disk. We still assume that the rope 

is massless and does not stretch and that the pulley is frictionless. The blocks' 

accelerations are equal and opposite, but the tension exerted on each block by the rope 

is different because of the pulley’s moment of inertia. We will use the convention that 

downward acceleration and force are negative, and upward acceleration and force are 

positive. We know the block on the right will accelerate downward because it is more 

massive than the block on the left. 

 

 



 

 

  

The acceleration a is the positive magnitude of the acceleration of the blocks. Since 

the right block falls, this acceleration results in a clockwise 

Parallel axis theorem 

The parallel axis theorem is a tool for calculating the moment of inertia of an object. 

You use it when you know the moment of inertia for an object rotating about an axis 

that passes through its center of mass and want to know the moment when it rotates 

around a different but parallel axis of rotation. 



The illustration for Equation 1 shows two such parallel axes. The axis on the left 

passes through the center of mass of a cylindrical disk, the other is at the edge of the 

disk. The theorem states that the moment of inertia when the disk rotates about the 

axis on its edge will be the sum of two values: the moment of inertia when the disk 

rotates about its center of mass, and the product of the disk’s mass and the square of 

the distance between the two axes (shown as h in our diagram). This is stated as an 

equation to the right. The usefulness of the parallel axis theorem lies in this fact: It is 

usually much easier to calculate the moment of inertia of an object around an axis 

through its center of mass than around an off-center axis. For example, if we must use 

an integral to calculate the moment of inertia, doing so around the center of mass lets 

us more readily take advantage of any symmetry of the object. The parallel axis 

theorem can then be used to find the moment of inertia around another parallel axis. 

In sum, the parallel axis theorem lets us use an easier integral and some algebra to 

calculate the moment for the parallel axis. The disk to the right has a moment of 

inertia of ½MR2 when it rotates about its center. We can use this formula as the 

starting point in our calculation of the disk’s moment of inertia when it is rotated 

about an axis at its edge. You see this computation worked out 

 

 



 

Rotational kinetic energy 

The equation on the right enables you to calculate the rotational kinetic energy (KE) 

of a rigid, rotating object, the kinetic energy of an object due to its rotational motion. 

It is analogous to the equation for linear kinetic energy. The rotational KE equals one-

half the moment of inertia times the square of the angular velocity. This equation can 

be derived from the definition of linear kinetic energy. The rotating object consists of 

a large number of individual particles, each moving at a different linear (tangential) 

velocity. The kinetic energies of all the particles can be added to determine the kinetic 

energy of the entire object. To derive the equation to the right, the key insight is to see 

that the distance from the axis of rotation figures both in a particle’s tangential 

velocity and in calculating its contribution to the disk’s moment of inertia. In the 

derivation, we start with a particle of mass m situated somewhere in a rigid object, as 

shown in the second illustration to the right. We derive the equation by first 

calculating the kinetic energy of the single particle. The total KE is the sum of the 

kinetic energies of all the particles. 



 

 

 



 

 

 

 



 

 

 

Rolling objects and kinetic energy 

The coin shown in Equation 1 rolls without slipping. That is, it rotates and moves 

linearly as it travels to the right. Its total kinetic energy is the sum of its linear and 



rotational kinetic energies. We can use two equations discussed earlier to determine 

the coin's total kinetic energy. The coin's rotational kinetic energy equals ½ I�2. We 

measure � with respect to the coin’s axis of rotation, perpendicular to the center of 

the coin. Its linear kinetic energy equals ½ mvCM  

2. The “CM” subscript indicates that the point used in calculating the linear speed is 

the coin's center of mass. As Equation 1 shows, the sum of these two types of kinetic 

energy equals the total kinetic energy. When an object rolls without slipping, it is 

often useful know the relationship between its linear and angular velocities. Equation 

2 shows this relationship. As the rolling object with radius r rotates through an angle 

�, an arc of length r� makes contact with the ground. This means the object moves 

linearly the same distance r�. Its linear speed vCM is that distance divided by t, or 

r�/t. Since �/t equals �, we can also say that vCM equals r�. The kinetic energy 

equation and the relationship in Equation 2 are both used to solve the example 

problem. 

Kinetic energy of  

roll  



t  

 
What is the strategy? 

1. Use the equation for the moment of inertia of a hollow sphere to write an 

expression for the rotational kinetic energy at any instant in 

terms of mass, radius and angular velocity. 

2. Write an expression for the linear kinetic energy at any instant, also in terms of 

mass, radius and angular velocity. 

3. Find the ratio of the two kinetic energies. This does not change as the ball moves. 



4. The total energy at the top of the ramp is all potential energy. At the bottom of the 

ramp, all the energy is kinetic energy. Distribute the total energy between linear and 

rotational kinetic energy, according to the constant ratio you just calculated. 

Physics principles and equations 

We use the conservation of energy. In this case, all the energy at the top of the ramp is 

potential, and all the energy at the bottom is kinetic. 

PE (top) = KEL + KER (bottom) 

The equations for linear and rotational kinetic energy 

KEL = ½ mvCM 2, KER = ½ I�2 

The relationship between the linear velocity of the ball’s center of mass and its 

angular velocity 

vCM = r� 

The moment of inertia of a hollow sphere 

 
Step-by-step solution 

We use the moment of inertia of a hollow sphere to find an expression for the 

rotational kinetic energy. 

 



 
The expressions for kinetic energy in steps 4 and 8 are the same except for a constant 

factor. We can write the linear kinetic energy as a constant times the rotational kinetic 

energy. 

 

 
We apply the principle of the conservation of energy. 

Step-by-step solution 

We start by finding a general equation for the speed of an object that has rolled down 

the ramp, starting from rest at height h. We define the potential energy to be zero at 

the bottom of the ramp. 



 
Solid cylinder. Now that we have a general equation for the speed of an object at the 

bottom of the ramp, we can apply the moment of inertia formulas to find equations for 

the speeds of the cylinders. We start with the solid cylinder. 

 
Hollow cylinder. Notice that the expression for the speed of the solid cylinder is 

independent of its mass and radius. This means that any solid cylinder will have the 

same speed as it rolls down a ramp of the same height. Next, we consider the speed of 

the hollow cylinder. 



 

 



 

 

 



 

 
 

 

 

 



 

 

 

 



 

Angular momentum of particle in circle motion: 

 

 



In this section, we focus on the angular momentum of a single particle revolving in a 

circle. Angular momentum is always calculated using a point called the origin. With 

circular motion, the simple and intuitive choice for the origin is the center of the 

circle, and that is the point we will use here. The letter L represents angular 

momentum. As with linear momentum, angular momentum is proportional to mass 

and velocity. However, with rotational motion, the distance of the particle from the 

origin must be taken into account, as well. With circular motion, the amount of 

angular momentum equals the product of mass, speed and the radius of the circle: 

mvr. Another way to state the same thing is to say that the amount of angular 

momentum equals the linear momentum mv times the radius r. Like linear 

momentum, angular momentum is a vector. When the motion is counterclockwise, by 

convention, the vector is positive. The angular momentum of clockwise motion is 

negative. The units for angular momentum are kilogram-meter2 per second (kg·m2/s). 

 

 



 

 

 

 



 

 

 

 

Another important concept is shown in the illustration to the right: absolute zero. At 

this temperature, molecules (in essence) cease moving. Reaching this temperature is 

not theoretically possible, but temperatures quite close to this are being achieved. 

Absolute zero is 0 K, or �273.15°C. To standardize temperatures, scientists have 

agreed on a common reference point called the triple point. The triple point is the sole 

combination of pressure and temperature at which solid water (ice), liquid water, and 

gaseous water (water vapor) can coexist. It equals 273.16 K at a pressure of 611.73 

Pa. The triple point is used to define the kelvin as an SI unit. One kelvin equals 

1/273.16 of the difference between absolute zero and the triple point. If you are a 

sharp-eyed reader, you may have noticed the references to both 273.16 and 273.15 in 

this section. The freezing point of water is typically stated as 273.15 K (0°C) because 



this is its value at standard atmospheric pressure, but at the triple point pressure, water 

freezes at 273.16 K (0.01°C). 

Temperature scale conversions 

Since the Celsius and Kelvin scales have the same number of units between the 

freezing and boiling points of water, it takes just one step to convert between the two 

systems, as you see in the first conversion formula in Equation 1. To convert from 

degrees Celsius to kelvins, add 273.15. To convert from kelvins to degrees Celsius, 

subtract 273.15. Since water freezes at 32° and boils at 212° in the Fahrenheit system, 

there are 180 degrees Fahrenheit between these points, compared to the 100 units in 

the Celsius and Kelvin systems. To convert from degrees Fahrenheit to degrees 

Celsius, first subtract 32 degrees (to establish how far the temperature is from the 

freezing point of water) and then multiply by 100/180, or 5/9, the ratio of the number 

of degrees between freezing and boiling on the two systems. That conversion is 

shown as the second equation in Equation 1. If you further needed to convert to 

kelvins, you would add 273.15. To switch from Celsius to Fahrenheit, you first 

multiply the number of degrees Celsius by 9/5 (the reciprocal of the ratio mentioned 

above) and then add 32. In Example 1, you see the conventionally normal human 

body temperature, 98.6°F, converted to degrees Celsius and kelvins 

 



 

Zeroth law of thermodynamics: If objects A and B are in thermal equilibrium, and 

objects B and C are in thermal equilibrium, then A and C will be in equilibrium as 

well. 

When you place two objects with different temperatures next to each other, the 

warmer object will cool off and the cooler object will warm up. Heat will flow until 

the objects reach thermal equilibrium, meaning they have the same temperature. For 

instance, place a pint of ice cream in a warm car, and the result will be warmer ice 

cream and a cooler car. Thermometers rely on heat flowing until they reach thermal 

equilibrium with the substance whose temperature they are measuring. Their practical 

use also relies on another principle, called the zeroth law of thermodynamics. This 

principle states that if object A is in thermal equilibrium with object B, and object B is 

in equilibrium with object C, then A and C will be in equilibrium when they are 

placed in direct contact, and no heat will flow between them. We illustrate this law on 

the right. Let’s say you put thermometer B in a container of water A. When the 

thermometer’s reading stabilizes at a constant value, say 20°C, it has reached thermal 

equilibrium with the water. If you then place the thermometer in a second container C 



and its reading remains 20°C there, you can conclude that A and C would be in 

thermal equilibrium when placed in direct contact with each other. They have the 

same temperature and heat would not flow between them. This may seem 

commonsense, but it is an important assumption in thermodynamics. Its importance 

was realized after the first and second laws of thermodynamics (which you will study 

later) were already codified � hence it became the zeroth law, since it is an 

underlying assumption for the other laws. 

l  

 
Internal energy: The energy associated with the molecules and atoms that make up a 

system. 

In the study of mechanics, energy is an overall property of an object or system. The 

energy is a function of factors like how fast a car is moving, how high an object is off 

the ground, how fast a wheel is rotating, and so forth. In thermodynamics, the 

properties of the molecules and/or atoms that make up the object or system are now 

the focus. They also have energy, a form of energy called internal energy. The 

internal energy includes the rotational, translational and vibrational energy of 

individual molecules and atoms. It also includes the potential energy within and 

between molecules. To contrast the two forms of energy: If you lift a pot up from a 

stovetop, you will increase its gravitational potential energy. But in terms of internal 

energy, nothing has changed. The potential energy of the pot’s molecules based on 

their relationship to each other has not changed. However, if you turn on the burner 

under the cooking pot, the flow of heat will increase the kinetic energy of its 



molecules. The molecules will move faster as heat flows to the pot, which means the 

internal energy of the molecules of the pot increases. 

I  y 

Energy of system’s atoms, molecules 

Thermal expansion: The increase in the length or volume of a material due to a 

change in its temperature. 

You buy a jar of jelly at the grocery store and store it on a pantry shelf. When it 

comes time to open the jar, the lid refuses to budge. Fortunately, you know that 

placing the jar under hot water will increase your odds of being able to twist open the 

lid. 

 



 

 



 

 

Above, you see an aluminum rod heated by the Sun and held in place with concrete 

blocks. Since the rod increases in temperature, its length also increases. This exerts a 

force on the concrete blocks. Stress is force per unit area, and an equation for tensile 

stress was presented in another chapter. Young’s modulus for aluminum is given; it 

relates the fractional increase in length (the strain) to stress. You are asked to find the 

stress that results from the increase in temperature. 

 

of ice that insulates the water below. Water is also atypical in that its solid form, ice, 

is less dense than its liquid form and floats on top of it. Fish and other aquatic life can 

live in the relatively warm (and liquid) water below, protected by a shield of ice. If 

water always expanded with increasing temperature for all temperatures above 0°C, 

and contracted with decreasing temperature, the coldest water would sink to the 

bottom where it might never warm up. Water’s negative coefficient of expansion in 

the temperature range from 0°C to 4°C is crucial to life on Earth. If ice did not float, 

oceans and lakes would freeze from the bottom to the top. This would increase the 

likelihood that they would freeze entirely, since they would not have a top layer of ice 



to insulate the liquid water below and their frozen depths would not be exposed to 

warm air during the spring and summer. 

  

Thermal volume expansion: Change in volume due to a change in temperature. 

The equation for thermal linear expansion is used to calculate the thermally induced 

change in the size of an object in just one dimension. Thermal expansion or 

contraction also changes the volume of a material, and for liquids (and many solids) it 

is more useful to determine the change in volume rather than expansion along one 

dimension. The expansion in volume can be significant. Automobile cooling systems 

have tanks that capture excess coolant when the heated fluid expands so much it 

exceeds the radiator’s capacity. A radiator and its overflow tank are shown in Concept 

1 on the right. The formula in Equation 1 resembles that for linear expansion: The 

increase is proportional to the initial volume, a constant, and the change in 

temperature. The constant � is called the coefficient of volume expansion. Above, you 

see a table of coefficients of volume expansion for some liquids and solids. The 

coefficients for liquids are valid for temperatures at which these substances remain 

liquid. 

 



 

 

A material with a greater specific heat requires more heat per kilogram to increase its 

temperature a given amount than one with a lesser specific heat. In spite of its name, 

specific heat is not an amount of heat, but a constant relating heat, mass, and 

temperature change. The specific heat of a material is often used in the equation 

shown in Equation 1. The heat flow equals the product of a material’s specific heat c, 

the mass of an object 

consisting of that material, and its change in temperature. The illustration in Equation 

1 shows how specific heat relates heat flow to change in temperature. As you can see 

from the graph, lead increases in temperature quite readily when heat flows into it, 

because of its low specific heat. In contrast, water, with a high specific heat, can 



absorb a lot of energy without changing much in temperature. Temperatures in 

locations at the seaside, or having humid atmospheres, tend to change very slowly 

because it takes a lot of heat flow into or out of the water to accomplish a small 

change in temperature. Summer in the desert southwest of the United States is famous 

for its blazing hot days and chilly nights, while on the east coast of the country the 

sweltering heat of the day persists long into the night. Materials with large specific 

heats are sometimes informally called “heat sinks” because of their ability to store 

large amounts of internal energy without much temperature change. Above, you see a 

table of some specific heats, measured in joules per kilogram· kelvin. The specific 

heat of a material varies as its temperature and pressure change. The table lists 

specific heats for materials at 25°C to 30°C (except for ice) and 105 Pa pressure, 

about one atmosphere. Specific heats vary somewhat with temperature, but you can 

use these values over a range of temperatures you might encounter in a physics lab (or 

a kitchen). 

 

 

 



 

 

 



 

 

 

 



 

 

A material’s molar specific heat is determined by how many joules are required to 

heat one mole of the substance one kelvin. A material with a greater molar specific 

heat requires more heat per mole to produce a given change in temperature than a 

material with a lesser molar specific heat. This is quantified in Equation 1. The table 

above lists the molar specific heats of some metals at room temperature. Measuring 

specific heat in terms of moles reveals an interesting fact: The values do not vary 

much. In fact, the molar specific heats of all solids approach a value of about 25 

J/mol·K as their temperatures increase. When they turn into liquids or gases, their 

molar specific heats change. This consistency means that the differences in specific 

heat values for solids (when measuring by kilograms) are due mainly to the number of 

molecules contained in a kilogram, rather than differences in the properties of the 

solids. 

Latent heat: Energy required per kilogram to cause a phase change in a given 

material. 

Heat flow can cause a substance to change phases by converting it between a solid 

and a liquid, or a liquid and a gas. Latent heat describes how much energy per 



kilogram is required for a given substance to change phase. It is a proportionality 

constant, expressing the relationship between heat and mass as shown in Equation 1. 

The constant depends on the material and on the phase change. Different amounts of 

energy are required to transform a material between its liquid and solid states than 

between its liquid and gaseous states. The latent heat of vaporization is the amount of 

heat per kilogram consumed when a given substance transforms from a liquid into a 

gas, or released when the substance transforms from a gas back to a liquid. The latent 

heat of fusion is the heat flow per kilogram during a change in phase between a solid 

and a liquid. The table above shows the latent heats of fusion and vaporization for 

various substances. For instance, you need 3.34×105 J of energy to convert a 

kilogram of ice (at 0°C) to liquid water. Continued flow of heat into the water will 

raise its temperature until it reaches 100°C. At this temperature, it will take 2.26×106 

joules of heat to turn it into a gas, about seven times as much as it took to convert it to 

a liquid. Salt causes ice to melt, a phenomenon called “freezing point depression.” 

When you add rock salt to the crushed ice in a hand-cranked ice cream freezer, you 

force the ice to melt. Heat flows from the resulting saltwater solution into the ice as it 

changes phase from solid to liquid, resulting in a slurry having a temperature far 

colder than 0°C. Heat then flows from the ice cream solution into this mixture, and 

the ice cream freezes 

 



 

 



 

Step-by-step solution 

First we calculate the temperature of the liquid water after it gives up heat to melt the 

ice. We use the specific heat of water, 4178 J/kg·K. 

 
Now we use the fact that the heat transfers sum to zero as the two masses of water 

reach thermal equilibrium to calculate the final temperature of the total mass of water. 
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Interactive checkpoint: vaporizing mercury 

 

 
Conduction: The flow of thermal energy directly through a material without motion of 

the material itself. 

When a frying pan is placed on a burner, heat flows from the burner to the pan. The 

heat then spreads through the pan, soon reaching the handle even though the handle is 

not in direct contact with the burner. This process illustrates the flow of thermal 



energy via conduction. effective insulators and can be combined with other 

reasonably good insulators such as wood for even greater energy efficiency. Third, 

materials can be combined. Double-paned windows trap a quantity of an inert gas like 

argon between two layers of glass. Argon has a high R value and considerably reduces 

the rate of heat transfer through the window. 

 

 



 

Conduction through composite objects 

Real-world objects such as the walls of a house are often a composite of different 

materials. For example, a house wall may consist of gypsum drywall, fiberglass 

insulation and plywood. At the right, you see a schematic of a wall made of materials 

of varying thicknesses. To calculate the rate of heat flow through this composite 

object, the overall thermal resistance is calculated by summing the resistance of each 

object. This value can be used as the R-value of a single object in other equations. 

You see this in Equation 1 on the right. When designing buildings, the rate at which 

heat will flow through the walls is an important consideration. Example 1 shows a 

calculation of the rate of heat flow using R values for three common building 

materials 



 

 

Convection: Heat transfer through a gas or liquid caused by movement of the fluid. 

Gases and liquids usually decrease in density when they are heated (liquid water near 

0°C is a notable exception). When part of a body of liquid or gas is heated, the 

warmed component rises because of its decreased density, while the cooler part sinks. 

This occurs in homes, where heat sources near the floor heat the nearby air, which 

rises and moves throughout the room. The warmer air displaces cooler air near the 

ceiling, causing it to move near the heat source, where it is heated in turn. This 

transfer of heat by the movement of a gas or liquid is called convection. All kitchen 

ovens, like the one shown in Concept 1, rely largely on convection for baking. The 

heating element at the bottom of the oven warms the air next to it, causing it to rise. 

The heated air then reaches the food in the oven to warm it, while the cooler air sinks 

to the bottom of the oven. So-called “convection ovens” speed this process with fans 

that cause the air to circulate more quickly. Convection occurs in liquids as well as in 

gases. If you stir spaghetti sauce as it heats, you are accelerating the process of 

convection. Again, your goal is to uniformly distribute the thermal energy. If you see 

a hawk soaring upward without flapping its wings, it may be riding what is called a 

“thermal.” As the Sun warms the ground, the nearby air also becomes warmer. In the 

process, it becomes less dense, and is forced upward by air that is cooler and denser. 

A bird can ride this upward draft. 
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Radiation: Heat transfer by electromagnetic waves. 

If you place your hand near a red-hot heating element and feel your hand warm up, 

you are experiencing thermal radiation: the transfer of energy by electromagnetic 

waves. You correctly think of objects like the heating element as radiating heat; in 

fact, every object with a temperature above absolute zero radiates energy. Radiation 

consists of electromagnetic waves, which are made up of electric and magnetic fields. 

Radiation needs no medium in which to travel; it can move through a vacuum. The 

wavelength of radiation varies. For instance, red light has a wavelength of about 700 

nm, and blue light a wavelength of about 500 nm. Infrared and ultraviolet radiation 

are two forms of radiation whose wavelengths are, respectively, longer and shorter 

than those of visible light. All objects radiate electromagnetic radiation of different 

wavelengths. For instance, you see the red-hot stove coil because it emits some visible 

light. The coil also emits infrared radiation that you cannot see but do feel as heat 

flowing to your hand, and it emits a minimal amount of ultraviolet radiation too. 

Although any particular object radiates a range of wavelengths, there is a peak in that 

range, a wavelength at which the power output is the greatest. This peak moves to 

shorter wavelengths as the temperature of the object increases. Understanding the 

exact form of the spectrum of thermal radiation wavelengths requires concepts from 

quantum physics, and its derivation was one of the early triumphs and verifications of 

quantum theory. Bodies with temperatures near the temperature of the surface of the 

Earth emit mostly infrared radiation. In the photograph in Concept 2, called an 

infrared thermograph, yousee the radiation emitted by a horse. Since areas of 

inflammation in the body are unusually warm, and emit extra thermal radiation, 

veterinarians can use photographs like this to diagnose an animal’s ailments. They are 

created by a digital or film camera that assigns different (visible) colors to different 

intensities of (invisible) infrared radiation in a process called false color reproduction. 

Sunlight is a form of radiation and is crucial to life on Earth. The Sun emits massive 

amounts of energy in the form of radiation: 3.9×1026 joules every second. Some of 

that strikes the Earth, where it warms the planet and supplies the energy that plants 

use in photosynthesis. The amount of power radiated by a body is proportional to the 



fourth power of its absolute temperature, its surface area, and a factor called its 

emissivity. The Sun emits tremendous amounts of radiation energy because it is quite 

hot (about 6000 K) and vast (with a surface area of about 6×1018 m2).Only a small 

portion of the total power emitted by the Sun reaches the Earth. Even this fraction is 

an enormous amount: 1.8×1017 watts, about 100 times what human civilization 

consumes. The average solar power striking the Earth’s atmosphere in regions directly 

facing the Sun is about 1370 watts per square meter. This value is called the solar 

constant. 

 

 



This example serves to illustrate the role of the greenhouse effect. The Earth's 

atmosphere "traps" a substantial amount of the radiation emitted by the Earth's 

surface. Without this effect, the temperature at the surface of the Earth would be 

cooler. 

 

 



 

Interactive summary problem: pop the cork 

You just bought a bottle of Pierrot, the water from ancient limestone caves deep in the 

French Alps, filtered by pure quartz crystals. But you did not realize the bottle came 

with a cork, and you have no corkscrew. Fortunately, your knowledge of thermal 

physics comes in handy. You remember that the density of ice is 9% less than the 

density of water. This means that water expands quite a bit when it freezes into ice. If 

you let the water in the bottle freeze, the expansion of the ice will push the cork out. If 

89.0% of the water freezes, the expanding ice will just push the cork out. But if more 

than 89.0% of the water freezes, the ice will expand too much and the bottle will 

break. You want to remove just enough heat from the water so that exactly 89.0% of it 

turns to ice. In the interactive simulation on the right, you control the amount of heat 

removed from the water. The bottle contains 0.750 kg of water and its temperature is 

now 15.0°C. You need to remove enough heat to reduce the temperature of all the 

water to 0°C, and then remove enough additional heat to freeze 89.0% of it. To do 

these calculations, you will need to use the specific heat of water, 4178 J/kg·K, and 



the latent heat of fusion of water, 3.34×105 J/kg. We ignore the glass bottle itself in 

these calculations. Heat is removed from the bottle, but much more heat (about 50 

times more) is removed from the water. Also, while the volume of the glass bottle 

decreases slightly as it cools, the expansion of the ice is much greater. Similarly, the 

small air space at the top of the bottle has little effect. Set the amount of heat to be 

removed from the water, then press GO. If you are right, the ice will push the cork 

out. Press RESET to try again. If you have trouble calculating the correct amount of 

heat transfer, review the sections in this chapter on specific heat and latent heat, and 

the sample problem that combines the two concepts. 

 
Gotchas 

Heat is the same as temperature. No, heat is a flow of energy. Temperature is a 

property of an object. The flow of heat will change the temperature of an object, and a 

thermometer measures the object’s temperature.The Fahrenheit temperature system is 

the wave of the future. If you think so, can I interest you in buying a record player? 

Two rods of the same material experience the same increase in temperature, which 

means they must have expanded by the same amount of length. Only if they were the 

same initial length. Their percentage increase would be the same in any case. You 

throw a football upward. You have not increased the internal energy of the air within 

the football. Correct: You have not increased the internal energy of the molecules 

inside the football. (You have increased its translational kinetic energy and its 

rotational kinetic energy and its 

 

 



x-rays, microwaves  

Radio and television signals, x-rays, microwaves: Each is a form of electromagnetic 

radiation. If steam and internal combustion engines symbolize the Industrial 

Revolution, and microprocessors and memory chips now power the Information 

Revolution, it almost seems that we have neglected to recognize the “Electromagnetic 

Revolution.” Think about it: Can you imagine life without television sets or cell 

phones? You may long for such a life, or wonder how people ever survived without 

these devices! These examples are from the world of engineered electromagnetic 

radiation. Even if you think we might all prosper without such technologies to 

entertain us, do our cooking, carry our messages, and diagnose our illnesses, you 

would be hard-pressed to survive without light. This form of electromagnetic 

radiation brings the Sun’s energy to the Earth, warming the planet and supplying 

energy to plants, and in turn to creatures like us that depend on them. There are 

primitive forms of life that do not depend on the Sun’s energy, but without light there 

would be no seeing, no room with a view, no sunsets, and no Rembrandts. Some of 

the electromagnetic radiation that reaches your eyes was created mere nanoseconds 

earlier, like the light from a lamp. Other electromagnetic radiation is still propagating 

at its original speed through the cosmos, ten billion years or more after its birth. An 

example of this is the microwave background radiation, a pervasive remnant of the 

creation of the universe that is widely studied by astrophysicists. Back here on Earth, 

this chapter covers the fundamental physical theory of electromagnetic radiation. 

Much of it builds on other topics, particularly the studies of waves, electric fields and 

magnetic fields. Electromagnetic radiation: Rainbows and radios. Sundazzled 

reflections. Shadowlamps and lampshadows. Red, white, and blue. 

 
 

 



The electromagnetic spectrum 

 
Electromagnetic spectrum: Electromagnetic radiation ordered by frequency or 

wavelength. 

Electromagnetic radiation is a traveling wave that consists of electric and magnetic 

fields. Before delving into the details of such waves, we will discuss the 

electromagnetic spectrum, a system by which the types of electromagnetic radiation 

are classified. The illustration of the electromagnetic spectrum above orders 

electromagnetic waves by frequency and by wavelength. In the diagram, frequency 

increases and wavelength decreases as you move from the left to the right. The 

chart’s scale is based on powers of 10. Wavelengths range from more than 100 meters 

for AM radio signals to as small as 10�16 meters for gamma rays. All 

electromagnetic waves travel at the same speed in a vacuum. This speed is designated 

by the letter c and is called the speed of light. (The letter c comes from celeritas, the 

Latin word for speed. It might be more accurate to refer to it as the speed of 

electromagnetic radiation.) The speed of light in a vacuum is exactly 299,792,458 

m/s, and it is only slightly less in air. The unvarying nature of this speed has an 

important implication: The wavelength of electromagnetic radiation is inversely 

proportional to its frequency. As you may recall, the speed of a wave equals the 

product of its frequency and wavelength. This means that if you know the wavelength 

of the wave, you can determine its frequency (and vice versa). For instance, an 

electromagnetic wave with a wavelength of 300 meters, in the middle of the AM radio 

band, has a frequency of 1×106 Hz. This equals 3×108 m/s, the speed of light, divided 

by 300 m. The frequencies of electromagnetic waves range from less than one 

megahertz, or 106 Hz, for long radio waves to over 1024 Hz for gamma rays. We will 

now review some of the bands of electromagnetic radiation and their manifestations. 

The lowest frequencies are often utilized for radio 



 

Electromagnetic wave: A wave consisting of electric and magnetic fields oscillating 

transversely to the direction of propagation. 

Physicist James Clerk Maxwell’s brilliant studies pioneered research into the nature 

of electromagnetic waves. He correctly concluded that oscillating electric and 

magnetic fields can constitute a self-propagating wave that he called electromagnetic 

radiation. His law of induction (a changing electric field causes a magnetic field) 

combined with Faraday’s law (a changing magnetic field causes an electric field) 

supplies the basis for understanding this kind of wave. As the diagrams to the right 

show, the electric and magnetic fields in an electromagnetic wave are perpendicular to 

each other and to the direction of propagation of the wave. These illustrations also 

show the amplitudes of the fields varying sinusoidally as functions of position and 

time. Electromagnetic waves are an example of transverse waves. The fields can 

propagate outward from a source in all directions at the speed of light; for the sake of 

visual clarity, we have chosen to show them moving only along the x axis. The 

animated diagram in Concept 2 and the illustrations below are used to emphasize 

three points. First, the depicted wave moves away from the source. For example, if 

you push the “transmit” button on a walkie-talkie, a wave is initiated that travels away 

from the walkie-talkie. Second, at any fixed location in the path of the wave, both 

fields change over time. The wave below is drawn at intervals that are fractions T/4 of 

the period T. Look at the point P below, on the light blue vertical plane. The vectors 

from point P represent the direction and strength of the electric and magnetic fields at 

this point. As you can see, the vectors, and the fields they represent, change over time 

at P. Concept 2 shows them varying continuously with time at the point P. 



Third, the diagrams reflect an important fact: The electric and magnetic fields have 

the same frequency and phase. That is, they reach their peaks and troughs 

simultaneously. A wave on a string provides a good starting point for understanding 

electromagnetic waves. Both electromagnetic radiation and a wave on a string are 

transverse waves. The strengths of the two fields constituting the radiation can be 

described using sinusoidal functions, just as we can use a sinusoidal function to 

calculate the transverse displacement of a particle in a string through which a wave is 

moving. There is a crucial difference, though: Electromagnetic radiation consists of 

electric and magnetic fields, and does not require a medium like a string for its 

propagation. Electromagnetic waves can travel in a vacuum. If this is troubling to you, 

you are in good company. It took some brilliant physicists a great deal of hard work to 

convince the world that light and other electromagnetic waves do not require a 

medium of transmission. Furthermore, when electromagnetic waves radiate in all 

directions from a compact source like an antenna or a lamp, the radiation emitted at a 

particular instant travels outward on the surface of an expanding sphere, and its 

strength diminishes with distance from the source. The waves cannot be truly 

sinusoidal, since the amplitude of a sinusoidal function never diminishes. In the 

sections that follow we will analyze plane waves, which propagate through space, say 

in the positive x direction, in parallel planar wave fronts rather than expanding 

spherical ones. They are good approximations to physical waves over small regions 

that are distant from the source of the waves. Plane waves never diminish in strength; 

they can be accurately modeled using sinusoidal functions, and we will do so. 

 



 

 

 



 

Creating electromagnetic waves: antennas Radio antennas create electromagnetic 

waves. A radio antenna is part of an overall system called a radio transmitter that 

converts the information contained in sound waves into electromagnetic waves. A 

radio receiver then reverses the process, converting the signals from electromagnetic 

waves back to sound waves. The system depicted to the right shows the fundamentals 

of a radio transmitter. In the illustrations, the terminals of an AC generator are 

connected to two rods of conducting material: an antenna. The AC generator produces 

an emf � that varies sinusoidally over time. The emf drives positive 



 

through the surface by the wave, per unit area, is called the area power density of the 

wave. The area power density is equal to the magnitude S of the Poynting vector. The 

surface area through which the instantaneous power density is measured is 

perpendicular to the direction of the wave’s propagation. When radiation reaches a 

physical surface obliquely, the cosine of its angle with the area vector can be used to 

calculate the power conveyed to the surface. This is analogous to the calculation of 

electric or magnetic flux. As Equation 1 shows, the Poynting vector equals the cross 

product of the vectors representing the electric and magnetic fields of the 

electromagnetic radiation, divided by the permeability constant. Since these fields are 

always perpendicular to one another, the sine of the angle between them, used to 

evaluate the magnitude of the cross product, always equals one, and can be effectively 

ignored when calculating the instantaneous area power density S. The units of the 

Poynting vector are watts per square meter. The direction of S is determined by the 

right-hand rule. If you apply the rule, wrapping your fingers from E to B and noting 

the direction of your thumb, you can correctly determine that it is parallel to the 

direction of propagation of the wave. When E reverses its direction, so does B, and 

the direction of S remains the same, “pointing” (heh, heh) in the direction of the 

wave’s motion. As an electromagnetic wave passes through a surface, the strengths of 

its electric and magnetic fields there change sinusoidally with time. Since the 

Poynting vector is the product of these fields, it changes sinusoidally over time, as 

well. In fact, it varies with values between zero and EmaxBmax/μ0, with a frequency 

twice that of the fields. If you are curious why it has this frequency, recall from the 

field equations that E and B are both cosine functions of time at a fixed point. Then 

use the trigonometric identity cos2 t = [1 + cos 2t]/2. 



 

 



 

 



 

How electromagnetic waves travel through matter 

Light and other forms of electromagnetic radiation can travel through a vacuum, and 

it is often simplest to study them in that setting. However, radiation can also pass 

through matter: If you look through a glass window, you are viewing light that has 

passed through the Earth’s atmosphere and the glass. Other forms of radiation such as 

radio waves pass through matter, as well. This section focuses on how such 

transmission occurs. It relies on a classical model of electrons and atoms that predates 

quantum theory. In this model, electrons orbit an atom. They have a resonant 

frequency that depends on the kind of atom. On a larger scale, atoms themselves and 

the molecules composed of them also have resonant thermal frequencies at which they 

can vibrate or rotate. We will use the example of light striking the glass in a window 

to discuss how substances transmit (or do not transmit) electromagnetic radiation. 

When an electromagnetic wave encounters a window, it collides with the molecules 

that make up the glass. If the frequency of the wave is near the resonant thermal 

frequency of the glass molecules, which is true for infrared radiation, the amplitude of 



the molecules’ vibrations increases. They absorb the energy transported by the wave, 

and dissipate it throughout the glass by colliding with other molecules and heating up 

the window. Because it absorbs so much infrared energy, the glass is opaque to 

radiation of this frequency, preventing its transmission. Scientists in the 19th century 

noted a phenomenon in greenhouses caused by the opaqueness of glass to infrared 

radiation, which they called the greenhouse effect. The glass in a greenhouse admits 

visible light from the Sun, which is then absorbed by the soil and plants inside. They 

reradiate the solar energy as longer infrared waves, which cannot pass back out 

through the glass and so help warm up the greenhouse. The same phenomenon occurs 

on a vaster scale in the atmosphere as gases like methane and carbon dioxide trap 

solar energy near the Earth’s surface. In contrast to infrared radiation, higher 

frequency radiation such as visible light does not resonate thermally with atoms or 

molecules, but may resonate with the electrons of the atoms of a substance. In glass, 

visible light experiences much less reduction in the amplitude of its waves than 

infrared radiation does, and most of its energy passes through the glass quite easily. 

Atoms with resonant electrons that do absorb energy from a light wave quickly pass 

on that energy by re-emitting it as radiation of the same frequency to other atoms, 

which in turn pass it on to their neighbors. This chain of absorptions and re-emissions, 

called forward scattering, follows a path close to the light’s original direction of 

travel. A beam of light that strikes a pane of glass will reach the “last atom” on the far 

side of the pane in an extremely short time. We see the light after it emerges, and 

think of glass as transparent. 

 



 

Radiation also can be partially polarized, having a few waves oscillating in all planes, 

but with most of its waves concentrated in a single plane. This is true of sunlight 

scattered by the atmosphere. As the photo above shows, the sky in certain directions is 

partially polarized in a vertical plane so that most of its light can pass through a pair 

of sunglasses whose transmission axis is vertical. Less light (but still some) passes 

through the rotated sunglasses. (Polarizing sunglasses are specifically intended to 

reduce horizontally polarized glare reflected from roadways and water, not skylight.) 

Many forms of artificial electromagnetic radiation are polarized. A radio transmitter 

emits polarized radiation. If the rods of its antenna are vertical, then so is the electric 

field of every radio wave it creates. In this case, the most efficient receiving antenna 

is also vertically oriented; a horizontal receiving antenna would absorb radio waves 

much less efficiently. You may be familiar with this fact if you have ever tried to 

maneuver a radio antenna wire or a set of television “rabbit ears” to get the best 

reception. (If you do not know what “rabbit ears” are for television, well, before there 

was cable television, there was….) 

 



 

Scattering: Absorption and re-emission of light by electrons, resulting in dispersion 

and some polarization. 

The answer to a classic question � Why is the sky blue? � rests in a phenomenon 

called scattering. In this section, we give a classical (as opposed to quantum 

mechanical) explanation of how scattering occurs. When light from the Sun strikes 

the electrons of various atoms in the Earth’s atmosphere, the electrons can absorb the 

light’s energy, oscillating and increasing their own energy. The electrons in turn re-

emit this energy as light of the same wavelength. In effect, the oscillating electrons act 

like tiny antennas, emitting electromagnetic radiation in the frequency range of light. 

An electron oscillates in a direction parallel to the electric field of the wave that 

energizes it, as shown in Concept 1. The electron then emits light polarized in a plane 

parallel to its vibration. We show a particular polarized wave that is re-emitted 

downward toward the ground, since we are concerned with what an observer on the 

surface of the Earth sees. Other light is scattered in other directions, including light 

scattered upward and light scattered forward in its original direction of travel. 

Scattering explains why we see the sky: Light passing through the atmosphere is 

redirected due to scattering toward the surface of the Earth. In contrast, for an 

astronaut observer in the vacuum of space, sunlight is not scattered at all so there is no 

sky glow: Except for the stars, the sky appears black. To the astronaut, the disk of the 

Sun, a combination of all colors, looks white. We illustrate this below: The full 

spectrum combines to form white light. The question remains, why is our sky blue 

rather than some other color? Light at the blue end of the visible spectrum, which has 

the shortest wavelength, is 10 times more resonant with the electrons of atmospheric 



atoms than red light. This means blue light is scattered more than red, so that more of 

it is redirected toward the ground. Scattering also explains why we see the Sun as 

yellow rather than white. When you look up at the disk of the Sun from the Earth’s 

surface, the bluest portion of its light has been scattered away to the sides. The 

remaining part of the Sun’s direct light appears somewhat yellowish. You may also 

have noted how the Sun appears to change color when it sets. As the Sun’s disk 

descends toward the horizon, its light must pass through a greater and greater 

thickness of atmosphere in order to reach you. Since a certain amount of sunlight is 

scattered aside for each kilometer of atmosphere it passes through, its position at 

sunset causes it to lose large amounts of light at the blue end and even toward 

 

 

 



 

 

 

the concentration of the dissolved substance. The rotation is also proportional to a 

constant �0 called the specific rotation of the substance, which reflects the rotating 

power of its molecules. These relationships are summarized to the right in the 

polarimeter equation. Note that (and this is unusual for a physics equation) the 

rotation angle � is measured in degrees rather than radians, and the clockwise 

direction is considered positive. The polarimeter is a device that can be used to 

measure the net rotation of polarized light passing through an optically active 

solution. An experimenter directs polarized light through a container of the solution to 

be analyzed. The analyzer, which starts out parallel to the polarizer, does not transmit 

all the light from the polarizer because the light’s plane of polarization has been 

rotated by the solution. The experimenter turns the analyzer to one side or the other 

until the transmitted light has maximum brightness. Then she knows that the 

analyzer’s transmission axis matches the rotated polarized light, and she can measure 

the angle � through which the analyzer has turned. The polarimeter equation gives an 

expression for the angle � of the analyzer at which the transmitted light will be the 

brightest. If the polarized light encounters more molecules of the optically active 

substance, either because the solution is more concentrated or because the immersed 

light path is longer, the rotation will be greater. Since the amount of rotation also 



depends on the wavelength of the light, the specific rotations �0 given in tables for 

particular dissolved substances are based on a polarimeter employing the 589 nm light 

that is emitted by a sodium vapor lamp. Dextrose and fructose molecules are 

chemically identical (they have the same atoms arranged in the same pattern) but they 

are mirror images of each other. Because of this they rotate polarized light by the 

same amount in opposite directions. Organic molecules such as carvone may exist in 

two mirror image forms; you smell carvone as caraway or spearmint, depending on 

which way the molecule twists. The scents are different because the smell receptors in 

the nose react differently to the mirror image forms. Using a polarimeter is one way to 

distinguish between the two forms of mirror image compounds. Also, if the specific 

rotation of a particular substance is known, the device can be used together with the 

polarimeter equation to determine the concentration of the substance in a solution. 

You are asked to perform such an analysis in the example problem to the right. 

The diagrams below show the mirror image molecular forms of the citrus oil 

limonene, which is the essence of either orange or lemon, depending on the 

orientation of its molecules! (The gray spheres represent carbon atoms, and the blue 

spheres are hydrogen atoms.) 
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Reflection: Light “bouncing back” from a surface. 



When you look at yourself in a mirror, you are seeing a reflection of yourself. When 

you look at the Moon at night, you are seeing sunlight reflecting off that distant body. 

Not all the light that reaches a surface reflects. In fact, you see an object like a tree as 

having different colors because its varied parts reflect some wavelengths of light and 

absorb others. Light can pass through a material, as it does with a glass window. It 

can also be absorbed by a material, as evidenced by how a black rock warms up 

during a sunny day. All this can happen simultaneously: Light will reflect off the 

surface of a lake (which is why you see the lake), penetrate the water (otherwise, it 

would be completely dark below the surface), and be absorbed by the water, warming 

it. To understand reflection, it is often useful to treat light as a stream of particles that 

move in a straight line and change direction only when they encounter a surface. Each 

light “particle” acts like a ball bouncing off of a surface, and like a ball, it reflects off 

the surface at a rebound angle equal to its incoming angle. You see yourself in a 

mirror because the light bounces back to your eyes from the mirror. The term 

“reflection” likely conjures up images of light and perhaps mirrors. Studying mirrors 

is a good way to learn about reflection because they are designed to reflect light in a 

way that creates a clear visual image. However, it is worth noting that reflection does 

not apply only to light. Some creatures use the reflection of sound (echoes) to help 

them perceive their surroundings and stalk their prey. For example, bats, seals and 

dolphins emit high frequency sound and then listen for the reflected waves. By 

analyzing these reflections, they can “see” with great precision. Radar, used to track 

airplanes, is based on the reflection of radio waves. A sophisticated understanding of 

reflection can be used to design “stealth” aircraft that are difficult to detect with radar. 

Stealth aircraft register on radar screens as being about as large as a BB, in part 

because of their ability to reflect incoming waves in “random” directions. 

 

 

Light can refract  



� change direction � as it moves from one medium to another. For instance, if you 

stand at the edge of a pool and try to poke something underwater with a stick, you 

may misjudge the object’s location. This is because the light from the object changes 

direction as it passes from the water to the air. You perceive the object to be closer to 

the surface than it actually is because you subconsciously assume that light travels in 

a straight line. Although refraction can cause errors like this, it can also serve many 

useful purposes. Optical microscopes, eyeglass lenses, and indeed the lenses in your 

eyes all use refraction to bend and focus light, forming images and causing objects to 

appear a different size or crisper than they otherwise would. Where a lens focuses 

light, and whether it magnifies an object, is determined by both the curvature of the 

lens and the material of which it is made. Scientists have developed quantitative tools 

to determine the nature of the images created by a lens. We will explore these tools 

thoroughly later, “focusing” first, so to speak, on the principle of refraction 

underlying them. To begin your study of refraction, try the simulation to the right. 

Each of your helicopters can fire a laser � a sharp beam of light � at any of three 

submarines lurking under the sea. The submarines have lasers, too, and will shoot 

back at your craft. Your mission is to disable the submarines before they disarm your 

helicopters. When you make a hit, you can shoot again. Otherwise, the submarines get 

their turn to shoot until they miss. You play by dragging the aiming arrow underneath 

any one of your helicopters. Press FIRE and the laser beam will follow the direction 

of this arrow until it reaches the water, where refraction will cause the beam to change 

direction. In addition to hitting the submarines before they get you, you can conduct 

some basic experiments concerning the nature of refraction. As with reflection, the 

angle of incidence is measured from a line normal (perpendicular) to a surface. In this 

case, the surface is the horizontal boundary between the water and the air. Observe 

how the light bends at the boundary when you shoot straight down, at a zero angle of 

incidence, or grazing the water, at a large angle of incidence. You can create a large 

angle of incidence by having the far right helicopter, for example, aim at the 

submarine on the far left. You can also observe how refraction differs when a laser 

beam passes from air to water (your lasers) and from water to air (the submarines’ 

lasers). Observe the dashed normal line at each crossover point and answer the 

following question: Does the laser beam bend toward or away from that line as it 

changes media? You should notice that the laser beams of the submarines behave 

differently than those of the helicopters when they change media. As a final aside: 



You may see that some of the laser beams of the submarines never leave the water, 

but reflect back from the surface between the water and the air. This is called total 

internal reflection. 

Refraction: The change in the direction of light as it passes from one medium to 

another. 

A material through which light travels is called a medium (plural: media). When light 

traveling in one medium encounters another medium, its direction can change. It can 

reflect back, as it would with a mirror. It can also pass into the second medium and 

change direction. This phenomenon, called refraction, is shown to the right. In the 

photo, a beam of light from a laser refracts (bends) as it passes from the air into the 

water. Light refracts when its speeds in the two media are different. Light travels 

faster through air than in water, and it changes direction as it moves from air into 

water, or from water into air. Although we are primarily interested in the refraction of 

light, all waves, including water waves, refract. Above, you see a photograph of surf 

wave fronts advancing parallel to a beach. Deep-ocean swells may approach a 

coastline from any angle, but they slow down as they encounter the shallows near the 

shore. The parts of a wave that encounter the shallow water earliest slow down first, 

and this causes the wave to refract. Sound waves can also refract. During a medical 

ultrasound scan, an acoustic lens can be used to focus the sound waves. The lens is 

made of a material in which sound travels faster than in water or body tissues. The 

surface between two media, such as air and water, is called an interface. As with 

mirrors, light rays are often used to depict how light refracts when it meets an 

interface. Lasers are often used to demonstrate refraction because they can create thin 

beams of light that do not 

 



 

 

 



 

 

Light through  

 
eWavelength of light in different media When light changes speed as it moves from 

one medium to another, its frequency stays the same but its wavelength changes. The 



ratio of its wavelengths in the two media is the inverse of the ratio of the indices of 

refraction. We show this as an equation to the right and derive it below. Before 

deriving the equation, let’s consider why the frequency stays the same, since this is an 

essential part of the derivation. The frequencies in the media must be the same, 

because if they were not, waves would either pile up at the interface or be destroyed. 

Neither occurs. You can witness this at the beach, where wave speed and wavelength 

may change as waves approach the beach, but the frequency of the waves does not 

change. 

 

 
Variables 

In this derivation, c represents the speed of light in a vacuum. For the other two media 



we define the variables in the following table: 

 
 

Strategy 

1. Use the equality of frequencies in the two media together with the wave speed 

equation to obtain a proportionality of the light speeds and wavelengths in the media. 

2. Use the definition of the index of refraction to convert the previous proportion to 

one involving wavelengths and indices of refraction. 

Physics principles and equations 

The wave speed equation states that for any wave, the speed is the product of the 

wavelength and the frequency: 

 
As a wave passes from one medium to another, its speed and wavelength may change, 

but its frequency must remain the same. The definition of the index of refraction of a 

medium is 

 
Step-by-step derivation  

we explain the diagram you see above. The purple line is a light ray refracting at an 

interface. In the diagram, light travels more slowly in the lower medium than the 

upper. This could represent, for example, light passing from air into water. The gray 

lines perpendicular to the ray represent wave fronts. You see the wavelength labeled 

as � (�i in the upper medium, �r in the lower medium). There are two right triangles 

in the diagram that share the hypotenuse labeled x. The bright yellow triangle shows 

elements of a wave front that has not yet entered the lower medium. The dark orange 

triangle shows elements of a wave front that is now traveling in the lower medium. 

The angles of incidence and refraction �i and �r are also shown in the diagram. 



Because the wave fronts are perpendicular to the light rays, we can identify angles in 

each of the triangles that are equal to �i and �r. These base angles are shown in the 

diagram. 

Variables 

In this derivation, x represents the common hypotenuse of the two triangles in the 

diagram. For the incident and refractive media we define the variables in the 

following table. 

 
Strategy 

1. Consider the two triangles in the diagram. State the sines of their base angles �i 

and �r as trigonometric ratios of the triangles’ sides. 

2. Construct the ratio sin �i / sin �r. The common hypotenuse x will cancel out, 

leaving a ratio of wavelengths. 

3. Restate the ratio of wavelengths as a ratio of indices of refraction to obtain Snell’s 

law. 

Physics principles and equations 

The ratio of the wavelengths is inversely proportional to the ratio of the indices of 

refraction. 

 

 
Step-by-step derivation 

We construct the fraction sin �i / sin �r, and calculate the sines as the ratios of the 

sides of triangles. This leads to a ratio of wavelengths that can be replaced by a ratio 

of indices of refraction, yielding Snell’s law. 



 
Light is a particle.  

Many of the great scientists of the 17th and 18th centuries who made fundamental 

contributions to the study of optics, including Isaac Newton, thought that light 

consisted of a stream of “corpuscles,” or particles. In the 20th century, Albert Einstein 

explained the photoelectric effect. His explanation, for which he was awarded the 

1921 Nobel Prize, depended on the fact that light acts like a particle. This property of 

light led to the coining of the term “photon” for a single particle of light by the 

chemist Gilbert Lewis. 

Light is a wave.  

Between the 18th and 20th centuries, physicists discovered many wave-like properties 

of light. They found that a number of phenomena they routinely observed with water 

waves they could also observe with light. For instance, the English scientist Thomas 

Young (1773-1829) showed that light could produce the same kinds of interference 

patterns that water waves produce. At the right, you see examples of interference 

patterns formed by light and by water waves. The similarities are striking. In this 

chapter, you will apply to light some of what you have studied about the interference 

of sound waves and traveling waves in strings.  

Let there be light.  

Is light a particle, a wave, or both? Perhaps an Early Authority had it right. Light is 

light. It is a combination of electric and magnetic fields. Trying to classify light as a 

particle or as a wave may be a fruitless effort � better to revel in its unique properties. 



In this chapter, we will revel in its wave-like properties, and discuss the topic of 

interference. Your prior study of electromagnetic radiation modeled as a wave 

phenomenon will prove useful. 

IInterference 

In Concept 1, you see an interference pattern created by causing a beam of light to 

pass through two parallel slits to illuminate a viewing screen. Constructive 

interference of light waves accounts for the bright regions (called bright fringes) while 

destructive interference causes the dark fringes. In this section, we review some of the 

fundamentals of interference, and discuss the conditions necessary for light to make 

the pattern you see to the right. You may have already studied the interference of 

mechanical waves; for instance, what occurs when two waves on a string interact. In 

this chapter, you will study what happens when electromagnetic waves meet. Some of 

the same principles and terminology are used in discussing both kinds of interference. 

When two light waves meet, the result can be constructive or destructive interference. 

In the following discussion, we assume that the waves have equal amplitude. 

Constructive interference creates a wave of greater amplitude and more intensity than 

either source wave; destructive interference results in a wave of smaller amplitude and 

less intensity than either source wave. At any point in a two-slit interference pattern 

such as that to the right, light waves from the two sources meet and interfere 

constructively, destructively, or partially (exhibiting a degree of interference 

somewhere between complete constructive and destructive interference). To create an 

interference pattern, a physicist needs light that is: 

1. Monochromatic. This means light with a specific wavelength. For instance, 

experimenters can produce the pattern you see in Concept 1 by using pure red 

light. 

2. Coherent. This means the phase difference between the light waves arriving at 

 



 

 

The pattern of bright and dark fringes extends to both the left and the right on the 

screen. The light is interfering constructively at the bright fringes, and destructively at 

the dark fringes, because of different path lengths to these regions and the resulting 

phase differences. There are a few limitations to showing Young’s apparatus in a 

compact diagram. First, the diagram is far from being drawn to scale. The screen 

should be much farther from the double-slit barrier than we show here, and the slits 

should be narrower and closer together. In actual interference experiments, the 

interfering rays from the two slits are practically parallel. Second, we vastly 

exaggerate the wavelength of the light. You may have a question about what you 

would see if you conducted this experiment yourself. What if, at some instant, two 

waves meet at the screen and are in phase, but their electric and magnetic fields both 

happen to be zero at that point? Would you see “flickering” as the two reinforcing 

waves moved from peak to trough and back again? The answer is no: The frequency 

of light is so great that you only perceive the average brightness of a region; the 

human eye does not perceive changes in intensity due to the oscillation of a light 

wave. You do not even perceive flicker in systems oscillating at far lower frequencies, 

much less than the frequency of visible light, which is on the order of 1014 Hz. For 



example, a computer monitor refreshes its display 60 times a second, but you do not 

ordinarily perceive any flicker when you look at it. 


