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Introduction to process control 
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                       Cool water 
 

Figure (1) Open loop system 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) Manual Control system 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure (3) Automatic Control system (Closed Loop) 
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Control System Objectives  
 

o Economic Incentive 
o Safety 
o Equipment Protection 
o Reduce variability 
o Increase efficiency 
o Ensure the stability of a process 
o Elimination of routine  

 
UDefinitionsU: 
 
System: It is a combination of components that act together and perform a certain 
objective. 
 
Plant: It is the machine of which a particular quantity or condition is to be controlled.     
 
Process: Is defined as the changing or refining of raw materials that pass through or 
remain in a liquid, gaseous, or slurry state to create end products. 
 
Control: In process industries refers to the regulation of all aspects of the process. 
Precise control of level, pH, oxygen, foam, nutrient, temperature, pressure and flow is 
important in many process applications. 

Sensor: A measuring instrument, the most common measurements are of flow (F), 
temperature (T), pressure (P), level (L), pH and composition (A, for analyzer). The 
sensor will detect the value of the measured variable as a function of time.  

Set point: The value at which the controlled parameter is to be maintained. 
 
Controller: A device which receives a measurement of the process variable, 
compares with a set point representing the desired control point, and adjusts its output 
to minimize the error between the measurement and the set point. 
 
Error Signal: The signal resulting from the difference between the set point 
reference signal and the process variable feedback signal in a controller. 
 
Feedback Control: A type of control whereby the controller receives a feedback 
signal representing the condition of the controlled process variable, compares it to the 
set point, and adjusts the controller output accordingly. 
 
Steady-State: The condition when all process properties are constant with time, 
transient responses having died out. 
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Heater (Heating) 

Transmitter 
(Thermocouple) 

 

Temperature 

Transmitter: A device that converts a process measurement (pressure, flow, level, 
temperature, etc.) into an electrical or pneumatic signal suitable for use by an 
indicating or control system. 

Controlled variable: Process output which is to be maintained at a desired value by 
adjustment of a process input. 
 
Manipulated variable:  Process input which is adjusted to maintain the controlled 
output at set point. 
 
Disturbance: A process input (other than the manipulated parameter) which affects 
the controlled parameter. 
 
Process Time Constant(τ ): Amount of time counted from the moment the variable 
starts to respond that it takes the process variable to reach 63.2% of its total change. 
 
Block diagram: It is relationship between the input and the output of the system. It is 
easier to visualize the control system in terms of a block diagram. 
 
 
                                                                  X(s)                                               Y(s)   
                                                    Input                                                         Output 
 
                                                                                        Block diagram 
 
Transfer Function: it is the ratio of the Laplace transform of output (response 
function) to the Laplace transform of the input (driving force) under assumption that 
all initial conditions are zero unless that given another value.  
 
e.g. the transfer function of the above block diagram is G (s) = Y(s)/X(s)   
 
Closed-loop control system: It is a feedback control system which the output signals 
has a direct effect upon the control action.  
 
 
 
 
 
 
 
 
 
 
                                                          Final control element                                                                           
 
 
 
 
 
 
 

Transfer function 
 G(s) 
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Advantage: more accurate than the open-loop control system. 
Disadvantages: (1) Complex and expensive 
                           (2) The stability is the major problem in closed-loop control system 
 
Open-loop control system: It is a control system in which the output has no effect 
upon the control action. (The output is neither measured nor fed back for comparison 
with the input).  
 
 
 
 
 
 
 
                                                                      (Timer)                         Motor            
 
Advantages:  
     (1) Simple construction and ease of maintenance. 
     (2) Less expensive than closed-loop control system. 
     (3) There is no stability problem. 
 
Disadvantages: 
        (1) Disturbance and change in calibration cause errors; and output may be 
different from what is desired.                  
        (2) To maintain the required quality in the output, recalibration is necessary 
from time to time  
 
UNoteU: any control system which operates on a time basis is open-loop control system, 
e.g. washing machine, traffic light …etc.  
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Laplace Transforms 
 
 
2.1 Introduction 
Laplace transform techniques provide powerful tools in numerous fields of 
technology such as Control Theory where knowledge of the system transfer function 
is essential and where the Laplace transform comes into its own.  
 
Definition  
The Laplace transform of an expression )(tf  is denoted by { })(tfL  and is defined as 

the semi-infinite integral: { } ∫
∞

=

−=
0

)()(
t

st dtetftfL . 

The parameter s is assumed to be positive and large enough to ensure that the integral 
converge. In more advanced applications s may be complex and in such cases the real 
part of s must be positive and large enough to ensure convergence.   
 
In determining the transform of an expression, you will appreciate that the limits of 
the integral are substituted for t, so that the result will be an expression in s.  

Therefore: { } )()()(
0

sFdtetftfL
t

st == ∫
∞

=

−  

 
2.2 Simple Transforms 
Example: Find the Laplace transform of 1)( =tf  

Solution: { }
ssss

e
s

e
s

edteL
ssst

st 1)10()(11
0

00

=−−=−−=







−==

−∞−∞−∞
−∫  

 
Example: Find the Laplace transform of atf =)( , where a is a constant. 

Solution: { }
s
a

ss
a

s
e

s
ea

s
eadtaeaL

ssst
st =+=+

−
=







−
==

−∞−∞−∞
−∫ )10()(

0

00

 

 
Example: Find the Laplace Transform of ttf =)(    

Solution: { } ∫
∞ −=

0
 L dttet st  

Use integration by parts with   

s
evdtedv

dtdutu

duvvudvu

st
st

−
−

∞
∞

∞

−
=⇒=

=⇒=

⋅−⋅=⋅ ∫∫
0

0
0
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[ ] ∫∫∫
∞

−
∞

−
∞

−
∞

−
∞

− +⋅=





−−⋅−==

00000

11 11 dte
s

e
s

tdte
s

e
s

tdttetL ststststst  

222
0

1)01(111)00(
sss

ee
ss

st
st =−==



−+−=

−∞
−  

 { } 2

1
s

tL =⇒  

 
Example: Find the Laplace Transform of 2)( ttf =    

Solution: { } ∫
∞ −=

0

22 L dtett st  
   use integration by parts with  

s
evdtedv

tdtdutu

duvvudvu

st
st

−
=⇒=

=⇒=

⋅−⋅=⋅

−
−

∞
∞

∞

∫∫
22

0
0

0

 

{ } ∫∫∫
∞ −∞ −∞−∞ − =








−−

−
==

00
0

2

0

22 22 L dt
s

tedt
s

te
s

etdtett
ststst

st  

s

stst

s
evdt

s
edv

dtdutu

duvvudvu

−−

∞
∞

∞

−
=⇒=

=⇒=

⋅−⋅=⋅ ∫∫
22

0
0

0

 

{ }
∞−∞ −∞ −∞−∞ − −

==







−−

−
== ∫∫∫

0
30 20 2

0
20

2 22222 L
s
edt

s
edt

s
e

s
tedt

s
tet

ststststst

( ) 33
2102
ss

=−−=  

 { } 3
2 2

s
tL =⇒  

 
Example: Find the Laplace Transform of atetf =)( , where a is a constant.   
Solution: 

{ } [ ] { }10
)(

1
)(

1
)( 0

)(

0

)(

0

)(

00

−
−

−=
−

−=







−−

====
∞−−

∞−−∞
−−

∞
−

∞
− ∫∫∫ as

e
asas

edtedtedteeeL ast
ast

aststatstatat  

 ⇒ { }
)(

1
as

eL at

−
=   

Similarity 

                 { }
)(

1
as

eL at

+
=−  

 



Process Control /Lec. 2         7                                    Written by Assoc. Prof.  
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

Example: Find the Laplace Transform of )sin()( attf =   
Solution:  

{ } ∫∫∫
∞

+−−
∞

−
−

−
∞

−=
−

==
0

)()(

00 2
1

2
)sin()sin( dtee

i
dte

i
eeeatatL tsiatsiast

iatiat
st  







+
−

−
=





+
−

+
−
−

=










+
−

−
−

=
∞

+−
∞

−

iasiasisiasiai
e

sia
e

sia
tsiatsia 11

2
11010

2
111

0

)(

0

)(  

2222
2

2
1

))((
)()(

2
1

as
a

as
ia

iiasias
iasias

i +
=





+
=








+−
−−+

=  

{ } 22)sin(
as

aatL
+

=  

Also  

{ } 22)cos(
as

satL
+

=  

 
Example: Find the Laplace Transform of )sinh()( attf =   

Solution: 
2

)sinh(
atat eeat

−−
=  

{ } { }

2222 )(
2

2
1

))((
)()(

2
111

2
1

2
1

2
)sinh(

as
a

aasass
a

asas
asas

asas
eeLeeLatL atat

atat

−
=








++−

=









+−
−−+

=







+
−

−
=−=







 −

= −
−

 

{ } 22)sinh(
as

aatL
−

=  

Also  

{ } 22)cosh(
as

satL
−

=  

 
In practice we do not usually need to integrate to find Laplace transforms, instead we 
use a table, which allow us to read off most of the transforms we need. 

Function 
)(tf  

Transform 
)(sF        Valid for … 

1 
s
1  0>s  

a 
s
a  0>s  

t 2
1
s

 0>s  

nt  1
!
+ns

n  n = positive 
integer 

atsin  22 as
a
+
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atcos  22 as
s
+

  

atsinh  22 as
a
−

  

atcosh  22 as
s
−

  

ate−  
as +

1   

atte−  2)(
1
as +

  

atnet −  1)(
!

++ nas
n   

wte at sin−  22)( was
w
++

  

wte at cos−  22)( was
as
++

+   

 
2.3 Rules of Laplace transform 
The Laplace transform is a linear transform by which is meant that: 
1. The transform of a sum (or difference) of expressions is the sum (or difference) of 

the individual transforms. That is 
{ } { } { })()()()( tgLtfLtgtfL ±=± . 

 
2. The transform of an expression that is multiplied by a constant is the constant 

multiplied by the transform of the expression. That is 
{ } { })()( tfkLtkfL = . 

 
Example: Determine the Laplace transform of te t +−2 . 

Solution: { }teL t +−2 { } { }tLeL t += −2 ( )
( )1

121
1

2
2

2

2 +
++

=+
+

=
ss

ss
ss ( )23

2 12
ss
ss

+
++

=  

 
Example: Determine the Laplace transform of tt sin3 3 + . 
Solution: { } { } { }

1
118

1
1!33sin3sin3 242213

33

+
+=

+
+×=+=+ + ssss

tLtLttL   

( ) ( )1
)1(18

1
)(1)1(18

24

42

24

42

+
++

=
+
++

=
ss

ss
ss

ss
( )1

1818
24

42

+
++

=
ss

ss  

 
2.4 Theorems of Laplace transform 
There are three important and useful theorems that enable us to deal with rather more 
complicated expressions. 
 
UTheorem 1: The first shift theorem 
The first shift theorem states that if { } )()( sFtfL =  then { } )()( asFtfeL at +=−  
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{ } )()()()(
0

)(

0

asFdtetfdtetfetfeL
t

tas

t

statat +=== ∫∫
∞

=

+−
∞

=

−−−  

We know that { } )()( asFtfeL at +=−  and we know that { } )()( sFtfL =  therefore the 
transform { })(tfeL at−  is thus the same as { })(tfL  with s everywhere in the result 
replaced by )( as + . 
 
Example: find { }teL t 2sin3− . 

Solution: We know that { }
as

eL at

+
=− 1  and { }

4
22sin 2 +

=
s

tL We have 3=a , therefore 

 { }
136

2
4933

2
4)3(

22sin 222
3

++
=

++++
=

++
=−

ssssss
teL t  

 
Example: Determine the Laplace transform of )4( 23 +te t . 

Solution: We know that { }
ss

tL 424 3
2 +=+  also that { }

3
13

−
=

s
eL t  Therefore  

{ }
( ) ( )

( )
( )

( )( )
( )

( )
( ) ( ) ( )3

2

3

2

3

2

33

2

3
23

3
38244

3
362442

3
9642

3
3342

3
342

3
4

3
2)4(

−
+−

=
−

+−+
=

−
+−+

=

−
−−+

=
−
−+

=
−

+
−

=+

s
ss

s
ss

s
ss

s
ss

s
s

ss
teL t

. 

 
UTheorem 2: Multiplying by t and tUPU

n 
If { } )()( sFtfL =    then  { } )()( sFttfL ′−=  

{ } ).()()()()(
000

sFdtetf
ds
ddt

ds
detfdtettfttfL

t

st

t

st

t

st ′−=−=







−== ∫∫∫

∞

=

−
∞

=

−∞

=

−  

In general if  { } )()( sFtfL = , then { } { })()1()( sF
ds
dtftL n

n
nn −=  

 
Example: find { }.2sin ttL   

Solution: From { } )()( sFttfL ′−=  therefore { } 







+
−=

4
22sin 2sds

dttL . 

NB: To find 







+ 4
2

2sds
d  use quotient rule for differentiation: 

 
( )( ) ( )( )

( ) ( )2222

2

2

2
2

4
4

4
2204

2,0,4,2,,
4

2

+

−
=

+

−+
=

−
=

==+===







+
=

s
s

s
ss

b
ds
dba

ds
dab

ds
dz

s
ds
db

ds
dasba

b
az

s
z

 

 { } ( )222 4
4

4
22sin

+
=








+
−=

s
s

sds
dttL  

 
Example: Determine the Laplace transform of tt sin2 , 
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Solution: We know that { }
1

1sin 2 +
=

s
tL , therefore we can work out from   

 { } { })()1()( sF
ds
dtftL n

n
nn −=  that  

          { } { } { } 







+
==−=

1
1)()()1()( 22

2

2

2

2

2
22

sds
dsF

ds
dsF

ds
dtftL  

 Find the first derivative: 

 
( )( ) ( )( )

( ) ( )2222

2

2

2
2

1
2

1
2101

2,0,1,1,,
1

1

+

−
=

+

−+
=

−
=

==+===
+

=

s
s

s
ss

b
ds
dba

ds
dab

ds
dz

s
ds
db

ds
dasba

b
az

s
z

 

 Differentiate again.  

( ) ( ) ( )( )

,44,2

,22111,2,
1

2

3

242222
22

ss
ds
db

ds
da

sssssbsa
s

s
b
az

+=−=

++=++=+=−=
+

−
==

   

 
( ) ( ) ( )( )

( )( )
( )( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )2222

24

2222

2424

2222

2424

2222

2422

222

322

2

11
446

11
88442

11
88222

11
8812

1

44221

++

−+
=

++

++−−−
=

++

++++−
=

++

+++−
=

+

+−−−+
=

−
=

ss
ss

ss
ssss

ss
ssss

ss
sss

s

ssss
b

ds
dba

ds
dab

ds
dz

 

Therefore  

 { } ( )
( ) ( )2222

24

22

2
2

11

446
1

1sin
++

−+
=








+
=

ss

ss
sds

dttL . 

 
UTheorem 3: Convolution Theorem: U  
If     L{ f (t) }  =  F(s) and   L{ g(t) }  =  G(s) then the convolution of f (t) and g(t)  
is denoted by  (f * g)(t), is defined by 

( ) ( ) ( ) ( )
0

t
f g t f g t dτ τ τ∗ = −∫  

And the Laplace transform of the convolution of two functions is the product of the 
separate Laplace transforms: 

( ) ( ){ } ( ) ( )f g t F s G s∗ =L  
An equivalent identity is 

( ) ( ){ } ( ){ } ( ){ }1 1 1F s G s F s G s− − −= ∗L L L  
 
Example: Find tt 22 ∗  
Solution: 

( )
ttt

tdtdttt
0

43

0

32

0

22

4
2

3
222)(22 








−=−=−=∗ ∫∫

ττττττττ
623

2 444 ttt
=−=  
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Example: teFind t ∗  
Solution: 

( ) ( )tt
t

t
t

t eeedeedete
t

0
00

)( τττ τττττ
τ −−− −−===∗ ∫∫
−

 

           ( ) ( )[ ] ( ) tttttt eteeetee ++−=−−−−= −−− 110     11 −−=+−−= teet tt  
 
Example:  find Laplace transform of )cos(tet  by convolution theorem 
 ( ) ( ) co s( )tf t e g t t= =  

2 2 2

{ * } { ( )} { ( )} { } {cos( )}
1

1 1 ( 1)( 1)

tL f g L f t L g t L e L t
s s

s s s s

= =

  = =  − + − +  

 

 
 

U2.5 Special Laplace Transform Functions 
1- Step function 

s
Asf

tA
t

tf

=





≥
<

=

)(

0
00

)(
. 

If A=1 the change is called unit step change 

s
sf

t
t

tf

1)(

01
00

)(

=





≥
<

=

 
 
UStep function with Time Delay 

ase
s
Asf

atA
at

tf

−=





≥
<

=

)(

0
)(

 

 
2. Pulse function 

)1(

)(

0
0

00
)(

as

as

e
s
A

e
s
A

s
Asf

at
atA

t
tf

−

−

−=

−=









≥
≤≤

<
=

 

 
 
A 

0                    Time 

0         a           Time 

 
A 

0             a         Time 

 
A 
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{ } )1()(0)( 0

00

sassa
a

st

a

st
a

st e
s
Aee

s
Ae

s
AteAetfL −−−−

∞
−− −=−−=−=+= ∫∫

 
if A=1unit Pulse (Impulse) 
 
3. Impulse function 

tAareasf
tt

ttA
t

tf

δ

δ
δ

×==









≥
≤≤

<
=

)(
0

0
00

)(

 
 
This function is represented by δ(t). The unit impulse function is a special case of the 
pulse function with zero width (tw →0) and unit pulse area (so a = 1/tw). Taking the 
limit: 

{ } 1][1lim]1[1lim)(
00

=−=−= −

→

−

→

w

w

w

w

st

t

st

w
t

e
s

e
st

tL δ  

 
4. Ramp function 

2)(

0
00

)(

s
Asf

tAt
t

tf

=





≥
<

=

 

{ }

2
0

2
0

0000

)()0(

1

s
Aee

s
Aee

s
A

e
ss

Ae
s
Atdte

s
Ae

s
AtAteAtL ststststst

=−−−∞
−

=

−
+−=+−==

−∞−−∞−

∞
−

∞
−−

∞
−

∞
− ∫∫

 

 
Ramp function with time delay 

ase
s
Asf

atAt
at

tf

−=





≥
<

=

2)(

0
)(

 

 
5. Sine function 

 
A           Area=1 

Unit Impulse Time 

 Time 

 
Slope=A         

f(t)               
 
 
 
 
 

                a           Time 

                                    Slope=A         
 
f(t)               
 
 
 
 
    A          _______T_______ 
 
 
 
 
 
 
  -A 
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f
T

f
s

Asf

atwtA
at

tf

1
2

)(

sin
0

)(

22

=

=
+

=





≥
<

=

πω
ω
ω

 

 
Example: Find the Laplace transform for  
 
 
 
 
 
Solution: 
1. At t=0 the function looks like the very basic unit step function. But unit function 
knows only about 0 and 1, here we have f(t)=2. That means we have to use 2u(t). 
2. Then in time t=2 its value changes from 2 to −1 (i.e. 3 down at t=2) which means 
we have to add −3u(t−2). 
3. Finally the value at t=3 jumps 1 higher, which brings member u(t−3). 
 
f(t)=2u(t)−3u(t−2)+u(t−3) 
 
So far we collected unit step functions to express function from the graph.  
{ } { } { } { } { } 3s-2s- e

s
1+e

s
3-2=3)-u(tL+2)-u(t3L-2u(t)L3)-u(t2)-3u(t-2u(t))(

s
LtfL =+=   

 
Example: Determine the Laplace transform of the function  














≥
≤≤
≤≤
≤≤

<

=

60
652
533
311

10

)(

t
t
t
t

t

tf                         

 
 
Solution: 

)6(2)5(1)3(2)1(1)0(0)( −−−−−+−+−= tutututututf  

)22(12121)( 653653 ssssssss eeee
s

e
s

e
s

e
s

e
s

sF −−−−−−−− −−+=−−+=  
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UExample: 
 
 
 
 
 
 
 
Solution: 

sssss e
s

e
s

e
s

e
s

e
ss

sf

tutututututf

5.3325.15.0 5.015.05.015.0)(

)5.3(5.0)3(1)2(5.0)5.1(5.0)5.0(15.0)(

−−−−− +−+−+−=

−+−−−+−−−+−=
 

 
Example: Find F(s) for 

 











>
<<−
<<

<

=

2            0
21       2
10            

0           0

)(

t
tt
tt

t

tf  

 
 
 
Solution: 

)2()2()1()1(2)(
 )2()2()1()1()1()1()()(

−−+−−−=
−−+−−−−−−=

tUttUtttU
tUttUttUttttUtf  

[ ] [ ]
[ ] [ ] [ ]

ss e
s

e
ss

tUtLtUtLttUL
tUttUtttULtfL

2
222

121             

)2()2()1()1(2)(
)2()2()1()1(2)()(

−− +−=

−−+−−−=
−−+−−−=

   

 
Example: Determine the Laplace transform of the function  

 
 
 
 
 
Solution: 
 

)4()4(5)3()3(5)1()1(5)(5)( −−+−−−−−−= tuttuttutttutf  

)1(55555)( 43
2

4
2

3
222

ssssss eee
s

e
s

e
s

e
ss

sF −−−−−− +−−=+−−=  

 
 

 0.5 
 
 
 

       0          0.5               1.5         2                     3          3.5 
 
 

5 
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UExample U: Find the Laplace transform of f(t) shown in Fig. 

















>
<≤
<≤−
<≤
<≤−
<≤
<≤

=

80
872
762
650

542
412
102

)(

t
tt
tt
t
tt
t
tt

tf  

 
Solution: 

ssssss e
s

e
s

e
s

e
s

e
s

e
ss

sf

tuttut
tuttuttuttutttutf

8
2

7
2

6
2

5
2

4
222

2422222)(

)8()8(2)7()7(22
)6()6(2)5()5(2)4()4(2)1()1(2)(2)(

−−−−−− −+−+−−=

−−−−−×+
−−−−−+−−−−−−=

 

 
UExample: 
 
 
 
 
 
 
 
Solution: 

ssss e
s

e
s

e
s

e
ss

sf

tuttuttuttutttutf

5
2

4
2

3
222

12211)(

)5()5()4()4(2)3()3(2)1()1()()(

−−−− +−+−=

−−+−−−−−+−−−=
 

 
U2.6 Rational Functions Technique: Partial fraction 
Often it is necessary to break down a complicated rational function of the form 

)(
)(

sQ
sP   

(where P(s) and Q(s) are polynomials in s,  and the degree of the top polynomial is 
less than the degree of the bottom polynomial), into the sum of simpler fractions 
called Partial Fractions.  
 
The type of partial fraction that you use depends on the factors of the bottom 
polynomial. 
 
We will look at 3 cases: 
Case 1: All the factors of the bottom Q(s) are linear and non-repeating. 
Case 2: Q(s) has some repeated linear factors. 
Case 3: Q(s) has some irreducible quadratic factors. 

  0          1                    4        5        6      7        8 

 
2 
                Slope=2 
   
 
 
-2 
 
 
 
 

 
3 
 
 2 
 
1 
      0   1               3       4    5 
                                           T 
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Examples of case 1:  

)1)(2( −+ ss
s   or 

)3)(5(
23
++

+
sss
s  

Examples of case 2:  

2)8(
12

−
+

s
s   or   2)3(

2
−ss

  or   
( ) )2(1

1
2 ++
−

ss
s   or   

( ) 32

2

)1(3
1
−+

−
ss

s  

Examples of case 3:  

( )4
12

2 +
+

ss
s     or    ( ) )2(1)3(

3
2 ++− ss

  or    
( ) ( )( )2222

2

913)1(

134

+++−

−+

sss

ss  

 
UCase 1: All the factors of the bottom Q(s) are linear and non-repeating. 
Case 1: All the bottom factors are linear (i.e. of the form x ±  some number) and then 
is no repeated factor (i.e. there is no factor which is squared or cubed, etc.) and there 
are no irreducible quadratic terms (don’t worry about this!). In this case therefore, we 
are talking about rational functions of the form: 

))...()(( gxbxax
polynomialtop

−−−
 

In this case we can rewrite the rational function as follows: 

gx
G

bx
B

ax
A

gxbxax
polynomialtop

−
++

−
+

−
=

−−−
....

))...()((
 

 
Example 
Show that 

37)3)(7(
1 4

1
4
1

+
+

+
−

=
++ ssss

    

Solution 
This is a case 1 partial fraction so we start with 

37)3)(7(
1

+
+

+
=

++ s
B

s
A

ss
 

UStep1: Remove Fractions 
Multiply both sides of the equation by the denominator on the left hand side 

)7()3(1
3

)3)(7(
7

)3)(7(
)3)(7(

)3)(7(1

+++=⇒
+

++
+

+
++

=
++
++×

sBsA
s

ssB
s

ssA
ss

ss
 

 
UStep2: Choose s values to find A and B 
The equation above is true for all values of s. We can choose s values to make things 
simple: 
Choose s = -3 so that (s+3) = 0 and we have 
  

4
141)4()0(1 =⇒=⇒+= BBBA  

Choose s = -7 so that (s+7) = 0 and we have 
  

4
141)0()4(1 −=⇒−=⇒+−= AABA  

UStep3: Substitute A and B into the original expression 
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37)3)(7(
1 4

1
4
1

+
+

+
−

=
++ ssss

 

 
Example: Write  

)2)(1(
13
++

−
ss

s in  partial fraction form  

Solution: 
write 

21)2)(1(
13

+
+

+
=

++
−

s
B

s
A

ss
s  

Multiply both sides by (s+1)(s+2): 
)2)(1(

2
)2)(1(

1
)2)(1(

)2)(1(
13

++
+

+++
+

=++
++

− ss
s

Bss
s

Ass
ss

s  

)1()2(13 +++=−⇒ sBsAs  
If choose s = -2  

( ) )12()22(123 +−++−=−−⇒ BA )1(0.7 −+=−⇒ BA B−=−⇒ 7  
7=⇒ B  

If choose s = -1 ( ) )11()21(113 +−++−=−−⇒ BA )0()1(4 BA +=−⇒ A=−⇒ 4  
4−=⇒ A  

Therefore 
2

7
1

4
)2)(1(

13
+

+
+
−

=
++

−
ssss

s  

 
Example  
Find the fixed constants A, B, C so that the partial fraction decomposition can be 
completed:  

31)3)(1(
34

+
+

−
+=

+−
+

s
C

s
B

s
A

sss
s   

Solution: 

31)3)(1(
34

+
+

−
+=

+−
+

s
C

s
B

s
A

sss
s  

Multiplying both sides of this equation by the left hand side denominator we deduce 
that, 

3
)3)(1(

1
)3)(1()3)(1(

)3)(1(
34)3)(1(

+
+−+

−
+−++−=

+−
+

+−
s
Csss

s
Bsss

s
Asss

sss
ssss  

)1()3()3)(1(34 −++++−=+⇒ sCssBsssAs  
Now in turn, put , s= 0 , s=1, s = -3. You will find at each stage that 2 of the A, B, C 
terms will vanish:  
If choose s = 0  

)0()0()30)(10(3)0(4 CBA +++−=+ A33 −=⇒ 1=⇒ A  
If choose s = 1  

)0()31)(1()0(3)1(4 CBA +++=+ B47 =⇒
4
7

=⇒ B  

If choose s = -3 
( ) )13)(3()0()0(334 −−−++=+− CBA C129 =−⇒

12
9−

=⇒ B  

Therefore : 



Process Control /Lec. 2         18                                    Written by Assoc. Prof.  
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

[ ] [ ] [ ]
( ) ( )34

3
14

71
31

1
)3)(1(

34 4
3

4
7

+
−

−
+−=

+
+

−
+

−
=

+−
+ −

sssssssss
s  

 
Case 2: Denominator Q(s) has some repeated linear factors. 
Sometimes a linear factor is repeated twice or three times or four times, etc. This 
means that we will have an expression like ( )2s somenumber−  or ( )3s somenumber−  
or ...  below the line. When this occurs, you have to be careful as we have to use a 
partial fraction for each of the powers. If you want, you can use the following table: 

Factor in given 
rational function 

Corresponding partial fraction 

numbersomes
polynomialtop

±
 

numbersomes
A

±
 

2)( numbersomes
polynomialtop

±
 

numbersomes
A

±
 R+ R 2)( numbersomes

B
±

 

3)( numbersomes
polynomialtop

±
 

numbersomes
A

±
 + 2)( numbersomes

B
±

+ 3)( numbersomes
C

±
 

 
Examples of case 2: 

31)1()3()1(
234

22

2

+
+

−
+

−
=

+−
−+

s
C

s
B

s
A

ss
ss  ,  constants,, =CBA  

 

)5()1()1()5()1(
5273

22323

234

+
+

+
+

+
+++=

++
−+−

s
F

s
E

s
D

s
C

s
B

s
A

sss
sss    constants,,,,, =FEDCBA  

 
Example:  
Write in terms of partial fractions 2)1(

18
−
−

s
s  

Solution: 
In this case 22 )1(1)1(

18
−

+
−

=
−
−

s
B

s
A

s
s  

Step1 we multiply both sides by 2)1( −s  to remove fractions 

BsAss
s

Bs
s

As
s
s

+−=−⇒−
−

+−
−

=−
−
− )1(18)1(

)1(
)1(

1
)1(

)1(
18 2

2
22

2  

Step2: we can choose s = 1 as before so that (s-1) = 0 and we get 
718 =⇒=− BB   

We cannot choose another s value to directly find A however. There is more than one 
approach to finding A but the easiest method is called “equating coefficients”. In this 
case, we note that there must be the same “amount of s” on both sides of the equation. 
On the left hand side we have 8s and on the right we have As, so that A must be 8. 
Step3; write the answer down 

( ) 22 )1(
7

1
8

1
18

−
+

−
=

−
−

sss
s  

 



Process Control /Lec. 2         19                                    Written by Assoc. Prof.  
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

Example  
Write ( ) 2)2(1

12
+−

+
ss

s  in partial fraction form. 

Solution: 
As the linear factor (s+2) repeats (i.e. we have (s+2) and (s+2)P

2
P in the denominator) 

the required partial fraction is of the form,  

( ) ( )22 221)2(1
12

+
+

+
+

−
=

+−
+

s
C

s
B

s
A

ss
s   

where A, B and C are fixed constants which are to be found. 
Step1: multiply both sides by the denominator (s – 1)(s+2)P

2 
( ) ( ) ( ) ( ) ( )

( )2
222

2
2

2
)2(1

2
)2(1

1
)2(1

)2(1
12)2(1

+
+−+

+
+−+

−
+−=

+−
+

+−
s

Css
s

Bss
s

Ass
ss

sss  

( ) ( )CsBssAss 1)2(1)2(12 2 −++−++=+⇒  
The latter equation holds for all values of the variable s.   
Step2: Choose good s values 
Choose  s = -2 ( ) ( )CBA 12)0()0(122 2 −−++=+−⇒ 133 =⇒−=−⇒ CC  

Choose  s = 1  ( ) CBA )0()0()21(112 2 +++=+⇒
3
193 =⇒=⇒ AA  

We again have the problem of not being able to choose a good s value to find B. We 
again “equate coefficients”. The best strategy is to equate the highest power of s on 
both sides, which is sP

2
P . On the left hand side of (1) we have 0 lots of sP

2
P. On the right 

hand side of (1) the As 2)2( +  term will contribute AsP

2
P if you multiply it out and the 

Bss )2)(1( +−  term will contribute BsP

2
P. So we have 

BA +=0  
3
1

−=−=⇒ AB  

This method can involve more calculation though. Either way 

( ) ( )22 2
1

2
.

3
1

1
1.

3
1

)2(1
12

+
+

+
−

−
=

+−
+

ss
B

sss
s  

 
Case 3  Denominator Q(s) has some irreducible quadratic factors. 
Irreducible means that the quadratic term in the denominator cannot be factorized 
into two brackets. 
Examples of case 3:  

4)4(
523

22

2

+
+

+=
+
−−

s
CBs

s
A

ss
ss    ,  constants,, =CBA  

21)2)(1(
2

22

3

+
+

+
−

+=
+−

+−
s

DCs
s

B
s
A

sss
ss    ,  constants,,, =DCBA  

 
Example: 

Write ( ) )52(1
875

2

2

+−−
+−
sss

ss in partial fractions. 
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Solution  
The denominator contains an irreducible quadratic term (i.e, it cannot be easily 
factored into two linear terms. If it did factor into linear factors then we would be 
back to cases 1 or 2.) As it does not in this example we must write: 

( ) ( ) )52(1)52(1
875

22

2

+−
+

+
−

=
+−−

+−
ss
CBs

s
A

sss
ss  

Note: Linear term on bottom means constant A on top. Quadratic term on bottom 
means linear term Bs + C on top. 
As before to find these constants multiply both sides by the denominator 
( s – 1) (sP

2
P-2s+5). 

( ) ( ) ( ) ( ) ( )
)52(

)52(1
1

)52(1
)52(1

875)52(1 2
22

2

2
2

+−
+

+−−+
−

+−−=
+−−

+−
+−−

ss
CBssss

s
Asss

sss
sssss  

Which gives: ( )( )CBssAssss +−++−=+− 1)52(875 22  
The latter equation holds for all values of the variable s.  So we can choose any 
values for s and set up three simultaneous equations for A, B and C.  
By putting s = 1 we can get one value easily: 
Choose  s = 1 

( ) ( ) ( ) ( )CBA +++−=+−⇒ )1(0)5121(81715 22 046 +=⇒ A
2
3

=⇒ A  

We cannot make any more brackets = 0 by a good choice of s. As for case 2 however, 
we can equate coefficients. Start with the highest power sP

2
P first 

 Equate sP

2
P 2

7
2
3555 =−=⇒−=⇒+=⇒ BABBA  

 Equate s CCCBA +−=−⇒+−−=−⇒+−−=−⇒ 2
13

2
7

2
3 7)(2727  

   2
1−=⇒ C  

 
2.7 Inverse Laplace Transforms  
The Laplace transform is an expression in the variable s  which denoted by )(sF . It is 
said that )(tf  and { })()( tfLsF =  form a transform pair. This means that if )(sF  is the 
Laplace transform of )(tf  then )(tf  is the inverse Laplace transform of )(sF . We 
write as: { } { } )()(or       )()( 11 tfsFLsFLtf == −−  
The operator 1−L  is known as the operatorfor inverse Laplace transform. There is no 
simple integral definition of the inverse transform so you have to find it by working 
backwords.  
Here we have the reverse process, i.e. given a Laplace transform, we have to find the 
function of t to which it belongs. We use the following table: 
 

Table of inverse transforms 
)(sF  )(tf  

s
a  a  

as +
1  ate−  
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1

!
+ns

n  nt  

ns
1  

)!1(

1

−

−

n
t n

 

22 as
a
+

 atsin  

22 as
s
+

 atcos  

22 as
a
−

 atsinh  

22 as
s
−

 atcosh  

 
2.7.1 Two Properties of Laplace Transform Inverse 
Both Laplace transform and its inverse are linear transforms, by which is meant that: 

i. The transform of a sum (or difference) of expressions is the sum (or difference 
of the individual transforms. That is: 

{ } { } { })()()()( 111 sGLsFLtGsFL −−− ±=±  
ii. The transform of an expression that is multiplied by a constant is the constant 

multiplied by the transform of the expression. That is:  
{ } { })()( 11 sFkLskFL −− =   where k is constant 

 
Example: find 









−
−

2
11

s
L ? 

Solution: te
s

L
s

L 211

)2(
1

2
1

=








−+
=









−
−−  . 

 
Example: find 









+
−

64
8

2
1

s
L ? 

Solution: We can write the inverse transform as we know that at
as

aL sin22
1 =









+
− .   

Here we have 8=a  therefore: .8sin
8

8
64

8
22

1
2

1 t
s

L
s

L =








+
=









+
−−  

 
Example: find









−
−

9
12
2

1

s
L ? 

Solution: t
s

L
s

L 3sinh4
9

34
9

12
2

1
2

1 =








−
=









−
−−  

 
Example: Find the inverse Laplace transform for

43
2)(
−

−=
s

sF . 

Solution: 
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 te
s

L
s

L
s

L 3
4111

3
2

3
4

1
3
2

3
4

1
3
2

43
2

−=












−
−=



























−
−=









−
− −−−  

 
Example: Determine 









−−
+−

6
13

2
1

ss
sL .   

Solution: This certainly did not appear in our list of standard transforms but if we 
write 

6
13

2 −−
+
ss

s  as the sum of two simpler functions, i.e.  

 
3

2
2

1
6

13
2 −

+
+

=
−−

+
ssss

s it makes all the difference.   

This is simply the method of writing the more complex algebraic fraction in terms of 
its partial fractions which we have previously seen. 

We can now proceed to find 
tt ee

ss
L

ss
sL 321

2
1 2

3
2

2
1

6
13

+=








−
+

+
=









−−
+ −−−  

 
Example: Determine 









−−
+−

12
15

2
1

ss
sL .   

Solution: Factorise the denominator: 
)3)(4(

15
12

15
2 +−

+
=

−−
+

ss
s

ss
s . 

Remember from partial fractions we have the form: 

)3()4()3)(4(
15

+
+

−
=

+−
+

s
B

s
A

ss
s           )3)(4( +−× ss  

)4()3(15 −++=+ sBsAs  
           Choose  s = -3 ;         ( ) 2

7
14)43(0135 =
−
−

=⇒−−+=+− BBA  

           Choose  s = 4 ;          ( ) 3
7
210)34(145 ==⇒++=+ ABA  

 This gives us 
)3(

2
)4(

3
)3)(4(

15
+

+
−

=
+−

+
ssss

s  

 So we now have to find 

 
tt ee

s
L

s
L

ss
L

ss
sL

34

1111

23

)3(
12

)4(
13

)3(
2

)4(
3

)3)(4(
15

−

−−−−

+=








+
+









−
=









+
+

−
=









+−
+

 

  

Example: Determine








−
−−

ss
sL

2
89

2
1 . 

Solution: Simplify: 








−
−

=








−
− −−

)2(
89

2
89 1

2
1

ss
sL

ss
sL  

 Remember from partial fractions we have the form: 

)2()2(
89

−
+=

−
−

s
B

s
A

ss
s            )2( −× ss  

        BssAs +−=− )2(89   
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Let s=0 then 4
20
80
=

−
−

=A  

Let s=2 then 5
2

829
=

−×
=B  

This gives us  
)2(

54
)2(

89
−

+=
−
−

ssss
s  

So we now have to find 
te

s
L

s
L

ss
L

ss
sL 21111 54

)2(
154

)2(
54

)2(
89

+=








−
+







=









−
+=









−
− −−−−  

 

Example: Determine








+−
+−

)3)(1(
11131

ss
sL . 

Solution: Remember from partial fractions we have the form: 

)3()1()3)(1(
1113

+
+

−
=

+−
+

s
B

s
A

ss
s  Multiple both sides by )3)(1( +− ss  

BsAss )1()3(1113 −++=+  
Let s=1 then 6

4
24

31
1113

==
+
+

=A  

Let s=-3 then 7
4
28

13
11133

=
−
−

=
−−
+×−

=B  

So we now have to find 
tt ee

s
L

s
L

ss
L

ss
sL 31111 76

)3(
17

)1(
16

)3(
7

)1(
6

)3)(1(
1113 −−−−− +=









+
+









−
=









+
+

−
=









+−
+  

 
Example: Find the inverse Laplace transform of 2

4( )
( 2)( 1)

sF s
s s

+
=

+ +
 

Solution: Expand F(s) as 2 2

4( )
( 2)( 1) 2 ( 1) ( 1)

s A B CF s
s s s s s

+
= = + +

+ + + + +
 

CssBsAss )2)(1()2()1()4( 2 ++++++=+  
Let s=-1 then 3

1
3

21
41

==
+−
+−

=B  

Let s=-2 then 2
1
2

)12(
42

2 ==
+−
+−

=A  

equate s 2
3

7133221321 −=
−

=⇒++×=⇒++=⇒ CCCBA  

Check by cross-multiplying: 

)1(
2

)1(
3

)2(
2

)1)(2(
4

22 +
−

+
+

+
=

++
+

sssss
s  

2 2

4 2 3 2
( 1)( 3) 2 ( 1) ( 1)

s
s s s s s

+ −
= + +

+ + + + +
 

2 24 2( 2 1) 3( 2) 2( 3 2)s s s s s s+ = + + + + − + +  
2

1

0

: 0 2 2
: 1 4 3 6
: 4 2 6 4

s
s
s

= −

= + −

= + −
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ttt etee
s

L
s

L
s

L

sss
L

ss
sL

−−−−−−

−−

−+=








+
−









+
+









+
=









+
−

+
+

+
=









++
+

232
)1(

12
)1(

13
)2(

12

)1(
2

)1(
3

)2(
2

)1)(2(
4

21
2

11

2
1

2
1

 

 
Example: Find the inverse Laplace transform of 

136
9)( 2 ++

+
=

ss
ssF  

Solution:  
[ ]

[ ])2sin(3)2cos(  )2sin(3)2cos( 
2)3(

23
2)3(

3

2)3(
23

2)3(
3 

2)3(
6

2)3(
3 

2)3(
6)3(

2)3(
9

13336
9

136
9)()(

333
22

1
22

1

22
1

22
1

22
1

22
1

22
1

22
1

222
1

2
11

ttetete
s

L
s

sL

s
L

s
sL

s
L

s
sL

s
sL

s
sL

ss
sL

ss
sLsFLtf

ttt +=+=







++

+







++

+
=









++

⋅+







++

+
=








++

+







++

+
=








++
++

=









++

+
=





+−++
+

=





++
+

==

−−−−−

−−−−−

−−−−

 

 
Example: Find the Laplace inverse of 

)1(
1
−ss

 using 

a) partial fraction    b)convolution 
Solution: 

a) Partial fraction     





 +
−

=







−

−−

s
B

s
AL

ss
L

1)1(
1 11   Multiple both sides by )1( −ss  

)1(1 −+= sBAs  
Let s=1   then A=1 
Let s=0   then B=-1 

11
1

11
1

1
)1(

1 1111 −=



−




−

=



 −
−

=







−

−−−− te
s

L
s

L
ss

L
ss

L  

b) Convolution: 

[ ] [ ] [ ] 11

1 *1
1

11
)1(

1

0

0
0

00

11

−=−=+−=−==

===





−
⋅=








−

−−−−

−−−−

∫

∫∫

ttttttut
t

ut

t
ut

t
utt

eeeeeeeeduee

dueduee
ss

L
ss

L
 

 
Example: Find the Laplace inverse of 22 )1(

1
+ss

 using convolution theorem 

Solution: 

[ ]



















−−=








−=−=

−==







+

⋅=







+

∫∫∫∫∫

∫

−−−

−−−−−

t
utu

t
ut

t
u

t
ut

t
ut

t
utt

duueeuduuetedueuduuetedueutue

dueututet
ss

L
ss

L

0
0

2

00

2

00

0

)(
22

1
22

1

2   )( 

)( *  
)1(

11
)1(

1
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[ ]











−








−+=








−+=








+−= ∫∫∫∫ −−−− t

t
ututt

t
ut

t
ut

t
ut etdueueteetduueteduueetduuete 2

0
0

2

00

2

0

)2()2(2  

[ ] [ ] [ ][ ] [ ]
[ ] 222222  

222 1)2()2( 2222

00

−++=+−+=+−+=

−+−++−=−+−+=



 −



 −+=

−−−−−

−−−

teteetetettee

etetetteeteeteteteeteuete

ttttttt

ttttttttttttutut

 

 
 
2.8 Laplace Transform of a Derivative 
 
Before we apply Laplace transform to solve a differential equation, we need to know 
the Laplace transform of a derivative. Given some expression )(tf  with Laplace 
transform { } )()( sFtfL = , the Laplace transform of the derivative )(' tf  is: 

{ } ∫
∞

=

−=
0

)(')('
t

st dttfetfL  

This can be integrated by parts as follows: 

{ }

∫

∫
==−=

===

−

−
∞

=

−

)()('   du                                                 

)('v        where          )(')('
0

tftfvse

tfdeudttfetfL

st

st

t

st

 

{ } [ ] ( ) )()0(0)()()('
0

0 ssFfdttfestfetfL
t

st
t

st +−=+= ∫
∞

=

−∞

=
−  

Assuming 0)( →− tfe st  as ∞→t  
That is: { } )0()()(' fssFtfL −=  
 
Thus, the Laplace transform of the derivative of )(tf  is given in terms of the Laplace 
transform of )(tf  when 0=t . The next properties is very important for the above 
formula. 
In general, to solve differential equation )()()(' tgtbftaf =+  given that kf =)0(  where 
a, b, and k are known constants and )(tg  is a known expression in t using Laplace 
transform are as follows: 

i. Take the Laplace transform of both sides of the differential equation. 
ii. Find the expression of { })()( tfLsF =  in the form of an algebraic fraction  
iii. Separate F(s) into its partial fractions. 
iv. Find the inverse Laplace transform { })(' tfL  to find the solution f(t) to the 

differential equation. 
 
Example: Solve 0)0(      where2)()(' ==− ftftf   
Solution: Taking Laplace transforms of both sides of the equation gives: 

s
sFfssF 2)()0()(          =−−  

( )
s

ssF 21)( =−  
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)1(

2)(
−

=
ss

sF     solve using partial fraction 

2 and2  whereB andA for  solve       
1)1(

2
=−=

−
+=

−
B A

s
B

s
A

ss
 

1
22)(
−

+−=
ss

sF  

The inverse transformation gives the solution as 
( )tt eetf −−=+−= 1222)(           

 
Example:Solve 1)0(    where)()(' 2 ==− fetftf t   
Solution: 

2
11)1)((          

2
1)()0()( 

−
=−−

−
=−−

s
ssF

s
sFfssF

 

( )( ) 2
1

)1)(2(
)1(

)1)(2(
1)2(

1
1

12
1)(

−
=

−−
−

=
−−
+−

=
−

+
−−

=
sss

s
ss

s
sss

sF  

tetf 2)(          
assolution   thegives then  transforminverse The

=
 

 
Example:Solve 0)0(    where24)(2)('3 =+=− − fetftf t   
Solution: 
[ ]

)1(
26)23)((

)1(
26)(2)0(3)(3 

2
1

4)(2)0()(3

+
+

=−

+
+

=−−

+
+

=−−

ss
sssF

ss
ssFfssF

ss
sFfssF

 

5
27 and ,

5
4- -1,for  fractions partial using solve     

)23)(1(
26)( ===
−+

+
= CBA

sss
ssF  

















−
+







+
−−=








−
+







+
−−=

3
2

1
15
81

1
1

5
41

23
1

15
27

1
1

5
41)(

ssssss
sF  

tt eetf 3
2

15
81

5
41)(

:assolution   thegives then  transforminverse The

+−−= −
 

 
3.8.1 Laplace Transforms of Higher Derivatives 
The Laplace transforms of derivatives higher than the first are readily derived. To 
find higher derivative, understand the following formula 
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{ }
{ }
{ }
{ } )0(''')0('')0(')0()()(order     Forth 

)0('')0(')0()()('''order      Third
)0(')0()()(''order    Second

)0()()('  order     First 

234

23

2

fsffsfssFstfL
fsffssFstfL

fsfsFstfL
FssFtfL

iv −−−−=

−−−=

−−=

−=

 

 
Example: 
Find the solution of .0)0(')0(  where4)(2)('3)('' ===++ ffttftftf  
Solution: 
i. Take the Laplace transform of both sides of the equation 

{ } { } { } { }

[ ] [ ] 2
2 4)(2)0()(3)0(')0()(

4)(2)('3)(''

s
sFFssFfsFsFs

tLtfLtfLtfL

=+−+−−

=++
 

ii. Find the expression { })()( tfLsF =  in the form of algebraic function 
Substituting the values for )0(f  and )0(''f  and then rearranging the above 
equation gives 

 

)2)(1(
4)(

4)()23(

2

2
2

++
=

=++

sss
sF

s
sFss

 

iii. Separate )(sF  into its partial fractions 

)1()2()2)(1()2)(1(4
21)2)(1(

4

22

22

+++++++++=

+
+

+
++=

++

sDssCsssBssAs
s

D
s
C

s
B

s
A

sss  

 

314000
-1    -2
4   -1

2   0
Let

3 −=+−=−−=⇒++=⇒

=⇒=
=⇒=
=⇒=

DCADCAsequalize
Ds
Cs
Bs

 

2
1

1
423)( Thus, 2 +

−
+

++−=
ssss

sF  

iv. The inverse Laplace transform of the above equation is the solution that is 
tt eettf 2423)( −− −++−=  

Example: Use Laplace transforms to solve the following D.E. with initial conditions. 

1(0)y,   1y(0),   1)(3)(4)(
2

2

=′==++ ty
dt

tdy
dt

tyd  

Taking the Laplace 
[ ]2 1( ) (0) '(0) 4 ( ) (0) 3 ( )s Y s sy y sY s y Y s

s
− − + − + =

 
2 1( ) 4 3 (0) '(0) 4 (0)

15

Y s s s sy y y
s

s
s

 + + = + + + 

= + +
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We want to solve for Y(s), so 

( )( ) ( )( )
2

2

1 15 5 5 1( )
4 3 3 1 3 1

s s s ss sY s
s s s s s s s

+ + + + + +
= = =

+ + + + + +  
Notice that we factored the denominator into individual terms. Once again, we use 
partial fraction expansion to break this down into terms we can look up in the table: 

( )( )
2 5 1( )

1 3 1 3
s s A B CY s

s s s s s s
+ +

= = + +
+ + + +      

Multiple both sides by 3)1)(s(s ++s  
Cssss 1)(s3)B(s3)A1)(s(s152 ++++++=++  

Let s=0
3
1

31
1

=
×

=⇒ A  

Let s=-1
2
3

2
3

)31(1
15)1( 2

=
−
−

=
+−−
+−−

=⇒ B  

Let s=-3
6
5

)13(3
115)3( 2 −
=

+−−
+−−

=⇒ C  

So now we have 
1/ 3 3/ 2 5 / 6( )

1 3
Y s

s s s
−

= + +
+ +  

and going back to the time domain gives 
tt eety 3

6
5

2
3

3
1)( −− −+=  

 

Example: Solve 
2

3
2

( ) ( )4 4 ( ) ( ) (0) 1, '(0) 0td y t d yt y t e u t y y
dt dt

−+ + = = =   

Taking the Laplace [ ]2 1( ) (0 ) 4 ( ) (0 ) 4 ( )
3

s Y s sy sY s y Y s
s

− + − + =
+

 

Which gives 2 1( ) 4 4 4
3

Y s s s s
s

 + + = + +  +
 

( )2

14
3( )

2

s
sY s

s

+ +
+=

+
 

3)(s2)(s
1

2)(s
4)(sY(s) 22 ++

+
+
+

=  

This gives me two different terms, but they’re simpler.   
 1 2( ) ( ) ( )Y s Y s Y s= +  

 
( ) ( ) ( )1 22 2

4 1( ) , ( )
2 2 3

sY s Y s
s s s
+

= =
+ + +

 

First term: 
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( ) ( ) ( )

( ) ( )

1 2 2 2

2

4 2 2( )
2 2 2

1 2
2 2

s sY s
s s s

s s

+ +
= = +

+ + +

= +
+ +

 

 tt teety 22
1 2)( −− +=  

Now look at the second term: 
 

( ) ( ) ( ) ( )2 2 2
1( )

3 22 3 2
C D EY s

s ss s s
= = + +

+ ++ + +
 

 
( )2 2

3

1 1 1
12

s

C
s

=−

= = =
+

 

 
( )

2

1 1
3

s

D
s

=−

= =
+

 

 
( ) ( )2

2 2

1 1 1 1
3 13

s s

dE
ds s s

=− =−

   − −
= = = = −  + +    

 

Check: 

 
( ) ( )

( )( ) ( )( )

2 2

2 2

2 2

1 1 1( )
3 22

1( 4 4) ( 3) ( 5 6) 1
3 2 3 2

Y s
s ss

s s s s s
s s s s

−
= + + =

+ ++

+ + + + − + +
= =

+ + + +

 

so 
  ttt eteety 223

2 )( −−− −+=  
And putting the two solutions together: 

ttttttt teeeteeetetytyty 2322322
21 3][]2[)()()( −−−−−−− +=−+++=+=  

 
2.9 Solving Systems of Linear Differential Equations 
Example:  
Solve

211
' yyy +−= , 

212
' yyy −−= , 1)0(

1
=y  and 0)0(

2
=y . 

Solution: 
Taken laplace of both equations 

)()()0()( 2111 sysyyssy +−=−   and )()()0()( 2122 sysyyssy −−=−  
⇔ 1)()()1( 21 =−+ sysys  and 0)()()1( 12 =++ sysys  
Solving for )(1 sy and )(2 sy  algebraically we get 

1
1
)()()1( 1

1 =
+

++
s

sysys  and 0)()()1( 12 =++ sysys  

⇔ )1()()()1( 11
2 +=++ ssysys  and )(

1
1)( 12 sy

s
sy 








+

−=  

⇔ )1()(]1)1[( 1
2 +=++ ssys and )(

1
1)( 12 sy

s
sy 








+

−=  
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⇔ 
1)1(

1)( 21 ++
+

=
s

ssy and 
1)1(

1)( 22 ++
−=

s
sy  

Now,  








++
+−

1)1(
1
2

1

s
sL  =  te − cos t and  









++
−

1)1(
1

2
1

s
L  =  te − sin t  

Therefore, t
tety cos1 )( −=  and t

tety sin2 )( −−= . 
 
Example: Solve 211

5' yyy += , 212
5' yyy += , 3)0(

1
−=y  and 7)0(

2
=y . 

Solution: 
Taken Laplace of both equations 

)()(5)0()( 2111 sysyyssy +=−  and )(5)()0()( 2122 sysyyssy +=−  
⇔    3)()()5( 21 −=−− sysys  and 7)()()5( 12 =−− sysys  
Solving for )(1 sy and )(2 sy  algebraically we get 

⇔    3
)5(

)(7
)()5( 1

1 −=
−

−
−−

s
sy

sys and
)5(

)(7
)( 1

2 −
+

=
s

sy
sy  

⇔    )5(3)(7)()5( 11
2 −−=−−− ssysys and

)5(
)(7

)( 1
2 −

+
=

s
sy

sy  

⇔ [ ] )5(37)(1)5( 1
2 −−=−− ssys and 

)5(
)(7

)( 1
2 −

+
=

s
sy

sy  

⇔ 








−−
−

−
−−

=
1)5(

53
1)5(

7)( 221 s
s

s
sy  and ( ) 









−−
−

−−−
+

−
=

1)5(
3

1)5()5(
7

5
7)( 222 ssss

sy  

( ) 1)5(51)5()5(
7

22 −−
+

+
−

=
−−− s

sCB
s

A
ss

multiple both side ( )1)5()5( 2 −−− ss  

( ) )5)((1)5(7 2 −++−−= ssCBsA  
Let s=5    7−=⇒ A  
Let s=0    35

5
71685)125(7 −=

−−
=⇒−−=⇒ BBA  

702 =−=⇒+=⇒ ACCAs         

( ) 








−−
−

−−
−

+
−

−
−

=
1)5(

3
1)5(

357
)5(

7
5

7)( 222 ss
s

ss
sy  










−−
−









−−
−

=
1)5(

3
1)5(

57)( 222 ss
ssy .  

Now,  








−−
−−

1)5(
5
2

1

s
sL = te 5 cosh t   and    









−−
−

1)5(
1

2
1

s
L = te 5 sinh t  

Therefore, )cosh3sinh7(5
1 )( tttety −=  and )sinh3cosh7(5

2 )( tttety −= . 
 
Example: Solve

211
3'' yyy += , teyy 44''

12
−= , 2)0(

1
=y , 3)0('

1
=y , 1)0(

2
=y and 2)0('

2
=y  

Solution: 
The subsidiary equations become 
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)(3)()0(')0()( 21111
2 sysyyyssys +=−−  and

1
4)(4)0(')0()( 1222

2
−

−=−−
s

syyyssys  

⇔  ssysys 23)(3)()1( 21
2 +=−− and 

1
42)(4)( 12

2
−

−+=−
s

ssysys  

Solving for )(1 sy and )(2 sy  algebraically we get 

)1(
)(323

)( 2
2

1 −
++

=
s

sys
sy and 

1
42

)1(
)(12812

)( 2
2

2
2

−
−+=

−
++

−
s

s
s

sys
sys    

)1(
)(323

)( 2
2

1 −
++

=
s

sys
sy and 

1
)1(4)2)(1()(12812)()1(

2
2

22
22

−
−

−+−=−−−−
s
ssssyssyss    

)1(
)(323

)( 2
2

1 −
++

=
s

sys
sy and )1(42322812)(]12)1([ 2

22 +−−−++++=−− ssssssyss    

)1(
)(323

)( 2
2

1 −
++

=
s

sys
sy and 632)(]12[ 234

2
2 +++=−− ssssyss    

)1(
)(323

)( 2
2

1 −
++

=
s

sys
sy and 

)2(
1

]12[
632)( 22 4

23

−
=

−−
+++

=
sss

ssssy    

)2(
1

)1(
1

)2(
1

)1(
)1(

)1)(2(
)1()2)(1(

)1)(2(
)1()2(

)1)(2(
21

)1)(2(
32

)1)(2(
34263

)1)(2(
3)2)(23(

)1(
)2(

1323
)(

2222

22221

22222

22

−
+

−
=

−
+

−
+

=
−−

−+−+
=

−−
−+−−

=
−−
−−−+

=

−−
−−

=
−−

+−+−
=

−−
+−+

=
−

−
++

=

ss

ss
s

ss
sss

ss
sss

ss
sss

ss
ss

ss
sss

ss
ss

s
s

s
sy

 

⇔
2

1)(2 −
=

s
sy and 

2
1

1
1)(1 −

+
−

=
ss

sy  

Therefore, tt eety 2
1 )( +=  and tety 2

2 )( = .     
 
2.10 Laplace Transform of a integers 
If f(t) is a function having Laplace transform F(s)= L{f(t)}, then the Laplace 
transform of the integration of a function f(t), is given by: 

s
sFdttfL

t )()(
0

=∫
 

Proof: 

)(1)(1)(1)()(
0000 00

sF
s

dtetf
s

tfe
s

dtetfdttfL st
tt

stst
tt

=+






−
=








= −

∞

−−
∞

∫∫∫ ∫∫
 

 
2.11 Initial value theorem: 
It can be used to find the steady-state value of a system (providing that a steady-state 
value exists). 
if )()( sFtLF =  , then 
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)(lim)(lim)0(
0

ssFtFF
st ∞→→

==  

 

2.12 Final value theorem 
)(lim)(lim

0
ssFtF

st →∞→
=  

 
UExample: 
Find the final value of the function x(t) for which the laplace inverse is:- 

)sss(s
)s(x

133
1
23 +++

=  

1
133

1
133

1

230

2300

=
+++

=

+++
×

==

→

→→∞→

)sss(
lim

)sss(s
slim)s(sxlim)t(xlim

s

sst
 

 
Example: 
Suppose 

)45(
25)(
+
+

=
ss
ssY  

Then steady state value of Y can be calculated by: 

 5.0
)45(
)25(lim)(lim)(

0
=








+
+

==∞
→∞→ ss

sstYY
st

 



Process Control /Lec. 3       33                                      Written by Assoc. Prof.  
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

Response of first order systems 
 
3. Dynamic behavior of first order system 
 
Before studying the control system it is necessary to become familior with the 
response os some of simple basic systems (i.e study the dynamic behaviour of the 
first and second order systems). 
 
U3.1 The transfer function: 
The dynamic behaviour of the system is described by transfer function (T.F) 

T. F =
Laplace transform of the output (responce)

Laplace transform of the input (forcing function distubance) 

 
         
                                                             X(s)                                                          Y(s)   
                                                           Input                                                         Output 
                                                   Forcing function                                            Responce 
                                                                                      Block diagram 
 

T. F = G(s) =
y(s)
x(s) 

This definition is applied to linear systems 
 
U3.2 Development of T.F for first order system: 
UMercury Thermometer: 

It is a measuring device use to measure the temperature of a stream. 
Consider a mercury in glass thermometer to be 
located in a flowing stream of fluid for which the 
temperature x varies with time. 
The opject is to  calculate the time variation of the 
thermometer reading y for a particular change of x 

The following assumptions will be used in this analysis:- 
1. All the resistance to heat transfer resides in the film surrounding the bulb (i.e., 

the resistance offered by the glass and mercury is neglected). 
2. All the thermal capacity is in the mercury. Furthermore, at any instant the 

mercury assumes a uniform temperature throughout. 
3. The glass wall containing the mercury does not expand or contract during the 

transient response.  
 
It is assumed that the thermometer is initially at steady state. This means that, 

before time zero, there is no change in temperature with time. At time zero the 

Transfer 
functionG (s) 
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thermometer will be subjected to some change in the surrounding temperature x(t). 
(i.e at t<0  ,  x(t)= y(t) =constant  there is no change in temperature with time). 

At t=0 there is a change in the surounding temperature x(t) 
UUnsteady state energy balance: 

m Cp dy
dt

= h A (x − y) − 0 = h A x − h A y                 ……………… (1) 

1P

st
P order differential equation 

UWhere 
A: area of the bulb 
Cp: heat capacity of mercury 
m: mass of mercury in the bulb 
t: time 
h: film heat transfer coefficient 
h depend on the flowrate and properties of the surounding fluid and the dimension 

of the bulb. 
The dynamic behaviour must be defined by a deviation variables. 
At steady state (s.s.)  ,  t<0 , x(t)=constant=xRs   R,R   Ry(t)=constant=yRs  R ,   
x(t)=constant=xRs 

𝑚𝑚 𝑐𝑐𝑐𝑐 𝑑𝑑𝑦𝑦𝑠𝑠
𝑑𝑑𝑑𝑑

= ℎ 𝐴𝐴 (𝑥𝑥𝑠𝑠 − 𝑦𝑦𝑠𝑠𝑠𝑠) = ℎ 𝐴𝐴𝑥𝑥𝑠𝑠 − ℎ 𝐴𝐴𝑦𝑦𝑠𝑠                  ……………… (2) 

Substract eq. (2) from eq. (1) 

𝑚𝑚 𝑐𝑐𝑐𝑐 
𝑑𝑑(𝑦𝑦 − 𝑦𝑦𝑠𝑠)

𝑑𝑑𝑑𝑑
= ℎ 𝐴𝐴 (𝑥𝑥 − 𝑥𝑥𝑠𝑠) − ℎ 𝐴𝐴 (𝑦𝑦 − 𝑦𝑦𝑠𝑠𝑠𝑠) 

𝑦𝑦 − 𝑦𝑦𝑠𝑠 = 𝑌𝑌    𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    𝑥𝑥 − 𝑥𝑥𝑠𝑠 = 𝑋𝑋 
at t=0  Y(0)=0  and X(0)=0 

𝑚𝑚 𝑐𝑐𝑐𝑐 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = ℎ 𝐴𝐴 𝑋𝑋 − ℎ 𝐴𝐴 𝑌𝑌 

𝑚𝑚 𝑐𝑐𝑐𝑐
ℎ 𝐴𝐴

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =  𝑋𝑋 −  𝑌𝑌 

Let   𝜏𝜏 = 𝑚𝑚 𝑐𝑐𝑐𝑐
ℎ 𝐴𝐴

=time constant and has time units 

𝜏𝜏 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 𝑌𝑌 =  𝑋𝑋    taken laplace for the equation 

𝜏𝜏[𝑠𝑠𝑠𝑠(𝑠𝑠) − 𝑌𝑌(0)] + 𝑌𝑌(𝑠𝑠) = 𝑋𝑋(𝑠𝑠) 
(𝜏𝜏𝜏𝜏 + 1)𝑌𝑌(𝑠𝑠) = 𝑋𝑋(𝑠𝑠) 
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𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠) = 𝐺𝐺(𝑠𝑠) =

1
𝜏𝜏𝜏𝜏 + 1                                                     … … … … … … (3) 

T. F =
Y(s)
X(s) = G(s) =

L. T of the deviation in thermometer reading
L. T. of the deviation in surounding Temperature 

Any system has a T.F of the form of equation (3) it is called  Ufirst orderU system which 
is a first order differntial equation (Linear). 
 
U3.3 Properties of transfer functions 
T.F relates two variables in a physical process. One of these is (Forcing or Input 
variable) and the other is the effect (Reponce or Output). 

𝑇𝑇. 𝐹𝐹 =
𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠) = 𝐺𝐺(𝑠𝑠) 

If we select a particular input variation x(t) for which the L.T is x(s) then the reponce. 
𝑌𝑌(𝑠𝑠) = 𝐺𝐺(𝑠𝑠). 𝑋𝑋(𝑠𝑠)         
 

𝐿𝐿−1𝑌𝑌(𝑠𝑠) = 𝑌𝑌(𝑡𝑡) = 𝐿𝐿−1𝐺𝐺(𝑠𝑠). 𝑋𝑋(𝑠𝑠) 
If G(s) is 1P

st
P order of a thermometer 

𝑌𝑌(𝑠𝑠) = 𝐺𝐺(𝑠𝑠). 𝑋𝑋(𝑠𝑠) =
1

𝜏𝜏𝜏𝜏 + 1 . 𝑋𝑋(𝑠𝑠)            

                    x(s)                                       y(s) 
 
U3.4 Transient response for different changes 

𝑌𝑌(𝑠𝑠) =
1

𝜏𝜏𝜏𝜏 + 1 . 𝑋𝑋(𝑠𝑠) 

Y(t)=?     For different types of x(t) 
1-UStep Change 

s
AsX =)(  

1
.

1
1)( 1

+
+=

+
=

sss
A

s
sY o

τ
αα

τ
 

s)s(A o 11 α++τα=  
AS o =⇒= α0  

τ−= /s 1  
τ

αττα 1)1/( 1−+−=⇒ oA
 
then τα A−=1  

τττ
τ

τ
τ

τ
τ

/1/1
/1

11
)(

+
−=

+
−=

+
−=

A
s
A

s
A

s
A

s
A

s
AsY

 

G(s) 

A   ---------- 
x(t) 

 
                        t       
   

A     --------Ultimat value 
 

y(t) 
 

                        t          
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)1()( ττ tt eAAeAtY −− −=−=                  

Several features of this response, worth remembering, are  
• The value of y(t) reaches 63.2 % of its ultimate value when the time elapsed is 

equal to one time constant 𝜏𝜏. 
• When the time elapsed is 2𝜏𝜏, 3 𝜏𝜏, and 4 𝜏𝜏, the percent response is 86.5%, 95%, 

and 98%, respectively. 
Where the ultimate value is final steady state value 

)s(sylim)t(ylimV.U
st 0→∞→

==  

 
Example: 
A thermometer having a time constant of 0.1 min is at a steady state temperature of 
90 FP

o
P. At time t = 0, the thermometer is placed in a temperature bath maintained at 

100°F. Determine the time needed for the thermometer to read 98 FP

o
P. 

Solution: 
At s.s. xRsR=yRsR=90 FP

o 

s
AsXchangeStep =)(  

A=100-90=10 

s
)s(X 10
=  

10101010
10

110
1010

110
1

1
1

+
+=

+
=

+
=

+
=

+τ
=

s
B

s.
A

)s(s.)s.(sss.s
A

s
)s(Y  

101010 =++ )s.(B)s(A  
1

10
100 ==⇒= As  

1010 −=⇒−= Bs  

10
1010

10
10

10
1

+
−=

+
−=

ssss.
)s(Y  

By taken laplace inverse for the equation 
)e(e)t(Y tt 1010 1101010 −− −=−=  

Substitute Y(t)=y(t)-yRs R=98-90 
Y(t)=8 

)e( t101108 −−=  
te. 10180 −−=  

).ln()eln( t 2010 =−
 

).ln(t 2010 =−  
1.0)2.0ln( ×−=t  

t=0.161 min 
2-Impulse Input 

x(t) 
 
 

                   Area 
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AsX =)(
 

11
1)(

+
=×

+
=

s
AA

s
sY

ττ
 

τ
τ
1

)(
+

=
s

AsY  

τ

τ
t

s eAytytY −=−= )()(  

s
t yeAty += − τ

τ
)(  

 
3-Sinsoidal input 

0>+= twtsinAx)t(x s
 

wtsinAx)t(x s =−
 

wtAxtxtX s sin)()( =−=
                     

 

22 ws
Aw)s(X
+

=
                                                 

]
)s)(ws(

[Aw
)s(ws

Aw)s(Y
1

1
1

1
2222 +τ+

=
+τ

×
+

=  

This equation can be solved for y(t) by means of a partial fraction expansion as 
described in previous lectures. 

]
)s()ws(

s[Aw]
)s)(ws(

[Aw)s(Y o

11
1 2

22
1

22 +τ
α

+
+

α+α
=

+τ+
=  

11 22
21 =+α++τα+α )ws()s)(s( o  

12
2

2
211

2 =α+α+α+τα+α+τα wssss oo  

12
21

0 =α+α ws                                                    (4) 

01
1 =τα+αos ⇒ τα−=α 1o                                 (5) 

02
2 =α+ταos ⇒ τα−=α o2                               (6) 

By substitution eq.(5) in eq.(6) 
2

12 τα=α                                                                           (7) 
By substitution eq.(7) in eq.(4) 

122
11 =τα+α w  

221 1
1

wτ+
=α  

 
 

y(t) 
 

                        t          
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22

2

2 1 wτ+
τ

=α  

220 1 wτ+
τ−

=α  

]
)s(

w
)ws(

w
s

w[Aw)s(Y
1

11
1

1 22

2

22

2222

+τ
τ+
τ

+
+

τ+
+

τ+
τ−

=  

]
)s()ws(

s[
w

Aw)s(Y
1

1
1

1 2

2222 +τ
τ

+
+
+τ−

τ+
=  

]
)s(w

w
)ws()ws(

s[
w

Aw)s(Y
τ
τ

+τ
τ

+
+

+
+
τ−

τ+
=

1
1

1

2

222222  

]
)/s()ws(

w
w)ws(

s[
w

Aw)s(Y
τ+

τ
+

+
+

+
τ−

τ+
=

1
1

1 222222  

]sin1cos[
1

)( 22
τττ

τ
tewt

w
wt

w
AwtY ++−
+

=  

Using the definition 

q
pqpr

rqp

=+=

+=+

φ

φθθθ

tan

)sin(sincos

22  

q
p1tan−=φ  

( )
w
w

ww
r

w

p
w

q

22
2

2
22

1

11)1(

)(tan

1

τττ

τφ

τ

+
=+=−+=

−=

−==

−

 

)sin(sin1cos φτ +=+− wtrwt
w

wt  

)]sin(1[
1

)(
22

22 φττ
τ

τ +
+

+
+

= wt
w
we

w
AwtY t

 

)(tan

)]sin(
11

)(

1

2222

τφ

φ
ττ

τ τ

w
where

wt
w
Ae

w
AwtY t

−=

+
+

+
+

=

−  
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As 0=∞→ τ−tethent , the first term on the right side of main equation 
vanishes and leaves only the ultimate periodic solution, which is sometimes called the 
steady-state solution 

)]wtsin(
w
A)t(Y φ+

τ+
=

221        

                      
 
 
 
 
 
 
 
 
 
By comparing Eq. for the input forcing Y(t) function with Eq. for the ultimate 
periodic response X(t), we see that 
1. The output is a sine wave with a frequency w equal to that of the input signal. 

2. The ratio of output amplitude to input amplitude is 1
1

1
22
<

τ+ w
.  

3. The output lags behind the input by an angle φ . It is clear that lag occurs, for the 
sign of φ  is always negative. 

loadphase

lagphase

0

0

>φ

<φ
 

 
Example: 
A mercury thermometer having a time constant of 0.1 min is placed in a temperature 
bath at 100°F and allowed to come to equilibrium with the bath. At time t= 0, the 
temperature of the bath begins to vary sinusoidally about its average temperature of 
l00 P

o
PF with an amplitude of 2 P

°
PF If the frequency of oscillation is 10/𝜋𝜋  cycles/min, plot 

the ultimate response of the thermometer reading as a function of time. What is the 
phase lag? 
In terms of the symbols used in this chapter 

π
=

+=≥
==<

=τ

10
21000

1000
10

f

)wtsin()t(xt
yxt

.

ss

 

 

 

A           X(t) _______T_______ 
 

 

 
 
 

     -A 
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USolution 

cycle
f

T

radfw

min/101

min/101022

π

π
ππ

==

=×==

 

100202100 −+=−= tsinx)t(x)t(X s  
tsin)t(X 202=  

22 20
202

+
×

=
s

)s(X  

Ultimate response 0=∞→ τ−tethent  
)]wtsin(

w
A)t(Y φ+

τ+
=

221  

o.

)(tan).(tan)w(tan

563

21020 111

−=φ

−=×−=τ−=φ −−−

 

Ultimate response at the above angle 

)].tsin(
).(

)t(Y 56320
20101

2
2

−
×+

=  

)].tsin()t(Y 56320
5

2
−=  

)].tsin(.)t(Y 563208960 −=                               Ultimate response 
 

 
In general, the lag in units of time 
is given by:- 

f
lagphase 1

360
φ

=
 

min.
cycle
mincycle.lagphase

05550
10360

563

=

π
=  

 
 
 
A frequency of 10

𝜋𝜋
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑚𝑚𝑚𝑚

means that a complete cycle occurs in (10
𝜋𝜋

)−1 𝑚𝑚𝑚𝑚𝑚𝑚. since  cycle 
is equivalent to 360P

o 
Pand  lag is 63.5P

o 

 

 
UHow to calculate the time constant (𝝉𝝉) for first order system 

1) UMathematical method 
Using the definitions 
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kMixing
q
V

klevelLiquidAR

rThermomete
hA

cpm

tan

tan

=

=

=

τ

τ

τ

 
 

2) UExponential method(Step change in the input variable) 
 

 
 
 
 
 
 

AAeAYtas
AeAYtas

eAtY t

63.0)3678.01()1()(
)1()(

)1()(

1 ≈−=−=→

=−=∞∞→

−=

−

∞−

−

ττ

τ

 

 
Time constant (𝜏𝜏)is the time required for the response to reach 63% of the its utimate 
value. 
 
 
U3. Third method 

)e(A)t(Y t τ−−= 1  
τ−τ−

τ
=τ−−= tt eA)(Ae

dt
dy 1  

τ
=

τ
=

→

AeA
dt
dylim

t

0

0  

Slope of the tangent at t=0 is τ
A

 

Therfore 
slope

A
=τ  

)e(A)t(Y t τ−−= 1  
τ−−= tAeA)t(Y  
)t(YAAe t −=τ−
 

A
)t(YAe t −

=τ−
 

A
)t(YAlnt −

=τ−  

Let A
)t(YAB −

=  

A 
 
                        0.63 A  
 
 
 
                       τ             t   

A 
 
 

Y(t)slope 
 
 

                                  t  
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τ

τ

1
ln

1ln

−=

==

−
=

slope

txandBylet

tB

 

Y(t) 
A

)t(YAB −
=  Bln  t 

    
    
    
    
 

slope

slope

1

1

−=

−=

τ

τ
 

lnB 

      τ
−=

1slope  

 
 
 

 t 
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Physical Examples of First Order System 
 

1.Mercury Thermometer 
 
1TMercury thermometer was discussed in detail 0T1T 0Tin a0T 0T1Tprevious lecture. 
 
2.Liquid Level Tank 
 
Consider the system shown in below figure which consists of: 

1. A tank of uniform cross-sectional area A. 
2. Valve attached to the output flow which resistance constant=R. 

qRoR: The output volumetric flowrate (volume/time) through the resistance, is related to 
the head h by the linear relationship. 

ValveLinearhqo ∝  

R
hqo =                                        ……………..(1) 

Where: 
R is related as a linear resistance 
If  )1( ≠nhq n

oα  Non linear valve 
q(t) is a time varying volumetric flowrate with constant density ρ. 
 
Find the T.F. that relates the head to the input flowrate q(t). 
 
We can analyze this system by writing a transient mass balance around the tank: 
Mass flow in - mass flow out = rate of accumulation of mass in the tank 

dt
dvqq o
ρρρ =−

                 
)( Ahv =  

dt
dhAqq o =−  

dt
dhA

R
hq =−                                       ………………(2) 

At staedy state 

0==−
dt
dhA

R
hq ss

s
                               

………………(3) 
Substracting Eq(3) from Eq. (2) 

dt
hhdA

R
hhqq ss

s
)()( −

=
−

−−
 
ss hhHqqQlet −=−= ,  
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Q
R
H

dt
dHA =+  

RQH
dt

dHAR =+
   

Taken laplace for both sides of equation 
 where)()()1( sRQsHs =+τ AR=τ  

)1()(
)(

+
=

s
R

sQ
sH

τ
    

First order system equation          …………………(4) 

)(
)1(

)( sQ
s
RsH
+

=
τ                                                 …………………(5) 

Comparing the T.F. of the tank with thr T.F. of the thermometer we see that eq. (5) 
contain the factor (R) which is relate H(t) to Q(t) at s.s. as ∞→→ ts ,0  
For this reason, a factor R in the transfer function

1+s
R

τ
is called the steady state gain 

To show that 

Take
s

sQ 1)( =
 

Therefore
ss

RsH 1.
1

)(
+

=
τ  

Final value theorm 

R
s
R

ss
RsssHtH

ssst
=

+
=

+
==

→→→∞→ 1
lim1.

1
lim)(lim)(lim

000 ττ  
s.s gain 

 
Also to find the level as a function of time 

)()( 1 sHLtH −=
  

3.Mixing Tank 
 
Consider the mixing process shown in Figure in 
which a stream of solution containing dissolved salt 
flows at a constant volumetric flow rate q into a tank 
of constant holdup volume V. The concentration of 
the salt in the entering stream x (mass of salt/volume) 
varies with time. It is desired to determine the transfer 
function relating the outlet concentration y to the inlet 
concentration x. 
If we assume the density of the solution to be constant, the flow rate in must equal the 
flowrate out, since the holdup volume is fixed.  
F: Volumetric flowrate 
x, y : Input and output salt concentrations (mass or mole/vol) 



Process Control /Lec. 4      45                                       Written by Assoc. Prof.    
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

Unsteady state material balance 

dt
dyV

dt
dVyFyFx ==−  

Steady state 

0==−
dt
dyVFyFx s

ss  

Subtracting the above both equations and introducing the deviation variables 

dt
yydVyyFxxF s

ss
)()()( −

=−−−  

s

s

yyY
xxX

−=
−=  

FXFY
dt
dYV =+  

XY
dt
dY

F
V

=+  

XY
dt
dY

=+τ  

)()()1( sXsYs =+τ  

)1(
1

)(
)(

+
=

ssX
sY

τ   1 P

st 
Porder system  , where

F
V

=τ
 

 
UExample: 
Find the T.F for the system shown in figure 
Solution: 

dt
dhA

R
hFF =−+ 21  

dt
dhA

R
hFF ss

ss =−+ 21  
sss hhhFFFFFFlet −=−=−= ,, 222111  

dt
hdA

R
hFF =−+ 21  

RFRFh
dt
hdAR 21 +=+  

RsFRsFshs )()()()1( 21 +=+τ  

)(
)1(

)(
)1(

)( 21 sF
s
RsF

s
Rsh

+
+

+
=

ττ  

When FR1R constant 0)(
)1( 1 =

+
⇒ sF

s
R

τ
)(

)1(
)( 2 sF

s
Rsh
+

=⇒
τ

 

When FR2R constant 0)(
)1( 2 =

+
⇒ sF

s
R

τ
)(

)1(
)( 1 sF

s
Rsh
+

=⇒
τ

 

h 

F1                                                            F2 
 

qo 

𝒒𝒒𝒐𝒐 =
𝒉𝒉
𝑹𝑹 
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4.Heating Tank 
 

Energy balance equation. 

QTTwC
dt
dTCV i +−= )(ρ  

Assumption: constant liquid holdup and 
constant inflow(w is constant),  a linear 
model result. 
 
If the process is at steady-state, 0=dtdT  

ssis QTTwC +−= )(0  
 
Subtract equations 

)()]()[()(
ssisi

s QQTTTTwC
dt

TTdCV
dt
dTCV −+−−−=

−
= ρρ  

Define some important new variables(Deviation variables). 
sisiis QQQTTTTTT −=−=−= ,,  

By substituting deviation variables for variables. 

QTTwC
dt
TdCV i +−= )(ρ

 

wCQTT
dt
Td

w
V

i /+−=
ρ

 
Let wV,wCk ρ=τ=1  
Apply Laplace Transform. 

 
 

)()()()1( sQksTsTs i +=+τ  

)(
1

)(
1

1)( sQ
s
ksT

s
sT i +

+
+

=
ττ  

If 0)( =sTi 1)(
)()(1 +
==

s
k

sQ
sTsG

τ
 

If 0)( =sQ
1

1
)(
)()(2 +
==

ssT
sTsG

i τ  
 

 
 
 

Figure:  Continuous stirred-tank heater. 

)())()(()( sQksTsTsTs i +−=τ
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5. CSTR with constant holdup: 
 

AA
A VKCFCF

dt
dC

−−= AiC V

 at steady state ssAssA
ssA VKCFCF

dt
dC

,,Ai,ss
, C V −−=  

by subtracting both equations 
)()()( 

)(
V ,,,

,
ssAAssAAssAiAi

ssAA CCVKCCFCCF
dt

CCd
−−−−−=

−

 )(C )( Ai VKFFCVKF
dt
CdV A

A +÷=++

 AiC
)(

 
)( VKF

FC
dt
Cd

VKF
V

A
A

+
=+

+
 

LetR

)(
K nd

)( VKF
Fa

VKF
V

+
=

+
=τ

  AiCKC
dt
Cd

A
A =+τ  

Taking Laplace Transform: 
)(C)()1( Ai sKsCs A =+τ

 )1(
)(C)( Ai

+
=

s
sKsCA τ  

Taken sinusoidal change in R  (t)CAi 22Ai )( sin(wt) = (t)C
ws

wsCAi +
=→→

 2222 )1()1(
)(

ws
dcs

s
b

ws
w

s
KsCA +

+
+

+
=

++
=

ττ

 
Multiply both sides by (τs+1)(sP

2
P+wP

2
P) gives: 

1)s( d)(cs  )wb(s  Kw 22 ++++= τ  

Let 
R

⇒
−

=
τ
1s

R

1w
Kw

w1
Kw

22

2

2
2

+
=

+
=

τ
τ

τ

b  

Let 
R

⇒= 0s
R 1w1w

Kw-w
1w

Kwbw- 2222

2323

22

23
2

+
=

+
+

=
+

−==
ττ

ττ
τ
τ KwKwKKwKwd  

Equating the coefficients of each power of s P

2
P, yields: 

1w
Kw-b-c0  c  b      :s 22

2

+
==⇒=+

τ
τ

τ
τ

 
Substituting the constants in the main equation: 

]1
1

[
1w

Kw]1
1

[
1w

Kw)( 2222222222

2

22 wsws
s

swsws
s

s
sCA +

+
+

−
++

=
+

+
+

−
++

=
τ

τ
τ

τ
τ

τ
τ

τ
 

Using Laplace Table: 

)]sin(1)cos([
1w

Kw)( 22 wt
w

wtetC
t

A +−
+

=
−

ττ
τ

τ  
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Response of first order systems in series 

 
 
Many physical systems can be represented by several first-order processes connected 
in series as shown in figure:- 

 
Figure 5.1 Two-tank liquid-level system: (a) Non-interacting; (b) interacting. 

 

In fig (5.1 a) variation of hR2R does not effect on qR1 Rthen 
1

1
1 R

hq =  

In fig (5.1 b) variation of hR2R does effect on qR1 Rthen 
1

21
1 R

hhq −
=  

 
1-Non Interacting System 
 
Material balance on tank 1 gives 

dt
dhA

R
hqi

1
1

1

1 =−  

At s.s. 01
1

1

1 ==−
dt

dhA
R
hq ss

is  

By substracting both equations 

dt
)hh(dA

R
hh)qq( ss

isi
11

1
1

11 −
=

−
−−  

1
1

1
1

1 R]
dt

dHA
R
HQ[ i ×=−  
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dt
dHARHQR i

1
1111 +=  

11

11

+τ
=

s
R

)s(Q
)s(H

i
  where 111 RA=τ  

 
Material balance on tank 2 gives 

dt
dhA

R
h

R
h 2

2
2

2

1

1 =−  

At s.s. 02
2

2

2

1

1 ==−
dt

dhA
R
h

R
h sss  

By substracting both equations 

dt
)hh(dA

R
hh

R
hh sss 22

2
2

22

1

11 −
=

−
−

−
 

2
2

2
2

2

1

1 R
dt

dHA
R
H

R
H

×=−  

1
1

2
2

2
22 H

R
RH

dt
dHRA =+  

)s(H
R
R)s(H)s(sH 1

1

2
222 =+τ

             
222 HR=τ  

)s(H
R
R)s(H)s( 1

1

2
22 1 =+τ  

)s(H
)s(

RR)s(H 1
2

12
2 1+τ

=   By substituting the lapace transform of HR1R(s) 

11 1

1

2

12
2 +τ

×
+τ

=
s
R)s(Q

)s(
RR)s(H i  

)s(Q
)s)(s(

R)s(H i11 21

2
2 +τ+τ

=  

 

)s)(s(
R

)s(Q
)s(H

i 11 21

22

+τ+τ
=

 
Non-interacting system 

In the case of three non-interacting tanks in sereies the transfer function of the system 
will be as below:- 

)s)(s)(s(
R

)s(Q
)s(H

i 111 321

33

+τ+τ+τ
=  
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Example: 
Two non-interacting tanks are connected in series as shown in Fig. 5.1 a. The time 
constants are τR2R =1 and τR1R =0.5; R R2R=1. Sketch the response of the level in tank 2 if a 
unit-step change is made in the inlet flow rate to tank 1.  
USolution: 
The transfer function for this system is found directly from Equation above thus 
 

)s(Q
)s)(s(

R)s(H i11 21

2
2 +τ+τ

=  

Substituting  
s

)s(Qi
1

=   Unit step change in QRi 

)s()s(s

s)s)(s(
R)s(H

o

11

1
11

2

2

1

1

21

2
2

+τ
α

+
+τ

α
+

α
=

+τ+τ
=

 

)s(s)s(s)s)(s(R o 1111 1221212 +τα++τα++τ+τα=  

20 Rslet o =α⇒=  

22
1

12
12

1
2
1

2
12

1
2

1
1

1

11111 R)(R)(R))()((slet =
τ
τ−τ

α⇒=
τ

−
τ
τ

α⇒=+
τ

−τ
τ

−α⇒
τ

−=  

)(R
12

2
1

21 τ−τ
τ

=α∴  

22
2

21
22

2
2
2

1
22

2
1

2
2

2

11111 R)(R)(R))()((slet =
τ
τ−τ

α⇒=
τ

−
τ
τ

α⇒=+
τ

−τ
τ

−α⇒
τ

−=

)(R
21

2
2

22 τ−τ
τ

=α∴  

)s(
)(R

)s(
)(R

s
R)s(H

1
1

1
1

221

2
2

2
112

2
1

2
2

2 +ττ−τ
τ

+
+ττ−τ

τ
+=

 

]
)s(

)(
)s(

)(
s

[R)s(H
1

1
1

11

21

2

21

21

12

1

12

21
22 +ττ

τ
τ−τ
ττ

+
+ττ

τ
τ−τ

ττ
+=

 

]
)/s(

)(
)/s(

)(
s

[R)s(H
2121

21

1221

21
22 1

11
1
111

τ+ττ−τ
ττ

+
τ+ττ−τ

ττ
−=  

))11)((1()( 21 /

1

/

221

21
22

ττ

ττττ
ττ tt eeRtH −− −
−

−=  

)e
.

e)(
.

.()t(H /t./t 150
2 50

1
1
1

150
5011 −− −
−

×
−=  
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)ee)(
.

.()t(H tt −− −
−

−= 2
50

501 2
2  

)ee)t(H tt −− −+= 21 2
2  

)s(Q.
s
R)s(H i11

1
1 +τ

=  

s
.

s
R)s(H 1

11

1
1 +τ

=  

)e(R)t(H /t 1111
τ−−=  

Substitute  RR1R=1 

)e()t(H ./t 50
1 11 −−=  

te)t(H 2
1 1 −−=  

 
UExample: 
Obtain the transfer function of the following system (no reaction): 
Where: 
F = volumetric flow rate, FRi R= FR1R  
C  = conc. of solute in stream 
V = liquid volume in tank                                                                                                     
 
USolution: 
Mass balance on concentration; i.e.  
In – out = accumulation  

Tank 1:   
dt

dCV = C F -C F 111 ii
1  

iCC
dt
Cd

=+ 1
1

1τ            where  τR1R = VR1R/FR1 

Laplace transform → (s)C = (s)C + (s)C s i111τ   

1
1

)(
)(

1

1

+
=

ssC
sC

i τ   …. (1)               (s)Ci                                       (s)C1  

Tank 2:     
dt

dCV = C F -CF + CF 222 ii ii1 1
2

 

 ii
2

 ii
1

2

 1
2

2

2

2 CF + CF CV 
FFdt

Cd
F

=+  

iiCKCKC
dt
Cd

2112
2

2 +=+τ   

H1(t) 

H2 (t) 

1
1

1 +sτ
 

(non-interacting system) 

FiiCii 

F2, C2 
 

V2, C2 
 

F1, C1 
 

V1 c1 

Fi , Ci 
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2
2

2

1
1

2

2
2 F

FK,
F
FK,

F
V ii===τ  

 
Laplace transform → (s)C K + (s)C K = (s)C + (s)C s ii211222τ  

)(
1

)(
1

)(
2

2
1

2

1
2 sC

s
KsC

s
KsC ii+

+
+

=
ττ  

 
Substitute CR1R(s) from Eq. (1)  

)(
1

)(
)1)(1(

)(
2

2

21

1
2 sC

s
KsC

ss
KsC iii +

+
++

=
τττ  

 
 
2.Interacting System 

 
Material balance on 1P

st
Ptank  

dt
dhAqqi

1
11 =−  

dt
dhA

R
hhqi

1
1

1

21 =
−

−  

Steady state 

01
1

1

21 ==
−

−
dt

dhA
R

hhq sss
is  

By substracting both equations 

dt
)hh(dA

R
hh

R
hh)qq( sss

isi
11

1
1

22

1

11 −
=

−
+

−
−−  

1
1

1
1

1

1

2 R]
dt

dHA
R
H

R
HQ[ i ×+=+  

dt
dHRAHHRQi

1
11121 +=+  

211
1

1 HRQH
dt

dH
i +=+τ  

)s(H)s(QR)s(H)s( i 2111 1 +=+τ   

)s(H
)s(

)s(Q
)s(

R)s(H i 2
11

1
1 1

1
1 +τ

+
+τ

=   …………..(1) 
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Material balance on second tank 

dt
dhA

R
h

R
hh 2

2
2

2

1

21 =−
−  

02
2

2

2

1

21 ==−
−

dt
dhA

R
h

R
hh ssss  

2
2

2
2

2

1

2

1

1 R]
dt

dHA
R
H

R
H

R
H[ ×=−−  

)HH(
R
RH

dt
dHRA 21

1

2
2

2
22 −=+  

))s(H)s(H(
R
R)s(H)s( 21

1

2
22 1 −=+τ  …………..(2) 

Substituting for HR1R(s)from eq(1) in eq(2) 

)]s(H)s(H
)s(

)s(Q
)s(

R[
R
R)s(H)s( i 22

11

1

1

2
22 1

1
1

1 −
+τ

+
+τ

=+τ  

)s()]s(H
R
R

)s(
)s(H

R
R

)s(
)s(QR)s(H)s[( i 1

11
1 12

1

2

1

2

1

2

1

2
22 +τ×−

+τ
+

+τ
=+τ  

)]s(H
R

R)s()s(H
R
R)s(QR)s(H)s)(s( i 2

1

21
2

1

2
2212

111 +τ
−+=+τ+τ

 

)s(QR)s(H
R

sR)s(H)sss( i22
1

21
221

2
21 1 =

τ
++τ+τ+ττ

 

Let 1221
1

211

1

21 τ===
τ RA

R
RRA

R
R  

)s(QR)s(H)s)(s( i221221
2

21 1 =+τ+τ+τ+ττ  

)s(Q.
s)(s

R)s(H i11221
2

21

2
2 +τ+τ+τ+ττ

=

  
Interacting system

 
 

)s(Q.
s)(s

R)s(H i121
2

21

2
2 +τ+τ+ττ

=

  
Non- Interacting system

 
 
The difference between the transfer function for the non-interacting system, and that 
for the interacting system, is the presence of the cross-product term AR1RRR2R in the 
coefficient of s.  2112 RA=τ  
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UExample: 
To understand the effect of interaction on the transient response of a system, consider 
a two-tank system for which the time constants are equal (τR1R=τR2R=τ).  
τR1R = τR2R = τR12R=τ 
QR2R(t)=?  Output flow rate 

s
)s(Qi

1
=

 
Solution:

 

Non-interacting system 
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By multiplying both sides by 21)s(s +τ and expanding, we get 
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UInteracting system 
If the tanks are interacting, the overall transfer function, according to Equation of 
interacting system (assuming further that AR1R=AR2R) 

s
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ss
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1

222 +τ+τ
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By application of the quadratic formula, the denominator of this transfer function can 
be written as
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Figure: Effect of interaction on step response of two tank system. 
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Linearization of non-linear systems 
 
To solve non-linear systems there are two methods:- 
 
1-Linearization method 
Making the non-linear function as linear using Taylar series and give approximate 
results. 
 
2-Non-linear solution 
It is difficult and give exact solution 
 
Linearization Technique 


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To make the non-linear function linear one use Tayler series. 
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UExample U: 
The flow of water through a valve or other construction usually follow a square-root 
law. 

If   
R
hqo =

  
Linear valve 

hcqo =   Non-linear valve 
c is a constant 
 

dt
dhA

dt
)V(dqq oi ρ=

ρ
=ρ−ρ
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i =− 21

                                   
……..(1) 

qRo Rmay be expanded around the s.s. value hRs Rusing linearization method 
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By taking laplace transform 
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1-Transfer function is similar to linear. 
2- R depends on the s.s. condition (at steady state the flow entering the tank equals to 
the flow leaving the tank,then qRoR=qRosR).

 

 
Example: Mixing tank with chemical reaction 
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?
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i
==

 
cRiR,c : Composition of component (A)                                    
V: Constant=L   
F: Constant=L/min 
Solution: 
In - out - rate of reaction = accumulation 

dt
dcVVkcFcFci =−− 2

   
Un-steady state 
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Linearization of nP

th
P order nonlinear differential equation 

 
Consider the thn  order nonlinear differential equation 
Expanding the nonlinear function in a Taylor series about an operating point that 

satisfies the original differential equation and retaining only the linear 
terms yields:- 
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UExample: 
Mixing tank 

?
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c : Variable (kg/L) 
F: Variable (L/min) 
CRiR: Constant 
V: Constant 
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where         
s

s

FFX
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Time Delay 
The most commonly used model to describe the dynamics of chemical process is 
UFirst-Order Plus Model Delay ModelU. By proper choice τRdR , this model can be 
represent the dynamics of many industrial processes. 

• Time delay or dead time between inputs and outputs are very common 
industrial procsses, engineering systems, economical, and biological systems. 

• Transportation and measurement lags, analysis times, computation and 
communication lags. 

Any delay in measuring, in controller action, in actuator operation, in computer 
computation, and the like, is called transportation delay or dead time, and it always 
reduces the stability of a system and limits the achievable time of the system. 

 
 The Transportation Lag 
The transportation lag is the delay between the time an input signal is applied to a 
system and the time the system reacts to that input signal. Transportation lags are 
common in industrial applications. They are often called “dead time”. 
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UDead-Time Approximations:- 

 
 
 
   
qRiR(t) = Input to dead-time element. 
qRoR(t) = Output from dead-time element. 
The simplest dead-time approximation can be obtained qraphically or by physical 
representation. 

s
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e
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The accuracy of this approxiamtion depends on the dead time being sufficicently 
small relative to the rate of the change of the slope of qRiR(t). If qRiR(t) were a ramp 
(constant slope), the approximation would be perfect for any value of τRdR. When the 
slope of qRiR(t) varies rapidly, only smal τRdR’s will give a good approximation. 
 
If the variation in x(t) were some arbitrary function, as shown in figure below, the 
response y(t) at the end of the pipe would be identical with x(t) but again delayed by t 

 
Figure Response of transportation lag to various inputs.

  
 
 

Dead 
Time 

qi(t) qo(t) 
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UExample U: Thermal system 

 
If measured at TR1R this can be modelled as: 
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Due to the delay time the temperature TR2 Rrepresented by: 
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UExample U: Mixing tank with time delay. 
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Second order system 
 

A linear second order system under dynamic condition is given by the differential 
equation:- 

kXY
dt
dY

dt
Yd

nn

=++
ω
ξ

ω
21

2

2

2

 
τ

ω
=

n

1  

XkY
dt
dY

dt
Yd

=++∴ ξττ 22

2
2

 Where:- 
k : Steady state gain 
Y : Response value 
X : Input disturbing variable 
ωRnR: Natural frequency of oscillation of the system. 

0)0()0( == YY  

ξ : Damping factor (damping coefficient) 
By taking laplace for the above second order differential equation 
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T.F. of second order system 

If x is sudden force, such as, step change inputs, Y will oscillate depending on the 
value of damping coefficient ξ . 

ξ <1   Response will oscillate (Under damped) 

ξ>1   Response will oscillate (Over damped) 

ξ=1   Response critical oscillation (critical damped) 
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UResponse of second order system 
1) Step change response 
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The quadratic term in this equation may be factored into two linear terms that contain 
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Eq. (1) can now be re-written as 
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2) For ξ>1   Overdamped system 
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UTerms Used to Describe an Underdamped System 
Second order system response for a step change 

 
Figure (8.3) Terms used to describe an underdamped second-order response. 

 
U1. OvershootU (OS) 
Overshoot is a measure of how much the response exceeds the ultimate value (new 
steady-state value) following a step change and is expressed as the ratio  𝐴𝐴𝐵𝐵  in the Fig. 
(8-3). 
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U2. Decay ratioU (DR) 
The decay ratio is defined as the ratio of the sizes of successive peaks and is given by 
𝐶𝐶
𝐴𝐴

 in Fig. (8.3). where C is the height of the second peak 
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U3. Rise timeU(tRrR) 
This is the time required for the response to first reach its ultimate value and is 
labeled in Fig. (8.3). 
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U4. Response time 
This is the time required for the response to come within ±5 percent of its ultimate 
value and remain there. The response time is indicated in Fig. (8.3). 
 
U5. Period of oscillationU (T) 
The radian frequency (radians/time) is the coefficient of t in the sine term; thus, 

21
2

ξ
πτ
−

=T
 

 
U6. Natural period of oscillation 

If the damping is eliminated (ξ=0), the system oscillates continuously without 
attenuation in amplitude. Under these “natural” or undamped condition, the radian 
frequency is  . This frequency is referred to as the natural frequency wRnR. 

τ
1

=nw  

The corresponding natural cyclical frequency fRn Rand period TRn Rare related by the 
expression:- 

πτ2
11

==
n
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f

 
Thus, τ has the significance of the undamped period. 

 
U7- Time to First PeakU(tRpR ) :  
Is the time required for the output to reach its first maximum value. 

21 ξ
πτπ
−

==
w

t p
 

 
Figure(8.4) Characteristics of a step response of underdamped second-order system. 

τ
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Derivations 

1-Over shoot 
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2-Decay Ratio 

A
C

=ratio Decay (The ratio of amount above the ultimate value of two sucessive 

peaks). 
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U3. Rise timeU (tRrR) 
It is the time required for the response to first tauch the ultimate line. 
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4-Period of oscillation (T) 
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5. Natural period of oscillation (TRnR).  

The system free of any damping for ξ=0 
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6-Response time(tRsR) 
The time required for the response to reach (±5%) of its ultimate value and remain 
there. 
 
7- Time to First Peak (tRpR ) 
Is the time required for the output to reach its first maximum value. 
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U2- Impulse Response 
If impulse δ(t) is applied to second order system then transfer response can be written 
as. 
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Example A step change from 15 to 31 psi in actual pressure results in the measured 
response from a pressure indicating element shown in Fig. E5.14. 

 
Figure E5.14 

Assuming second-order dynamics, calculate all important parameters and write and 
approximate transfer function in the form 
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where R' is the instrument output deviation (mm), P' is the actual pressure deviation 
(psi). 
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Example: A control system having transfer function is expressed as: 
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The radian frequency for the control system is 1.9 rad/min. The time constant is 0.5 
min. The control system is subjected to a step change of the magnitude 2.  
Calculate :  
(i) Rise time  
(ii) Decay ratio  
(iii) Maximum value of Y(t)  
(iv) Response time  
 
Solution: 
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10
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Maximum value of response =10(1+0.356)=13.56 

iv) Response time  ts =3
ξ
τ =4.8077 min      for valueultimateof%5±  
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The Control System 
 

UThe control system 
A liquid stream at a temperature TRiR, enters an insulated, well-stirred tank at a constant 
flow rate w (mass/time). It is desired to maintain (or control) the temperature in the 
tank at TRR Rby means of the controller. If the indicated (measured) tank temperature TRm 

Rdiffers from the desired temperature TRRR, the controller senses the difference or error, 
E = TRRR- TRm 
R

 
Figure (8.1) Control system for a stirred-tank heater. 

 
There are two types of the control system:- 

1) Negative feedback control system 
Negative feedback ensures that the difference between TRR Rand TRmR is used to 
adjust the control element so that tendency is to reduce the error. 
E=TRRR-TRm 

2) Positve feedback control system 
If the signal to the compartos were obtained by adding TRR Rand TRmR we would 
have a positive feedback systems which is inherently unstable. To see that this 
is true, again assume that be system is at steady state and that T=TRRR=TRiR. 
If TRiR were to increase, T and TRmR would increas which would cause the signal 
from the compartor to increase, with the result that the heat to the system 
would increse. 
At s.s. T=TRRR=TRin 
E=TRRR+TRm 
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UServo Problem versus Requlator Problem 

 Servo Problem 
There is no change in load TRiR, and that we are interested in changing the bath 
temperature (change in the desired value  (set point) with no disturbance load). 
 

 Requlating problem 
The desired value TRRR is to remain fixed and the purpose of the control system is 

to maintain the controlled variable TRRR in spite of change in load if there is a change in 
the input variable (disturbance load). 

 
UControl system elements  
Control system elements are:- 

1) Process 

2) Measuring element 

3) Controller 

4) Final Control Element 
 
 
 
 
  
 
 
 
 
 
 
 

Closed Loop Feedback  control 
 
 
 
 
 
 
 
 
 
 
 
 

Gm 

GL(s) 

T or Y Final control 
element 

Process 

Measuring 
device 

Controller 

Load 

GP GV GC 

TR  or YR 

Ti(s) 

Comparator 

Set point 

Tmor Ym 
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Development of block Diagram 
 

UProcess 
The procedure  for developing the transfer function remain the same. 
An unsteady-state energy balance around the heating tank gives. 

dt
dTVCpTTCpWqTTCpW ooi ρ=−−+− )()(

 

Where TRoR is the reference temperature 

At steady state, 0=
dt
dT

 
0=ρ=−−+−

dt
dTVCp)TT(CpWq)TT(CpW ossois  

By substracting both equations 

dt
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ssisi
−

ρ=−+−−−  
 
Note that the refernece temperature TRoR cancels in the subtraction. If we introduce 
thedeviation variables. 
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Taking the laplace transform gives 
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The last expression can be written as 
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If there is a change in Q(t) only then 0=)t(Ti  and the transfer function relating
QtoTi  is 

dt
TdVCpQ)TT(CpW i ρ=+−
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Block Diagram for process 
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UMeasuring Element 
The T.F. of the temperature-measuring element is a first order system 
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Where T and mT  are deviation variables defined as 
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                         Figure Block diagram of measuring element 
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UController and final control element 
The relationship for proportional controller is 

)(
)(
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 )()( sEKsQ C=
 

mR

s
TTE
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Controllers and Final Control Element  
 

UFinal control Elements: 
Control valve, Heater, Variec, Motor, pump, damper, louver,   …. etc. 
 
Control valve 
Control valve that can control the rate of flow of a fluid in proportion to the 
amplitude of a pressure (electrical) signal from the controller. From experiments 
conducted on pneumatic valves, the relationship between flow and valve-top pressure 
for a linear valve can often be represented by a first-order transfer function: 
                                     Air supply                                                  Air supply 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control valve (Air to close)                     Control valve (Air to open) 
 

Figure Pneumatic control valve (air-to-close). 
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Transfer Function of Control Valve 
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KRvR: steady-state gain i.e., the constant of proportionality between steady-state flow 
rate and valve-top pressure. 
τRvR: time  constant  of  the  valve  and  is  very  small  compared  with  the  time  
constants  of other components of the control system. A typical pneumatic valve has a 
time constant of the order of 1 sec. Many industrial processes behave as first-order 
systems or as a series of first-order systems having time constants that may range 
from a minute to an hour. So the lag of the valve is negligible and the T. F. of the 
valve sometimes is  approximated by: 

VK
)s(P
)s(Q
=  

The time constant of lag valve depends on the size of valve, air supply characteristics, 
whether a valve positioner is used, etc.    
UControl Action 
It is the manner, in which the automatic controller compares the actual value of the 
process output with the actual desired value, determines the deviations and produce a 
control signal which will reduce the deviation to zero or to small value. 
 
UClassification of industrial automatic controller:  
They are classified according to their control action as: 

1) On-off controller 
2) Proportional controller (P) 
3) Integral controller (I) 
4) Proportional plus Integral controller (PI) 
5) Proportional plus Derivative controller (PD) 
6) Proportional plus Integral plus Derivative controller (PID) 

     The automatic controller may be classified according to the kind of power 
employed in the operation, such as pneumatic controller, hydraulic controller or 
electronic controller.  
Self operated controller: In this controller the measuring element (sensor) and the 
actuator in one unit. It is widely used for the water and gas pressure control. 
 
 
 
 
 
 
 
 
 
 

Figure:  Closed loop block diagram of first order system 
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P(s) )11(
s

K
I

C τ
+  

UTypes of Feedback Controllers 
1) Proportional controller (P):    
For a controller with a proportional control action, the relationship between the 
output of the controller, p(t), and the actuating error signal (input to controller) is 
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)()( sEKsP C ×=  
 
Proportional Band (Band Width) 
Is defined as the error (expressed as a percentage of the range of measured variable) 
required to make the valve from fully close to fully open. 

%100
K
1P.B

C
×=

 

 
On-Off Control 
On-Off control is a special case of proportional control. 
If the gain KRC Ris made Uvery highU, the valve will move from one extreme position to 
the other if the set point is slightly changed. So the valve is either fully open or fully 
closed (The valve acts like a switch). 
The P.B. of the on-off controller reaches a zero because the gain is very high 

0P.B ≈
  

2) Propertional-Integral controller (PI):  
This  mode of control is described by the relationship 
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Iτ  : Integral time constant 
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UProb(10-1)U: PI controller with step change in error 
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3) Proportional-derivative control (PD): 

sDC p])( + E(t) [K= p(t) +
dt
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KRCR: gain  
τRD R: Derivative time (rate time)  
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4) Proportional-Integral-Derivative (PID) controller 
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UMotivation for Addition of Integral and Derivative Control Modes 
The value of the controlled variable is seen to rise at time zero owing to the 
disturbance. With no control, this variable continues to rise to a new steady-state 
value.  
 With control, after some time the control system begins to take action to try to 

maintain the controlled variable close to the value that existed before the 
disturbance occurred. 

 With proportional action only, the control system is able to arrest the rise of the 
controlled variable and ultimately bring it to rest at a new steady-state value. 
The difference between this new steady-state value and the original value (the 
set point, in this case) is called offset.  

 The addition of integral action eliminates the offset; the controlled variable 
ultimately returns to the original value. This advantage of integral action is 
balanced by the disadvantage of a more oscillatory behavior. 

 The addition of derivative action to the PI action gives a definite improvement 
in the response. The rise of the controlled variable is arrested more quickly, 
and it is returned rapidly to the original value with little or no oscillation.  

 

 

P(s) P(t) 
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Figure: Response of a typical control system showing the effects  

of various modes of control 
 
 
UExample: U A unit-step change in error is introduced into a PID controller. If KRcR = 10, 
τRIR = 1, and τRDR = 0.5, plot the response of the controller, m(t). 
USolution:  
The equation of PID controller is  
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UExample: U Consider the 1P

st
P order T. F. of the process with control valve  
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 1s

K P

+τ
 

1+s
K

V

V

τ
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If we assume no interaction; 
The T. F. from   P(s) to Y(s) is  
 

)1)(1()(
)(

++
=

ss
KK

sP
sY

v

pV

ττ
       For a unit step input in P 

Y(s) = 
)1)(1(

1
++ ss

KK
s v

pV

ττ
 

y(t) = KRvRKRpR 















−

−
− −− ττ

ττττ
ττ // 111 tvt ee

vv

v  

 

If  τ>>τRv R  then the T. F. is   
)1()(

)(
+

=
s

KK
sP
sY pv

τ
 

For a unit step input in p 
y(t) =  KRvRKRp R(1 – eP

-t/τ
P) 

 
Example: a pneumatic PI controller has an output pressure of 10 psi when the set 
point and pen point are togather. The set point is suddenly displaced by 1.0 in (i.e a 
step change in error is introduced) and the follwing data are obtained. 

Time (s) 0- 0+ 20 60 80 
Psi 10 8 7 5 3.5 

Determine the actual gain (psi/inch displacement) and the integral time 
 
                                              E 
                                 1.0 in 
                    10 psi 
   cK  
                     8psi 

                                           I

cK
τ

 

For PI control 

s
I

c
c pdtEKKtp ++= ∫τ

)(  

For E=1 

s
I

c
c ptKKtp ++=

τ
)(  

From the above figure 

40
2

2060
57

2

=
−
−

=

=

I

c

c
K
K

τ
 

sec40)2(2020 =×== cI Kτ  
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Iτ

 
UExample U: (A) a unit-step change in error is introduced into a pid controller, if  KRcR=10 
, τRIR=1 and  τRDR=0.5 plot the response of the controller P(t). 
(B) if the error changed with a ratio of 0.5 in/min plot the response of p(t). 
USolution: 
(A) U For a PID control 

sDc
I

c
c p

dt
dEKdtEKtKtp +++= ∫ τ

τ
)(  

For a unit step change in error E(t)=1 
At  t=0         sc pKp +=)0(  

t>0     s
I

c
c ptKKtp ++=

τ
)(  

tppP s 1010+=−=  
 

 
 
 
 
 
 
 
 
 

(B)  E=0.5 t       5.0=
dt
dE     and ∫ ∫= dtdEdt 5.0  

spdttttp +××++×=∴ ∫ 5.05.0105.0105.010)(  

5.25.25)( 2 ++=− ttptp s  
2

s t5.2t55.2p)t(p)t(P ++=−=  
 
 
 
 
 
 
 
 
 
 

t P(t) 
0 2.5 
1 10 
2 22.5 
3 40 
4 62.5 
5 90 

1 
E 
0 

 

0 
 

10 
P 
0 

 

cK

0 
 

E                           0.5 
 
0 

 
 

0                      t 
 

P(t) 
 

2.5 
 

0                    t 
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Dynamic Behaviour of Feedback Controlled Process 
 

Overall transfer function of a closed- loop control system: 
 
 
 
 
 
 
 
 
 
Process balance 

)()()( sdGsmGsy dp +=  

Measuring device 
)()( syGsy mm =
 

Controller system 
)()()( sysysE msp −=     Comparator 

)()( sEGsC c=               Controller 

Final control element  
)()( sCGsm f=  

Algebra manipulation of the above equations and arrange then 
)()()( sdGsmGsy dp +=  

)()()( sdGsCGGsy dfp +=  
)()()( sdGsEGGGsy dcfp +=  

)())()(()( sdGsysyGGGsy dmspcfp +−=  

)())()(()( sdGsyGsyGGGsy dmspcfp +−=  
)()()()( sdGsyGGGGsyGGGsy dmcfpspcfp +−=  

)()()()1( sdGsyGGGsyGGGG dsppfcmpfc +=+  

)(
1

)(
1

)( sd
GGGG

Gsy
GGGG

GGG
sy

mpfc

d
SP

mpfc

pfc

+
+

+
=  

Let    G = GRCR GRfR GRP 

)(
1

)(
1

)( sd
GG

Gsy
GG

Gsy
m

d
SP

m +
+

+
=∴

 

SP
m

G
GG

G
=

+1 load
m

d G
GG

G
=

+1  

m(s) y(s) 
 

Gf Gp 
 

Gm 

GC 

Gd 

Process 
 

Final control 
element 

 

Controller 
 

     ysp 

d(s) 

Comparator 

ym(s) y (s) 

E(s) C(s)  

Measuring Device 
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Types of control proplems: 

 1) Servo systems: 

The distubance does not change (i.e. 0=(s)d ) while the set point undergoes change. 
The feedback controller act in such away as to keep y close to the changing spy . The 

T.F. of closed loop system of this type is: 

)(
1

)( sy
GGGG

GGG
sy SP

mpfc

cfp

+
=  

 2) Regulated systems:  

In these systems the set point (desired value) is constant ( 0=(s)ysp ) and the change 

occurring in the load. The T.F. of closed loop control system of this type is: 

)(
1

)( sd
GGGG

Gsy
mpfc

d

+
=

 
)()( sdGsy load=  

 
The feedback controller tries to eliminate the impact of the load change d to keep y at 
the desired setpoint. 
 
Effect of controllers on the response of a controlled process: 

U(1) Effect of Propertional Control 

The general T.F of the closed loop controller is: 

)(
1

)(
1

)( sd
GGGG

Gsy
GGGG

GGG
sy

mpfc

d
SP

mpfc

pfc

+
+

+
=                                          (*) 

Consider    1,1 == fm GG  

Also for propertional controller    CC KG =  
And eqn. (*) becomes 

)(
1

)(
1

)( sd
GK

Gsy
GK

GK
sy

pc

d
SP

pc

pc

+
+

+
=                                                               (**)

 
For a first order systems 

dKmKy
dt
dy

dpp +=+τ
 

Which gives 
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)(
1

)(
1

)( sd
s
Ksm

s
K

sy
p

d

p

p

+
+

+
=

ττ  
Thus for the uncontrolled system we have time constant= τRp 
Static gains: KRpR for manipolation and KRdR for load 

put 
1s

KGand
1s

K
G

p

d
d

p

p
p +

=
+

=
ττ

 

Then by substitution in eqn. (**) and take the closed loop reponse as 

)s(d

1s
K

K1

1s
K

)s(y

1s
K

K1

1s
K

K
)s(y

p

p
c

p

d

SP

p

p
c

p

p
c

+
+

+
+

+
+

+
=

τ

τ

τ

τ

 

Cp

Cp

Cpp

d
SP

Cpp

CP

KK
KK

sd
KKs

Ksy
KKs

KKsy
+
+

×
++

+
++

=
1
1

)](
1

)(
1

[)(
ττ  

)(

1
1

1

1
)(

1
1

1

1
)( sd

KK
KK

KK
s

KK
K

sy

KK
KK

KK
s

KK
KK

sy

Cp

Cp

Cp

p

Cp

d

SP

Cp

Cp

Cp

p

Cp

CP

+
+

+
+

+
+

+
+

+
+

+
= ττ

 

Rearrange the last eqn.  

)(
1

)(
1

)( sd
s

Ksy
s

Ksy
p

d
SP

p

P

+
+

+
=

ττ  

Where 

Cp

P
p KK+
=

1
ττ     Closed loop time constant 

Cp

Cp
p KK

KK
K

+
=

1
  Closed loop ststic gain 

Cp

d
d KK

KK
+

=
1

   Closed loop ststic gain 

The close-loop response has the follwing charactrstics:- 
1- It remains first order with respect to load and setpoint change 
2- The time constant has been reduced  ( Pp ττ < ) which mean that the closed-loop 

response has become faster than the open loop response, to change in set point 
or load. 

3- The static gain have been decreased. 
 

Disadvantage of Propertional control 
Consider a servo problem with a unit step in the set point 
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0)(1
== sd

s
ysp

 

s
1

1s
K

y
p

p ⋅
+

=
τ

 

)e1(K)t(y p/t
p

τ−−=  

pK)(y =∞∴  
The ultimate response of ∞→t  never reaches the desired new setpoint. There is 
always a discrepancy called offset which is equal to: 
 
Offset = New set point - Ultimate value 

          =
Cp

Cp
p KK

KK
K

+
−=−

1
11  

Cp KK
offset

+
=∴

1
1  

Offset decreases as KRC Rbecomes larger an thoretically ∞→→ CKwhenoffset 0  
 
 
 
 
 
 
 
 
 
U2- Effect of Integral Control 
Consider a servo problem,  0)( =sd  

)(
1

)( sy
GGGG

GGG
sy SP

mpfc

pfc

+
=                                                                                 (*) 

Consider    1== fm GG  

For the 1P

st
P order process

1+
=

s
k

G
p

p
p τ

 

For a simple integral control 

s
KG

I
cc τ

1
=  

Sub in eqn. (*) 

ysp(t)        𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 1
1+𝐾𝐾𝑃𝑃𝐾𝐾𝐶𝐶

 
     1 
                          y(t) 
 
 
 
     0 
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)s(y
KK)s)(1s(

KK)s(y

s
K

1s
K1

s
K

1s
K

)s(y SP
CPIp

CP
SP

I

C

p

P

I

C

p

P

++
=

⋅
+

+

⋅
+

=
ττ

ττ

ττ
 

)s(y

KK
KK

KK
s

KK
s

KK
KK

)s(y SP

CP

CP

CP

I

CP

2
Ip

CP

CP

++

=
τττ

 

)(
12

1)( 22 sy
ss

sy SP++
=

ψττ
                                                                                 (**) 

Where 

cpp

I

cp

pI

KKKK τ
τψ

ττ
τ

2
1

==  

Eqn. (**) indicates an important effect of the integral control action:- 
1- It increases the order of the dynamic for the closed-loop reponse.  

Thus for a first-order uncontrolled process, the response of the closed-loop 
becomes second order. 

2- Increase CK  decreases ψ ∴more oscillatory 
3- To examine the effect of integral on s.s error 

)(
12

1)( 22 sy
ss

sy SP++
=

ψττ
 

If 
s

sySP
1)( =  

The ultimate value= AK=1*1=1 
∴offset= New setpoint-ultimate value 
            =1-1=0 
It indicate that the integral control eliminates any offset 

 
U3- Effect of Derivative Control Action 
For derivative control 

sKG Dcc τ=  

)s(y
sKK1s

sKK)s(y
sK

1s
K1

sK
1s

K

)s(y SP
DcPp

DcP
SP

Dc
p

P

Dc
p

P

ττ
τ

τ
τ

τ
τ

++
=

⋅
+

+

⋅
+

=  

)(
1)(

)( sy
sKK

sKKsy SP
Dcpp

DcP

++
=

ττ
τ                                                                          (*) 

Eqn. (*) indicates that:- 
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1- The derivative control does not change the order of the reponse. 
2- The effective time constant of the closed-loop response )KK( pCpp D

τττ >+

This means that the response of the controlled process is slower than that of the 
original first-order process and as cK increase the response become slower. 

UEffect of Composite Control Action 
U1- Effect of PI control  
Combination of propertional and integral control modes lead to the follwing effects 
on the response of closed-loop system. 

1- The order of the response inceases ( effect of I mode). 
2- The offset is eliminated (effect of I mode). 
3- As KRcR increses, the response becomes fater ( effect of P and I modes) and more 

oscillatory to set point changes [ovesrshoot and decay ratio increase (effet of I 
mode)]. 
Large value of KRcR create a very sensitive response and may lead to instability. 

4- As Iτ decreases, for constant KRcR, the reponse become faster but more oscillatory 
with higher overshoot and decay ratio (effect of I mode). 
 

U2- Effect of PID control  
To increase the speed of the closed loop response, increase the value of the controller 
gain KRcR. But increasing enough KRcR in order to have acceptable speed, the response 
become more oscillatory and may lead to unstability. 
The introduction of the derivative mode brings a stability effect to the system. Thus 
to achive 

1- Acceptable response speed by selecting an appropriate value for the gain KRcR. 
2- While maintaining moderate overshoot and decay ratios. 
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UExample: U  Regular loop with the following elements 
GRPR(s) = 

110
3
+s

            (process) 

GRdR(s) = 
110

1
+s

            (Load) 

GRmR(s) = 1                    (measuring device) if not given take 1 
GRCR(s) = 2                    (controller) 
GRf R(s) = 1.5                  (valve) 
 
Determine the system response for a unit step in load 
 
 
 
 
 
 
 
 
 
 
USolution: 
 

Regulator loop:  
)()(1

)(
)(
)(

sGsG
sG

s
s

m

d

d

o

+
=

θ
θ  

G(s) = GRCR(s) GRf R(s) GRPR(s) = 2×1.5×
110

3
+s

=
110

9
+s

 

1s10

9
1s10

1

1)s(
)s(

d

o

+

+

+
=

θ
θ

= 
1010

1
+s

 

θRdR(s) = 
s
1                                                                                      1/10 

)1(
10
1

 = (s)o +ss
θ

                                                       
 θRoR(t)                                                      off-set

 
)e-0.1(1 (t) -t

o =θ  

 0.1 = )(  ,  =At t 
0 = (t), 0 =At t 

o

o
∞∞ θ

θ
                                                                        

Or 

10
1

)1(
10
1

s lim )(s lim = )(
0so0so =

+
=∞

→→ ss
sθθ  

Offset= New s.s value-Ultimate value= 0 - 0.1= -0.1 
 
 

Gd(s) 

Gm(s) 

θo(s) θSP(s) 

Set point 
1.5 

110
3
+s

 

1 

2 

110
1
+s

 

GP(s) Gf (s) GC(s) 

θd(s) 
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UExample U: the set point of the control system shown in the figure is gives a step 
change of a 0.1 unit. Determine 

1- The maximum value of C. 
2- The offset. 
3- The period of oscillation. 

 
 

pc

pc

GG
GG

sR
sC

+
=

1)(
)(  

8132
8

)12)(1(
56.11

)12)(1(
56.1

)(
)(

2 +++
=

++
×+

++
×

=
ss

ss

ss
sR
sC

 

1s333.0s222.0
8889.0

1s
3
1s

9
2

9
8

9s3s2
8

)s(R
)s(C

2
2

2 ++
=

++
=

++
=  

471.0222.02 =⇒= ττ
 3538.03333.02 =⇒= ψψτ (Underdamped)

 Ultimate Value=A*K=0.1*0.8889=0.08889 

0.3047)
)3538.0(1

3538.01418.3exp()
1

exp(
22

=
−

×−
=

−

−
=

ψ
ψπOvershoot

 

1) The maximum value =Ultimate value*(1+Overshoot) 
                                  = 0.08889*(1.3047)=0.1160 
To find the time required to reach maximum value apply K,  A , CRmax , Rψ and τ 
in the equation. 

]wtsin
1

wt(cose1[kA)t(Y
2

t)/(

ψ
ψτψ

−
+−= −

    

τ
ψ 21w −

=
 

2) The offset=New set point- Ultimate value 
                     =0.1-0.088889=0.01111 

3) Period of oscillation = 3.1640
)3538.0(1

471.02
1
2

22
=

−

×
=

−

π
ψ
πτ  

 
Example: Consider the figure below, a unit step change in load enters at either 
location 1 or location 2. 
What is the offset when the load enters at location 1 and when it enters at location 2 

C R 
)12)(1(

5
++ ss

 

6.1=cK  
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Ua-when the load enters in location 1 

0)s(U,
s
1)s(U 21 ==  

)(
1

)( 1
21

21 sU
GGG

GGsC
c+

=
 

)s(U
1s

11
4s

11
4

11/2)s(U
11s4s4

2

)s(U
101s4s4

2)s(U
5

1s2
1

1s2
21

1s2
1

1s2
2

)s(C

1
2

12

121

++
=

++
=

+++
=

×
+

⋅
+

+

+
⋅

+=

 
0.1818

11
2
==K

 

0.6030
11
4
==τ

 

0.3015
2
1

11
4

11
42 =×=⇒=

τ
ψψτ  

Ultimate value=A.K=1*0.1818=0.1818 
Offset=0 - 0.1818= -0.1818 
 
Ub-when the load enters in location 2 

)(
1

)( 2
21

2 sU
GGG

GsC
c+

=
 

11
11
4

11
4

12)(
1144

12

)(
10144

12)(
5

12
1

12
21

12
1

)(

2
22

222

++

+
=

++
+

=

+++
+

=
×

+
⋅

+
+

+=

ss

ssU
ss

s

sU
ss

ssU

ss

ssC

 
091.0

11
1

11
11
4

11
4

12lim)(
20

==
++

+
=∞

→ ss

sC
s

 
Offset= 0 - 0.0.091= -0.091 
 
 

C R 
)12(

1
+s

 5=cK  )12(
2
+s

 

U1

 

U2

 

Gc

 G1

 

G2
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UExample U: For the figure 
 
 
 
 
For 21 === IID andτττ  

a- Calculate ψ when KRcR=0.5 and KRcR=2 
b- Determine the effect for a unit-step change in load if KRcR=2 

pc

pc

GG
GG

sR
sC

+
=

1)(
)(

 

12
1)11(1
12

1)11(

1
1)11(1

1
1)11(

)(
)(

1

1

+
+++

+
++

=

+
+++

+
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=

s
s

s
K

s
s

s
K

s
s

s
K

s
s

s
K

sR
sC

c

c

D
I

c

D
I

c

τ
τ

τ

τ
τ

τ

 

ccc

c

c

c

c

c

KsKsK
ssK

ssKss
ssK

ss
ssK

ss
ssK

++++
++

=
++++

++
=

+
++

+

+
++

=
)1()2(
)1(

)1(2
)1(

12
1)1(1

12
1)1(

2

2

22

2

2

2

 

1)1()2(
)1(

2

2

+
+

+
+

++
=

s
K

Ks
K

K
ss

c

c

c

c
 

a-1)  KRcR=0.5 

2.2361
5.0

5.022
=

+
=

+
=

c

c

K
Kτ  

3
5.0

5.01)1(2 =
+

=
+

=
c

c

K
Kψτ 0.6708

2361.22
3

2
3

=
×

==⇒
τ

ψ  

a-2)  KRcR=2 

1.4142
2

22
=

+
=τ  

5.1
2

21)1(2 =
+

=
+

=
c

c

K
Kψτ 0.5303

11.41422
5.1

2
5.1

=
×

==⇒
τ

ψ  

B) )(
1

)( sU
GG

G
sC

cp

p =
+

=  

)(

12
1)11(1

12
1

)(

1
1)11(1

1
1

)(

1

1 sU

s
s

s
K

ssU

s
s

s
K

ssC
cD

I
c +

+++

+=

+
+++

+=

τ
τ

τ
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C R 
1

1

1 +sτ
 )11( s

s
K D

I
c τ

τ
++  

U
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sssss
ssU

ssKss
s

c

1
)1(22

)(
)1(2 2222 ×

++++
=

++++
=  

134
1

2 ++
=

ss
 

75.0
4
332

2

==⇒=

=

ψψτ

τ

 

0
134

1lim)( 20
=

++
=∞

→ ss
sC

s  
Offset=0-0=0 
 
UExample U A PD controller is used in a control system having a first order process as 
shown. For Servo problem 
a-find expression for ψ and τ for the closed loop response. 
b-if τR1R=1 , τRmR=10 sec . Find KRcR so that  ψ=0.7 for two cases (1) τRDR=0  ,(2) τRDR=3 sec. 
c- Calculate the offset in both cases. 

 
 
 
 
 
For the closed loop T.F. 
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1

)(
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G
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=
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=
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c

m

K+
=

1
1τττ

 

c

Dcm

K
K

+
++

=
1

2 1 τττψτ
 

m

c

c

Dcm K
K
K

ττ
τττψ

1

1 1
)1(2

+
+
++

=
 

mc

Dcm

K
K
ττ
τττψ
1

1

)1(2 +
++

=∴
 

 

b)
mc

Dcm

K
K

ττ
τττψ
1

1

)1(2 +
++

=∴   for ψ=0.7 

1) τRDR=0   

cc KK 600600
35

1060)1(2
010607.0

+
=

×+
++

=∴  

50600600 =+ cK  
2500600600 =+ cK  

166.3=cK  
 
2) τRDR=3 sec 

600)1(2
370

600)1(2
310607.0

c

c

c

c

K
K

K
K

+
+

=
+

++
=∴  

)1(292.34370 cc KK +=+  
)1()042.01(04.2 cc KK +=+  

)1(0075.0355.01616.4 2
cc KKK

c
+=++  

01616.30645.00075.0 2 =+− cKK
c

 
266.573.80 ==∴ cc KorK  

 
(c)  The offset 

)s(sflim)t(flim
st 0→∞→

=
 

s
R 1
=  

Ultimate value= 76.0
166.4
166.3

1
1

1
)1(

)(
)1(

)1(
)1)(1(

lim
1

2
10

==
+

=×
+

+
++

+
+

+
++

→ c

c

c

Dcm

c

m

c
mDc

s K
K

ss
K

K
K
s

K
ssK

s
τττττ

ττ

 

Offset= 1- 0.76= 0.24 
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Overall transfer function of a closed- loop control system 
 
The transfer function of a block diagram is defined as the output divided by its input 
when represented in the Laplace domain with zero initial conditions. The transfer 
function G(s) of the block diagram shown in Fig. (1). 

)s(G
)s(X
)s(Y
=  

Here the path of the signals X(s) and Y(s) is a forward path. 
 

 
X(s) Y(s) G(s) 

Fig. (1) Transfer function of a block diagram 
 

Consider the block diagram of cascaded elements shown in Fig. (2a). Form the 
definition of a transfer function we have: 

)s(G
)s(X
)s(Y

)s(G
)s(X
)s(X

)s(G
)s(X
)s(X

3
3

2
2

3

1
1

2

=

=

=

 

And substitution yields  
)s(X)s(G)s(G)s(G)]s(X)s(G)[s(G)s(X)s(G)s(Y 112322333 ===  

Which can be written as  

)s(G)s(G)s(G)s(G
)s(X
)s(Y

123
1

==  

 

 
Y(s) X1(s) 

G1(s) 

Fig. (2) Cascaded elements 

G2(s) G3(s) 
X2(s) X3(s) 

(a) 

X1(s) 
G(s) 

(b) 

Y(s) 

 
The overall transfer function then is simply the product of individual transfer 
functions. 
 
For applications where it is required to generate a signal which is the sum of two 
signals we define a summer or summing junction as shown in Fig. (3a). If the 
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difference is required, then we define a subtractor as shown in Fig. (3b). Subtractors 
are often called error detecting devices since the output signal is the difference 
between two signals of which one is usually a reference signal.  

 

 

(a) 

Fig. (3) Addition or subtraction of signals 

X1(s)+X2(s) X1(s) 

X2(s) 

(b) 

+ 

+ 
X1(s)-X2(s) X1(s) 

X2(s) 

- 

+ 

Subtractor (Error detecting device) Summer 

 
The combination of block diagrams in parallel is shown in Fig. (4a). Form the 
definition of the transfer function we have  

)s(X)s(G)s(Y
)s(X)s(G)s(Y
)s(X)s(G)s(Y

33

22

11

=
=
=

 

And the summer adds these signals, 
)s(Y)s(Y)s(Y)s(Y 321 ++=  

or 
)s(X)]s(G)s(G)s(G[)s(Y 321 ++=  

The overall transfer function shown in Fig.(4b) is  

)s(G
)s(X
)s(Y
=  

where 
)s(G)s(G)s(G)s(G 321 ++=  

 

 

X(s) 

(a) 

+ 

+ + 

Y1(s) 

X(s) 

G1(s) 

Fig. (4) Parallel combination of elements 

G2(s) 

G3(s) 

Y2(s) 

Y3(s) 

G(s) 

(b) 

Y(s) Y(s) 

 
In summary, we observe that for cascaded elements the overall transfer function is 
equal to the product of the transfer function of each element, whereas the overall 



Process Control /Lec. 11      103                                     Written by Assoc. Prof.   
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

transfer function for parallel elements is equal to the sum of the individual transfer 
function. 
UExample U:Derive the overall transfer function for the control system shown in Fig. 
(5). 
 

- C1(s) 
B1(s) 

E2(s) C2(s) R(s) 
E1(s) + 

- 
G1(s) 

Fig.(5) Block diagram of a system with two feedback paths 

H2(s) 

C(s) 

B2(s) 

+ G3(s) G2(s) 

H1(s) 

 
USolution 

)s(B)s(C)s(E
)s(B)s(R)s(E

112

21
−=
−=  

)s(C)s(G)s(C
)s(E)s(G)s(C

)s(E)s(G)s(C

23

222

111

=
=
=

 

)s(C)s(H)s(B
)s(C)s(H)s(B

222

11
=
=  

Substituting of the sub-transfer functions  
)s(C)s(G)s(C 23=  

)s(E)s(G)s(G)s(C 223=  
)]s(B)s(C)[s(G)s(G)s(C 1123 −=  

)]s(C)s(H)s(E)s(G)[s(G)s(G)s(C 11123 −=  
)]s(C)s(H))s(B)s(R)(s(G)[s(G)s(G)s(C 12123 −−=  

)]s(C)s(H)s(C)s(H)s(G)s(R)s(G)[s(G)s(G)s(C 1221123 −−=  

)]s(C)s(H
)s(G

)s(C)s(H)s(G)s(R)s(G)[s(G)s(G)s(C 1
3

21123 −−=  

)s(C)s(H)s(G)s(G
)s(G

)s(C)s(H)s(G)s(G)s(G)s(R)s(G)s(G)s(G)s(C 123
3

2123123 −−=  

)s(R)s(G)s(G)s(G)s(C)]s(H)s(G)s(G)s(H)s(G)s(G1[ 123123212 =++  
Finally, the overall transfer function 

)s(H)s(G)s(G)s(H)s(G)s(G1
)s(G)s(G)s(G

)s(R
)s(C

132221

321

++
=  
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UExample U: A single-loop control system is shown in figure below. Determine closed-

loop transfer function 
)s(R
)s(Y  

 
 
 
Solution 

Transfer function
GH1

G
)s(R
)s(Y

+
=  

)4s)(2s(s
)3s)(1s(2)4s)(2s(s

)4s)(3s(s
)3s)(1s(2

1*
)4s)(2s(s
)3s)(1s(21

)4s)(2s(s
)3s)(1s(2

)s(R
)s(Y

++
+++++

++
++

=

++
++

+

++
++

=

6s2s6s2s8s2s4s
6s2s6s2

)3s)(1s(2)4s)(2s(s
)3s)(1s(2

2223

2

+++++++
+++

=
+++++

++  

6s16s8s
6s8s2

)s(R
)s(Y

23

2

+++
++

=∴  

 

UBlock Diagram Reduction 

When the block diagram representation gets complicated, it is advisable to reduce the 
diagram to a simpler and more manageable form prior to obtaining the overall 
transfer function. We shall consider only a few rules for block diagram reduction. We 
have already two rules, viz. Cascading and parallel connection. 
Consider the problem of moving the starting point of a signal shown in Fig. (6a) from 
behind to the front of G(s). since B(s)=R(s) and R(s)=C(s)/G(s), then B(s)=C(s)/G(s). 
therefore if the takeoff point is in front of G(s), then the signal must go through a 
transfer function 1/G(s) to yield B(s) as shown in Fig. (7b). 
  

Starting point of B(s) 

R(s) R(s) 

B(s) 

G(s) 

Fig.6 Moving the starting point of a signal 

G(s) C(s) 

(a) (b) 

B(s) 1/G(s) 

C(s) 

 
 

G(s)=
)4)(2(
)3)(1(2

++
++

sss
ss

 

+ 

- 

R(s) Y(s) 
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Consider the problem of moving the summing point of Fig. (7a). Since  

)s(C)s(M)s(E
)s(G)s(C)s(G)s(M)s(G)]s(C)s(M[)s(E

11 +=
+=+=  

where  
)s(G)s(C)s(C);s(G)s(M)s(M 11 ==  

The generation of the signals MR1R(s) and CR1R(s) and adding them to yield E(s) is shown 
in Fig. (7b). A table of the most common reduction rules is given in Table 1. 

 
M(s) 

+ 
+ 

M1(s) E(s) M(s) E(s) 

C1(s) 

+ 

+ 

Fig.(7) Moving a summing junction 

G(s) 

C(s) 
C(s) G(s) 

(a) (b) 

G(s) 
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Reduced system Original system 

R(s) C(s) R(s) 

R(s) 

B(s) 

C(s) 

R(s) 

C(s) 

B(s) 

+ 

+ 

G2(s) 

Table 1 Some rules for block diagram reduction 

G1(s)G2(s) R(s) 

C(s) 

Rule 

 

Closed loop 
system 

Addition or 
subtraction 

Moving a 
starting point 

Moving a 
summing point 

Cascaded 
elements 

 
 G1(s) 

G2(s) 

C(s) G1(s)+G2(s) R(s) 

R(s) C(s) G(s) 

R(s) C(s) G(s) 

+ 

- 
C(s) 

B(s) 

G(s) 

G(s) 

G(s) 
+ 

- 

B(s) 

R(s) + 

- 
C(s) G(s) 

H(s) 

C(s) 
)()(1

)(
sGsH

sG
+

 

R(s) 

G1(s) 

)(
1
sG

 

 
 
 
Consider the transfer function of the system shown in Fig. (8a). The final transfer 
function is shown in Fig. (8d).  
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C(s) 

C(s) 

- 
+ 

C(s) R(s) + 

- 
G1(s) 

Fig.8 Obtaining transfer function by block diagram reduction 

G3(s) 

G2(s) 

(a) 

(b) 

+ 

+ 

H1(s) 

G4(s) 

H2(s) 

- 
+ 

R(s) + 

- 
G1(s) 

H2(s) 

)(
)(

4

1

sG
sH

 

G2(s)+G3(s) G4(s) 
C(s) 

H2(s) 

R(s) + 

- )]()()[(1
)()]()([

)(
321

432
5 sGsGsH

sGsGsGsG
++

+
=

 

G1(s) 

(c) 

(d) 

R(s) 
)()()(1

)()(

251

51

sHsGsG
sGsG

+
 

First reduction 

Next reduction 

 
 
UExample U: Obtain the transfer function C/R of the block diagram shown in Figure 
below. 
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UExample U: Obtain the transfer function C/R of the block diagram shown in Figure 
below. 
 
 
 
 
 
 
 
 
 
 
 
USolutionU: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )








−

+
+

−
+

=

)s(G).s(G).s(H1
)s(G)s(G).s(G).s(G)s(H1

)s(G).s(G).s(H1
)s(G)s(G)s(G).s(G

)s(R
)s(C

211

4321
2

211

4321

( )

( )
)s(G).s(G).s(H1

)s(G)s(G)s(G).s(G)s(H
)s(G)s(G)s(H1

)s(G).s(G).s(H1
)s(G).s(G).s(H1

)s(G)s(G)s(G).s(G

211

4321

211

211

211

4321

−
+

+
⋅⋅−

−
−

+

=  

( ) ( )
( ) ( ) ( ))s(G)s(G)s(G)s(G)s(H)s(G)s(G)s(H1

)s(G)s(G)s(G)s(G
)s(R
)s(C

43212211

4121

+×⋅⋅+⋅⋅−
+×⋅

=  

G1(s) G3(s)G2(s)

H1(s)

G4(s)

+

+

+

-

+ +
C(s)

R(s)

H2(s)

G1(s) G3(s) + G4(s)G2(s)

H1(s)

+

+

+

-
C(s)

R(s)

H2(s)

      G1(s) x G2(s)
1- H1(s)x(G1(s) x G2(s))

G3(s) + G4(s)+

-
C(s)

R(s)

H2(s)
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Stability Analysis 
 
A stable system is one where the controlled variable will always settle near the set 
point. An unstable system is one where, under some conditions, the controlled 
variable drifts away from the set point or breaks into oscillations that get larger and 
larger until the system saturates on each side. 
 
 
 
 
 
 
 
 
                   Stable system                                           unstable system 
 

Methods of Stability Test 

1-Determination the roots of equation 

 
 
 
 

)s(U
HGG1

G)s(R
HGG1

GGC
21

2

21

21

+
+

+
=  

0HGG1 21 =+ (Characterstic Equation) 
0).........rs)(rs)(rs( 321 =−−−  

 
 
 
 
 
A linear control system is unstable if any roots of its characterstic equation are to the 
right of imaginary axis. 
If this equation has some roots with positive real parts, then the system is unstable, or 
some roots equal to zero, the system is marginally stable (oscillatory), therefore it is 
unstable. 
     Then for stability the roots of characteristic equation must have negative                                                                                                    
real parts. 

C R G2 G1 

U
 

H 

p ×

Im 
s-p 

s 

Re 
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Example:if  

s
1s5.010G1

+
=

  
PI control 

1s2
1G2 +

=          Stirred tank 

1H =                    Mesuring element without lag 
0HGG1G1 21 =+=+  

0
)1s2(s

)1s5.0(101 =
+
+

+  

010s5)1s2(s =+++  

010s6s2 2 =++  
05s3s2 =++  

2
209

2
3s −−

=   

2
11j

2
3s1 +

−
=∴      and  

2
11j

2
3s2 −

−
=  

Since the real part in s1 and s2 in -ve  (
2
3

− )∴The system is stable 
 
2-RouthP

’
Ps Method 

a-Write the characterstic eqn. on the form of a polynomial shape: 

0 =..a…+sa +sa+sa n 
2-n

2
1-n

1
n

o                           (*) 

Where ao is positive 

It is necessary that ao, a1, a2,…. an-1, an be positive. If any coeff. is negative, the 
system is unstable. 
If all of the coeff. are positive, the system may be stable or unstable. Then apply the 
next step. 
b. Routh array: 
Arrange the coeff. of eqn. (*)  into the first two rows of the Routh array shown 
below. 
Row     
1 ao a2 a4 a6 

2 a1 a3 a5 a7 

3 A1 A2 A3  
4 B1 B2 B3  
n+1 C1 C2 C3  
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1

3o21
1 a

aaaaA −
=    ,    

1

5o41
2 a

aaaaA −
=    ,   

1

7o61
3 a

aaaaA −
=  

1

2131
1 A

AaaAB −
=   , 

1

3151
2 A

AaaAB −
=  

1

2121
1 B

BAABC −
=  , 

1

3131
2 B

BAABC −
=  

Examine the elements of the first column of the array ao, a1, A1, B1,C1……….W1 

a) If any of these elements is negative, we have at least one root on the right of 
the imaginary axis and the system is unstable. 

b) The number of sign changes in the elemnts of the first column is equal to the 
number of root to the right of the imaginary axis. 
 
∴The system is stable if all the elements in the first column of the array are 
positive 

 
Example:Given the characteristic eqn. 
sP

4
P + 3sP

3
P +5sP

2
P + 4s +2= 0  

Solution: 

      3
11

3
11453A1 =

×−×
=

 

      
2

3
023A2 =

−×
=

 

      
36.2

311
64311B1 =

−×
=

 

       
2

36.2
236.2C1 =

×
=

 
∴The system is stable 
 
Example: Apply the RouthP

’
Ps stability criterion to the equation: 

sP

4
P + 2sP

3
P +3sP

2
P + 4s + 5 = 0    

Solution: 
sP

4      
P1    3   5    

sP

3
P    2   4   

sP

2
P    1   5    

sP

1
P     -6   0  

sP

0
P    5      

The system is unstable. 
 

Row    
1 1 5 2 
2 3 4 0 
3 311  2 0 
4 2.36 0  
5 2   
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Example: A system has a characteristic equation .024269 23 =+++ sss  Using the 
Routh criterion, show that the system is stable. 
Solution 
q(s)  = 24269 23 +++ sss  
Using the Routh-Hurwitz criterion, 

0

1

2

3

s
s
s
s

24
26
9
1

0
0
24
26

 

No sign change in st1  column then the system is stable. 
 
Example: Consider the feedback control system with the characteristic equation. 

0K)sK(22s+s
I

c
c

 23 =+++
τ

 

Solution: 
The corresponding Routh array can now be formed 

 

 
The elemnets of the first-column are positive except the third, which can be positive 
or negative depending on Kc and τI. 
So state the stability 

Put 
I

c
c

Icc K)K2(20
2

K)K2(2
τ

τ
>+⇒>

−+

 

If Kc and τI satisfy the condition, then the system is atable 
 
Critical stability 
Put the third element=0 

i.e 
I

c
c

K)K2(2
τ

=+
 

For τI=0.1 

cc K10)K2(2 =+ cK84 =⇒
 5.0Kc =

 

Row    
1 1 cK2 +  0 
2 2 

I

cK
τ

 
0 

3 
2

K)K2(2 Icc τ−+  0 0 

4 IcK τ  0 0 



Process Control /Lec. 12       113                                    Written by Assoc. Prof.  
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

1) if 5.0Kc < , the system is stable (all of the elements in the 1st column is +ve) 

2) if 5.0Kc > , the third element of the 1st column is negative. We have two sign 
change  in the elements of the first column. 

∴we have two roots to the right of imaginary axis. 
 

Example: 
 
 
 
 

If
3
1= ,

2
1= 1,= 321 τττ  

Determine Kc for a stable system 
Solution: 
The char. Eqn. 

0
)1s

3
1)(1s

2
1)(1s(

1K1 c =
+++

+
 

0K)1s
3
1)(1s

2
1)(1s( c =++++

 

0K)1s
3
1)(1s

2
3s

2
1( c

2 =++++
 

0K1
2
s3

2
s

3
s

2
s

6
s

c

223

=++++++  

0K1s
6

11ss
6
1

c
23 =++++

 
 
 
 
 
 
 

Since Kc>0 
∴The system will be stable 
If  10-Kc>0

 

Row   
1 1/6 11/6 
2 1 1+Kc 

3 
6

K10 c−  0 

4 1+Kc  

C 
)1s)(1s(

1

21 ++ ττ
 Kc 

U
 

)1s(
1

3 +τ
 

R 



Process Control /Lec. 12       114                                    Written by Assoc. Prof.  
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

10Kc <
 Therfore Kc must within the range 0<Kc< 10

 

 
Example: 
 
 
 

Study the stability for Kc=2 
Solution: 

0
1s4.0s2.0

12)
s
31(K1 2c =

++
××++

 

0
1s4.0s2.0

2)
s

3s(K1 2c =
++

×
+

+
 

0
1s4.0s2.0

2)
s

K3sK(1 2
cc =

++
×

+
+

 
0K6sK2ss4.0s2.0 cc

23 =++++
 
0K6s)K21(s4.0s2.0 cc

23 =++++
  

 
 
 
 

 

4.0
K4.04.0

4.0
K2.1K8.04.0

4.0
)K2.1()K21(4.0A ccccc

1
−

=
−+

=
−+

=
 

0K4.04.0 c >−  
The system is stable for 1Kc <  

c1 K6B = 0K6 c >⇒
 And 0Kc >  

Therfore Kc must within the range   0 <Kc< 1
 

 
 
 
 
 
 

Row   
1 0.2 1+2Kc 
2 0.4 6Kc 

3 A1

 
0
 

4 B1 0
 

Row For Kc=2  
1 0.2 5 
2 0.4 12 

3 
4.0

4.22−  0
 

4 1.2 0
 

C 

U
 

2
 

)
s
31(Kc +  

1s4.0s2.0
1

2 ++
 

R 
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Example: Designers have developed small, fast, vertical-take off fighter aircraft that 
are invisible to radar. This aircraft concept uses quickly turning jet nozzles to steer 
the airplane. The control system for the heading or direction control is shown in 
figure. 
Determine the maximum gain of the system for stable operation. 
 
 
 
 
 
 
Solution 

G(s) = 
s100s20s

k20ks
)100s20s(s

k20ks
)10s(s
)20s(k

2322 ++
+

=
++

+
=

+
+  

 Characteristic equation, 
1+GH = 0 

1+ 01*
s100s20s

k20ks
23 =
++

+  

s100s20s 23 ++ +ks+20k  =0 
0k20s)k100(s20s 23 =++++  

The corresponding Routh array can now be formed 
 
 
 
 
 
 

a = 
20

k20)k100(20 −+ =
20

k20k20100*20 −+    = 100 

b = 
a

0k20*a −     =20 k 

 The system is stable, no sign change in st1  column, 
b>0 
20k >0 
k>0 
∴Range of k is must be k>0 
 
 

Row   
1 1 100+k 
2 20 20k 

3 a
 

0
 

4 b 0 
 

+ 
k

controller
 

- 
2)10(

)20(
+
+

ss
s Y(s) R(s) 

Heading 
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Frequency Response Analysis 
 

It is how the output response (amplitude, phase shift) change with the frequency of 
the input sinusoidal.  

The input frequency is varied, and the output characteristics are computed or 
represented as a function of the frequency. Frequency response analysis provides 
useful insights into stability and performance characteristics of the control system. 
Figure below shows the hypothetical experiment that is conducted. 

 
Figure: How frequency response is defined. 

 
UResponse of a first-Order System to a Sinusoidal Input 
Consider a simple first-order system with a transfer function 

1s
K

)s(F
)s(y)s(G

p

p

+
==
τ

                                                                                           (1)  

Let F(t) be a sinusoidal input with amplitude A and frequency ω; 
F(t) = A sin (ωt) 

Then 

22s
A)s(F
ω
ω
+

=                                                                                              (2)  

Sub. )s(F from eq. (2) into eq. (1)  

)js)(js(
A

1s
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s
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1s
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)s(y
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p
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+
=

+
×

+
=

 
Expand into partial fraction and find 

ωωτ js
C

js
C

/1s
C)s(y 32

p

1

−
+

+
+

+
=

 
Compute the constants CR1R, CR2R and CR3R and find the inverse of laplace transform. 

1
AK
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1

AK
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1
AK

C 22
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p
322
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222
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+

−
=
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=
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)tsin(
1
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1
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e
1
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)t(y 22

p

p
22
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22

p

pp p ω
ωτ

ω
ωτ

τω
ωτ

τω τ

+
+

+
−

+
= −

 

As t→∞, then 0e p/t →− τ , and the first term disappers. 
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Thus, after a long time, the response of a first order system to a sinusoidal input is 
given by: 

)tsin(
1

AK
)tcos(

1
AK

)t(y 22
p

p
22

p

pp
ss ω

ωτ
ω

ωτ
τω

+
+

+
−=

)]tsin()tcos([
1

AK
)t(y p22

p

p
ss ωωτω

ωτ
+−

+
= (3) 

Use the follwing trigonometric identity. 

q
ptanqpr

)sin(rsinqcosp
122 −=+=

+=+

φ

φθθθ

 

( ) 11)(r

p1q
2222

p

p

p
+=+−=

−==

ωτωτ

τω
 

)(tan)
1

(tan
q
ptan p

1p11 τω
τω

φ −=
−

== −−−
 

Then eq.(3) yield 

)]tsin()1[(
1

AK
)t(y 22

22
p

p
ss p

φωωτ
ωτ

++
+

=  

)tsin(
1

AK
)t(y

22
p

p
ss φω

ωτ
+

+
=                                                                                   (4) 

)(tan p
1 ωτφ −= −

lagPhase=                                                                                    (5) 
 
From eq.(4) and eq. (5), we observe that: 

1) The ultimate response (also referred to as s.s.) of a first order system to a sin 
input is also a sinusoidal wave with the same frequency ω. 

2) The ratio of the output amplitude to the input amplitude is called the “ 
amplitude ratio” and is a function of the frequency: 

1

K
A

1

AK

ratioamplitudeAR
22

p

p
22

p

p

+
=

+
==

ωτ

ωτ
 

1

K
AR

22
p

p

+
=

ωτ
                                                                                                      (6) 

3) The output wave lags behind (phase lag) the input wave by an angle φ >, 
which is a function of the frequency ω (see eq.(5)). 

                Input = A sin (ωt)φ  
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A B 

 
 
 
 
 
 
                           T                          Output = B sin (ωt-φ ) 
It is the most important methods for stability analysis and used for design purposes 
control system.  
Suppose the input to the process is sinusoidal signal  
Where: A is amplitude      

ω is frequency (rad/sec) = 
T
1  

T is period of one complete cycle (time)  
 
UFrequency Response of a Second Order System 
For a second order system the transfer function is: 

1s2s
K

)s(G 22
p

++
=

ψττ  
Put s=jω  then 

1) Amplitude Ratio                                            

2222
p

)2()1(

K
AR

ωτψωτ +−
=

 
2) Phase shift                                                                       

)
1

2(tan 22
1

ωτ
ωτψφ

−
−= −

 Which is aphase lag since  0<φ  
 
UFrequency Response of a Pure Dead-Time Process 

stde)s(G −=  
Put s=jω

 

ωω dtje)j(G −=∴
 1AR =

 ωφ dt−=

 That is aphase lag since  0<φ  
 
 



Process Control /Lec. 13  119  
Fourth Class 

UFrequency Response of a Feedback Controllers 
1- UPropertional controller: 
The transfer function is cK)s(G =

 
∴ cKAR =

 
           

0=φ

  
2- UPI controller: 

The transfer function is )
s

11(K)s(G
I

c τ
+=

 

∴ 2
I

c )(
11KAR

ωτ
+=

 

        
)1(tan

I

1

ωτ
φ −
= −

0<
 

 
3- UPD controller: 
The transfer function is )s1(K)s(G Dc τ+=

 

      
22

c D
1KAR ωτ+=

 
      

)(tan D
1 ωτφ −= 0>

 The positive phase shift is called phase lead and implies that the controller output 
lead the input. 
 

U4-PID controller: 

The transfer function is )s
s

11(K)s(G D
I

c τ
τ

++=
 

1)1(KAR 2

I
Dc +−=

ωτ
ωτ

 

)1(tan
I

D
1

ωτ
ωτφ −= −

 
ϕ is + or – ve depending on the values of τRDR, τRIR and ω 
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Bode Diagrams 
 

The bode diagrams consist of a pair of plots showing: 
1. How the logarithm of the amplitude ratio varies with frequency.

 2. How the phase shift varies with frequency.
  

UFirst Order system: 

Amplitude ratio 
22

p

p

1

K
AR

ωτ+
=                                                                             (*) 

Phase lag= ωτφ p
1tan −= −  

)1log(
2
1

K
ARlog 22

p
p

ωτ+−=                                                                                     (**) 

The plot can be carried by considering its asymptotic behaviour as ω→0 and as  
ω→∞ . Then 

1. As ω→0, then 0p →ωτ and from eq.(*) 

0
K
ARlog

p
→   or 1

K
AR

p
= .This is the low-frequency asymptote. It is a horizontal line 

passing through the point 1
K
AR

p
= . 

2. As ω→∞, then ∞→ωτ p and from eq.(**) 

ωτ p
p

log
K
ARlog −= . This is the high frequency asymptote. 

It is a line with slope -1 passing through the point 1
K
AR

p
= for 1p =ωτ . 

3. At the corner cp 1 ωωωτ =→=  

p
ccorner

1
τ

ωω ==
 

The frequency cω is known as the corner frequnecy (and 707.0
2

1
K
AR

p
== ) 

UThe phase lag plot 
0,0 →→ φωas  

o

p

as 45)1(tan,1 1 −=−→→ −φ
τ

ω  

oas 90)(tan, 1 −=−∞→∞→ −φω  
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Figure:Bode diagram for first-order system. 

 
USecond –order system 

2222
p

)2()1(

K
AR

ψτωωτ +−
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ωτ
ψτωφ

−
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Figure: Block diagram for second-order system
1s2s

1
22 ++ ψττ  

ψ=0.1 

ψ=0.1 

𝐴𝐴𝐴𝐴
𝐾𝐾𝑝𝑝

 

𝜙𝜙 
or 

Phase lag 

𝜏𝜏𝑝𝑝𝜔𝜔 
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𝐾𝐾𝑝𝑝

 

𝜙𝜙 
or 

Phase lag 

𝜏𝜏𝑝𝑝𝜔𝜔 
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It is a straight line with a slope -2 passing through the pointAR=1  and τω=1 

3) 
τ

ωω 1
c ==  

UPure dead-time system 
For the system 

1AR =  
ωτφ d−=  

 
as 0,0 =→ φω  
as ∞=∞→ φω ,  
                                  AR  
 
 
                                   ϕ 
 
 
 
Example: Two systems in series 
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1- Region 1: From ω=0 to 
5
1

=ω , slope of the overall asymptote =0+0=0  

(i.e. horizontal * going through the point AR=1) 

2- Region 2: From 
5
1

=ω  to 
2
1

=ω , slope of the overall asymptote =0+(-1)=-1  

going through the point AR=1 , 
5
1

=ω  

3- Region 3: From 
2
1

>ω , slope of the overall asyptote =(-1)+(-1)=-2 

For ϕ 
When 0,0,0,0as 21 →→→→ φφφω  
When 180,90,90,as 21 −→−→−→∞→ φφφω  
 

 
 
UFeedback Controller 
1-Propertional controller 

cKAR = 0=φ  
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2-Propertional Integral controller (PI) 

2
I

c )(
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0)1(tan
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1- Low frequency asymptote 
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1,0as I

c
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I
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Consequently, the LFA is a straight line with slope=-1 

o1 90
0
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2- High frequency asymptote
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)(
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HFA is a horizontal line at value 1
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c
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For the ϕ 
90,0as −→→ φω  
45,as c −→→ φωω  

0,as →∞→ φω
 



Process Control /Lec. 13  125  
Fourth Class 

 
Figure Bode diagram for PI controller. 

 
2-Propertional Derivative controller (PD) 
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1) Low frequency asymptote 
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o
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Figure: Bode diagram for PD controller. 

3-Propertional Integral Derivative controller (PID) 
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UFrequency Response of non-interacting capactine in sereies  
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UExample: U Bode Digram of PID Controller 
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UExample U:  
Bode plots of open loop system 
 

 
The Open loop T.F. of the feedback control 
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UExample U: Plot the B.D. for the open loop T.F. for the fig. below 
 

 
For Kc=10  and τRDR=0.5 the overall transfer function is  
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Amplitude Ratio Curve Prediction 
ω SL1 SL2 SLC SL3 sLd SLTotal 

0-1 0 0 0 0 0 0 
1-2 -1 -1 0 0 0 -2 
2-10 -1 -1 +1 0 0 -1 
10- -1 -1 +1 -1 0 -2 

Phase Lag Curve Prediction 
ω ϕ L1 ϕL2 ϕ C ϕ L3 ϕ d SLTotal 
0 0 0 0 0 - - 

1 -45 -45 0 - - - 
2 - - 45 - - - 

10 - - - -45 - - 
∞ -90 -90 90 -90 -∞ -∞ 
       

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: Block diagram for: (a) Amplitude ratio; (b) phase angle.
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The Instrumentation and Control Diagrams 
 

 
Instrumentation 
The example level-control problem had three critical pieces of instrumentation: a 
sensor (measurement device), actuator (manipulated input device), and controller. 
The sensor measured the tank level, the actuator changed the flow rate, and the 
controller determined how much to vary the actuator, based on the sensor signal. 
Each device in a control loop must supply or receive a signal from another device. 
 
Sensors (Sensing Element) 
A device, usually electronic, which detects a variable quantity and measures and 
converts the measurement into a signal to be recorded elsewhere. A sensor is a device 
that measures a physical quantity and converts it into a signal which can be read by 
an observer or by an instrument.  
There are many common sensors used for chemical processes. These include 
temperature, level, pressure, flow, composition, and pH.  
 
For example, a mercury thermometer converts the measured temperature into 
expansion and contraction of a liquid which can be read on a calibrated glass tube. 
A thermocouple converts temperature to an output voltage which can be read by 
a voltmeter.  
 
Control of unit operations 

1) Level Control 
• A level control is needed whenever there is a V/L or L/L interface 
• Many smaller vessels are sized based on level control response time 
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Figure 14.1 Liquid level control system 

 
Example: A boiler drum with a conventional feedback control system is shown in 
Fig. 14.2. The level of the boiling liquid is measured and used to adjust the feed water 
flow rate. 
This control system tends to be quite sensitive to rapid changes in the disturbance 
variable, steam flow rate, as a result of the small liquid capacity of the boiler drum. 
Rapid disturbance changes can occur as a result of steam demands made by 
downstream processing units. 
 

 
Figure 14.2 The feedback control of the liquid level in a boiler drum. 

 
The feedforward control scheme in Fig. 14.3 can provide better control of the liquid 
level. Here the steam flow rate is measured, and the feedforward controller adjusts 
the feedwater flow rate. 
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Figure 14.3 The feedforward control of the liquid level in a boiler drum. 

 
2) Pressure Control 
• Pressure control is usually by venting a gas or vapor. 
• In hydrocarbon processes, off-gas is often vented to fuel. 
• In other processes, nitrogen may be brought in to maintain pressure and vented 

via scrubbers. 
• Most common arrangement is direct venting. 
• Several vessels that are connected together may have a single pressure 

controller. 

 
Figure 14.4 Pressure control system 

 
 
 
 

PV

PT PIC

PV

PT PIC
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3) Flow Control 
• Most common arrangement is a control valve downstream of a pump or 

compressor. 

 
 

Figure 14.5 Flowrate control system 
 
Example:Vaporizer Flow Control 

• Vaporizer flow control needs to prevent liquid accumulation. 
• Hence use level controller to actuate heat input to the vaporizer and maintain a 

constant inventory. 
• Control of liquid flow in is easier than control of vapor flow out. 

 
Figure 14.6 Vaporizer control system 

 
 

4) Temperature Control: Single Stream 
• Heaters and coolers are usually controlled by manipulating the flow rate of the 

hot or cold utility stream. 
• Final control element can be on inlet or outlet of utility side. 
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Figure 14.7 Temperature control system 

  
Example: Heat exchangers temperature control 

• Temperature control for an heat exchanger is usually by manipulating the flow 
through a bypass. 

• Only one side of an exchanger can be temperature controlled. 
• It is also common to see heat exchangers with temperature control on the 

downstream heater and cooler. 

 
Figure 14.8 Temperature control of heat exchanger 

 
Example: Air coolers temperature control 

• Ambient air temperature varies, so air coolers are oversized and controlled by 
manipulating a bypass. 

• Alternatively, air cooler can use a variable speed motor, louvers or variable 
pitch fans. 
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(a)                                                                          (b) 
Figure 14.9 Temperature control of air coolers 

 
Example: Temperature Control of CSTR 

 
Figure 14.10 Temperature control of CSTR 

 
Distillation Control 
 Distillation control is a specialized subject in its own right. 
 In addition to controlling condenser pressure and level in the sump, a simple 

distillation column has two degrees of freedom. 
 Material balance (split) and energy balance (heat input or removed). 
 Therefore needs two controllers. 
 Therefore has the possibility that the controllers will interact and “fight” 

each other. 
 Side streams, intermediate condensers & reboilers, pump-arounds, etc. all add 

extra complexity and degrees of freedom. 
 
The Energy Balance (LQ) Distillation Column Control Structure 
The LQ control structure is the most natural control structure for a simple distillation 
column. This is because the separation in a distillation column occurs due to 
successive condensation and vaporization of the counter-current vapour and liquid 
streams flowing through the column. Adjusting the cold reflux, the source of 
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condensation, and the reboiler duty, the source of vaporization, is then a natural 
choice for regulating the separation achieved in the column. The LQ control structure 
shown in figure (14.11 a) is thus the most commonly applied distillation control 
structure. It is also sometimes referred to as an energy balance structure as changing 
L (cold reflux) or Q alters the energy balance across the column to affect the distillate 
to bottoms product split.  
 
Material Balance Distillation Column Control Structures 
The other control structures are referred to as material balance structures as the 
product split is directly adjusted by changing the distillate or bottoms stream flow 
rate. The material balance structures are applied when a level loop for the LQ 
structure would be ineffective due to a very small product stream (D or B) flow rate. 
Figure 14.11 b, c and D show Schematics of DQ, LB and DB distillation column 
control structures. The DQ structure is thus appropriate for columns with very large 
reflux ratio (L/D > 4). The distillate stream flow is then a fraction of the reflux stream 
so that the reflux drum level cannot be maintained using the distillate. The level must 
then be controlled using the reflux. The LB structure is appropriate for columns with 
a small bottoms flow rate compared to the boil-up. The bottoms stream is then not 
appropriate for level control and the reboiler duty must be used instead. The DB 
control structure is used very rarely as both D and B cannot be set independently due 
to the steady state overall material balance constraint. In dynamics however, the 
control structure may be used when the reflux and reboil are much larger than the 
distillate and bottoms respectively.   
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Figure 14.11 Schematics of LQ, DQ, LB and DB distillation column control 

structures 
 
Other Distillation Column Control Structure 
Other variants of the basic control structure types include the L/D-Q, L/D-B and DQ/ 
B. In the first two structures the reflux ratio is adjusted for regulating the separation. 
In the last structure the reboil ratio is adjusted. These control structures are illustrated 
in Figure 14.12. 



Process Control /Lec. 14                                    138                                    Written by Assoc. Prof.  
Fourth Class                                                                                                Dr. Zaidoon M. Shakoor 

Note that when the reflux is adjusted in ratio with the distillate, the distillate stream 
can be used to control the reflux drum level even as it may be a trickle compared to 
the reflux rate. 

 
Figure 14.12 Schematics of L/D-Q, L/D-B, and D-Q/B distillation column control 

structures. 
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Batch Distillation 

• Reflux flow control adjusted based on temperature (used to infer composition) 

 
Figure 14.13 Batch distillation column control system 

 
Heat Exchangers 
Heat exchangers process used to transfer heat between two process streams. The flow 
of these process streams is usually set elsewhere in the plant so that adjusting the 
flowrate of one of the process streams to regulate the amount of heat transferred is 
not possible. 
To provide a control degree-of-freedom for regulating the heat transferred, a small 
by-pass (~5-10%) of one of the process streams around the heat exchanger is 
provided. The outlet temperature of this process stream or the other process stream 
can be controlled by manipulating the by-pass rate. These two schemes are illustrated 
in Figure 14.14. In the former, tight temperature control is possible as the amount of 
heat transferred is governed by the bypass. In the latter, a thermal lag of the order of 
0.5 to 2 minutes exists between the manipulated and controlled variable. 
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Figure 14.14 By-pass control of process to process heat exchangers 

(a) Controlling and bypassing hot stream (b) Controlling cold stream and bypassing 
hot stream 

 
Control of Miscellaneous Systems 
Vapor Absorption Cycle 
In addition to compression systems, refrigerant absorption systems are also applied 
industrially. The absorption based refrigeration cycle and its control scheme is shown 
in Figure 14.15. Ammonia (refrigerant) rich strong liquor is distilled at high pressure 
to recover liquid ammonia as the distillate and ammonia lean weak liquor as the 
bottoms. The liquid ammonia is fed to the evaporator where it absorbs heat from the 
process stream to be chilled and evaporates. Vapor ammonia is absorbed by the 
‘weak liquor’ water stream. The ‘strong liquor’ so formed is fed to the distillation 
column to completed the closed circuit refrigerant loop. The temperature of the 
chilled process stream is controlled by adjusting the level setpoint of the evaporator. 
The heat transfer rate is thus varied by changing the area across which heat transfer 
occurs. The evaporator level controller adjusts the distillate liquid ammonia flow. An 
increase in the level of the evaporator implies an increase in the ammonia evaporation 
rate so that the weak liquor rate is increased in ratio to absorb the ammonia vapours. 
The strong liquor is cooled and collected in a surge drum. The level of the surge drum 
is not controlled. Liquid from the surge drum is pumped back to the distillation 
column through a process-to-process heater that recovers heat from the hot ‘weak 
liquor’ bottoms from the distillation column. The flow rate of the strong liquor to the 
column is adjusted to maintain the column bottoms level. Also, the steam to the 
reboiler is manipulated to maintain a tray temperature. 
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Figure 14.15 Absorption refrigeration control system 
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