din o) g3l) dnalal
A glrassll duuaigl) and
dag) ) Ada sl
Sllaal) e 5 ol
2984 Cpna (945 20,

Save from: http://www.uotechnology.edu.iq/dep-chem-eng/index.htm



Introduction to process control

Temp.
indicato
T Hotwater —»
e
v
Water
Heater
— ok
Steam —
/
Cool water——»p-
Figure (1) Open loop system
Desired
Temperature =T
== Temperature
". Indlcator
ti ________ Hot Water
Water
Steam Heater
Steam
{‘tml Water ,-' ‘u’alve
Figure (2) Manual Control system
Set Point
(Desired Temperature T,) Temperature
Indicating ey Transmitter
Temperature _.ITIC = —{TT) _Temperature
Controller | \r Sensor
T Hot Water
i I(‘ ¥ —_—D=
‘ ]
—_— e r Heater
Control
Cold Water  yalye
—_—
Figure (3) Automatic Control system (Closed Loop)
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Control System Objectives

Economic Incentive

Safety

Equipment Protection

Reduce variability

Increase efficiency

Ensure the stability of a process
o Elimination of routine

Oo0Oo0oo0oo0oo

Definitions:

System: It is a combination of components that act together and perform a certain
objective.

Plant: It is the machine of which a particular quantity or condition is to be controlled.

Process: Is defined as the changing or refining of raw materials that pass through or
remain in a liquid, gaseous, or slurry state to create end products.

Control: In process industries refers to the regulation of all aspects of the process.
Precise control of level, pH, oxygen, foam, nutrient, temperature, pressure and flow is
important in many process applications.

Sensor: A measuring instrument, the most common measurements are of flow (F),
temperature (T), pressure (P), level (L), pH and composition (A, for analyzer). The
sensor will detect the value of the measured variable as a function of time.

Set point: The value at which the controlled parameter is to be maintained.

Controller: A device which receives a measurement of the process variable,
compares with a set point representing the desired control point, and adjusts its output
to minimize the error between the measurement and the set point.

Error Signal: The signal resulting from the difference between the set point
reference signal and the process variable feedback signal in a controller.

Feedback Control: A type of control whereby the controller receives a feedback
signal representing the condition of the controlled process variable, compares it to the
set point, and adjusts the controller output accordingly.

Steady-State: The condition when all process properties are constant with time,
transient responses having died out.

Process Control /Lec. 1 2 Written by Assoc. Prof.
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Transmitter: A device that converts a process measurement (pressure, flow, level,
temperature, etc.) into an electrical or pneumatic signal suitable for use by an
indicating or control system.

Controlled variable: Process output which is to be maintained at a desired value by
adjustment of a process input.

Manipulated variable: Process input which is adjusted to maintain the controlled
output at set point.

Disturbance: A process input (other than the manipulated parameter) which affects
the controlled parameter.

Process Time Constant(z): Amount of time counted from the moment the variable
starts to respond that it takes the process variable to reach 63.2% of its total change.

Block diagram: It is relationship between the input and the output of the system. It is
easier to visualize the control system in terms of a block diagram.

—_X(8) _,| Transfer function |_Y(s
Input G(s) Output

Block diagram

Transfer Function: it is the ratio of the Laplace transform of output (response
function) to the Laplace transform of the input (driving force) under assumption that
all initial conditions are zero unless that given another value.

e.g. the transfer function of the above block diagram is G (s) = Y(s)/X(s)

Closed-loop control system: It is a feedback control system which the output signals
has a direct effect upon the control action.

Forward Path

Comparator

Controlled

variable

Process
Controller i -
Heater (Heating)
Temperature
Final control element
L
] Feedback
Transmitter |e Sensor
(Thermocouple)
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Advantage: more accurate than the open-loop control system.
Disadvantages: (1) Complex and expensive
(2) The stability is the major problem in closed-loop control system

Open-loop control system: It is a control system in which the output has no effect
upon the control action. (The output is neither measured nor fed back for comparison
with the input).

Actuator
?)?r:t_' Contreller ~| (final control || Process Gontlrohlj:ed
P element) variable
(Timer) Motor
Advantages:

(1) Simple construction and ease of maintenance.
(2) Less expensive than closed-loop control system.
(3) There is no stability problem.

Disadvantages:

(1) Disturbance and change in calibration cause errors; and output may be
different from what is desired.

(2) To maintain the required quality in the output, recalibration is necessary
from time to time

Note: any control system which operates on a time basis is open-loop control system,
e.g. washing machine, traffic light ...etc.
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Laplace Transforms

2.1 Introduction

Laplace transform techniques provide powerful tools in numerous fields of
technology such as Control Theory where knowledge of the system transfer function
Is essential and where the Laplace transform comes into its own.

Definition
The Laplace transform of an expression f (t) is denoted by L{f(t)} and is defined as

the semi-infinite integral: L{f (t)}= j f(t)e dt.

The parameter sis assumed to be posmve and large enough to ensure that the integral
converge. In more advanced applications s may be complex and in such cases the red
part of s must be positive and large enough to ensure convergence.

In determining the transform of an expression, you will appreciate that the limits of
the integral are substituted for t, so that the result will be an expression in s.

Therefore: | L{f (1)} = Tf(t)e’“dt =F(s)

t=0

2.2 Simple Transforms
Example: Find the Laplace transform of f (t) =1

Solution: L{l}lee‘S‘dt ={ea} :—(e% _€ SO) = _(___) -

Example: Find the Laplace transform of f (t) = a, where ais a constant.

g |”° o —s0
Solution: L J.ae‘s‘dtH{ € } =a( € ;& )=a(9+£)=E
s | s s s s s

Example: Find the Laplace Transform of f(t) =t

Solution: L _[ te Sdt
Use integration by parts with

Tu.dv:u-v|;°—Tv-du
0 0

u=t=du=dt
_ —st
dv=eddt=v=

S
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< 1
Llt|= [teSdt=-t-=e™
[t] '([e Se

:(O—O)+E[—le‘5‘}
S S

1
<2

= L{t}: S

Example: Find the Laplace Transform of f (t)=t?
Solution: L {t2}= J-:tze‘ﬂdt
use integration by parts with

Tu-dv:u-vroo—ofv-du
0 0

u=t?= du=2tdt
—st

dv=e‘s‘dt:>v:e—
—s

Li2f=["t?e*dt = tz_es

—gt |®

w2t—st 002t—st
L e

Iu-dv:u-v|:—jv-du
0 0

Uu=2t = du=2dt

e—St s
dv=—ndt=>v=—-
S S
o 2e®  —2e | 22e% | e —2e*[ 5 2
L& }_jo = - -[; ot =2 =" ‘0__?(0_1):?
2
= Lit? {==
-2
Example: Find the Laplace Transform of f(t) =e*, where ais a constant.
Solution:
£ 0 © —t(s-a) *® l " 1
Lie* (= [e*evdt=|e* %dt=[e Pt { © } =[] =- {o-
{ } ! ! ;[ ~(s-a)|, (s-a) ]0 (s—a) }
1
L™ (=
[ = 25
Similarity
1
L™=
{ } (s+a)
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Example: Find the Laplace Transform of f (t) =sin(at)
Solution:

o _jat —iat

Lisin(at)}= Tsin(at)es‘ = %

1 e - 1[0—1 0—1} 1[ 1 1 }
2ilia-s ia+s| 2i|s—ia s+ia

eistdt = i T e(ia*S)t _ e,(ia+s)tdt
2y

o0 _1 i
—- e(|a+s)t
o la+s

la—s 0

_i{(sﬂa)—(s—ia)}_l{ 2ia }_ a

T 2| (s-ia)(s+ia) | 2i|S+al| S+a

a
+a

2

L{sin(at)} = g
Also

L{cos(at)} = . faz

Example: Find the Laplace Transform of f (t) =sinh(at)
gt _ g

2

Lisinh(at)} = L{eat ‘eat}:h{eat _eat}zl[i_ij :1((S+ a)—(s—a)j
2 2 2{s—a s+a) 2 (s—a)(s+a)

_1 2a R
2\ (s°—as+as+a’)) s°-a’

Solution: sinh(at) =

Lisinh(at)} = faz

Also
L{cosh(at)} = > =

In practice we do not usually need to integrate to find Laplace transforms, instead we
use atable, which allow usto read off most of the transforms we need.

Function Transform .
£ F(s) Valid for ...
1
1 = s>0
S
a
a — s>0
S
1
t — s>0
S2
e n n = positive
st integer
sinat a
s?+a’
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S
cosat
s? +a?
a
sinhat
s’ —a’
S
cosh at
s’ —a’
1
e—at
s+a
—at 1
(s+a)
tne—at n!
(S+ a n+1
b W
e ®snwt —
(s+a) +w
e_at coswt i
(s+a)? +w?

2.3 Rules of Laplace transform

The Laplace transform is alinear transform by which is meant that:

1. The transform of a sum (or difference) of expressions is the sum (or difference) of
theindividual transforms. That is

L{f@©+g(®)}=L{f ()= L{g(®)}].

2. The transform of an expression that is multiplied by a constant is the constant
multiplied by the transform of the expression. That is

L{kf (t)} = kL{f (t)}].

Example: Determine the Laplace transform of 2™ +t .
2 1 25°+(s+1) 2s*+s+1

: . —t _ -t - 4 - = =
Solution: Lize " +t}=2Lfe " f+ Litf= =+ 1) (54 )

Example: Determine the Laplace transform of 3t* +sint.
: : : 3 1 18 1
Solution: L3t® +sint{=3Lt° (+ Lisint}=3x——+———>=—+——
e snt)=aLt} Lisng =3 2 118, L
_18(s’+1)+1(s") 18(s*+1)+s' 18s*+18+s’
s*(s?+2) s*(s*+1) s*(s? +1)

2.4 Theorems of Laplace transform
There are three important and useful theorems that enable us to deal with rather more
complicated expressions.

Theorem 1: The first shift theorem
The first shift theorem states that if L{f (t)}= F(s) then|Lle ™ f ®)}=F(s+a)
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Lie™ f (t)]= Te‘atf(t)e‘s‘dt - Tf(t)e‘(s“")tdt - F(s+a)

t=0 t=0
We know that L{e®f(t)}=F(s+a) and we know that L{f(t)}=F(s) therefore the
transform Lie® f(t)} is thus the same as L{f(t)} with s everywhere in the result
replaced by (s+a).

Example: findL{e™ sin2t}.

Solution: We know that Lie™}= We havea =3, therefore

1 .
and Lisin2t}=
s+a fsin2t} s?+4
2 2 2

L{e’3tsin2t}: —=— =—
(s+3)°+4 s°+3s+3s+9+4 s +6s+13

Example: Determine the Laplace transform of e*(t? + 4).
Solution: We know that L {2 +4}=£3+§ also that L{e3‘}:$ Therefore
S _

w2 ol 2 4  2+4s-3f 2+4(s-3)s-3)
B e A A
2+4(8—65+9) 2+45° —245+36 A4S’ —245+38
sy - (9

Theorem 2: Multiplying by t and t*
If L{f(t)}=F(s) then |L{tf(t)}=—F'(s)

Litf (1)} = jtf(t)e*’dt j f(t)(——Jdt_—— j f(t)eSdt=—F'(s).

t=0

Ingeneral if L{f(t)}=F(s), then|LE"F®©)f=(- {F(S)}

Example: find L{tsin2t},

Solution: From L{tf (t)}=—F'(s) thereforeL{tsinZt}:—%( 22 4}.
S” +

NB: To find i[ 2 j use quotient rule for differentiation:
ds\ s? +4

z=( 22 j,z=2,a=2,b=sz+4,%—0 b _ o
s“+4 b ds ds
bda db

dz _ E_a£=(32+4xo)—(2)(25)= —4s

ds b (52 + 4)2 (32 + 4)2
. d 2 4s

Litsin2ty=—— =

tin2) d8(82+4j (2 +4f

Example: Determine the Laplace transform of t?sint,
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Solution: We know that L{sint}= %1 , therefore we can work out from
S™+

Lt (1)} = (—1)“d—n{F(s)} that

L1 O} S POl = L ROl S )
Find the first derlvatlve

1 a db
=1 L= L =0 =2
,da__db
dz_"gs Zds_(s2+1)0)-(W)2s)  -2s
ds b? (52 +1)2 (32 +1)2
Differentiate again.
z:%:—(S;fi)z a=-2sb=(?+1f =(+1)s* +1)=s*+25° + 2,
da =-2, db_ =4s® + 4s,
ds " ds
b%—a@ 2 2
dz_"ds “ds _ (32 +1) (-2)-(- 23)(433 + 4s) - 2((32 +1) )+ (834 +8$2)
ds b? ((Sz + 1)2)2 (s +1f(s? +2f
_—2fs" +257 +2)+(8s +857) _ (- 25° - 45* - 4)+(8s" +857) _ (6s* +45° -4)
(s +1f°(s2 +1f (s +1f°(s2 +1f (s +1f°(s2 +1f
Therefore ( )
. d? (1 6s* +4s? -4
Lit? = = :
{t smt} ds® (sz +1j (Sz +1)2(Sz +1)2

Theorem 3: Convolution Theorem:
If L{f(t)} = F(syand L{ g(t)} = G(s) then the convolution of f (t) and g(t)
isdenoted by (f* g)(t), isdefined by

(f=g)(t) = jf(r)g(t—r)dr

0

And the Laplace transform of the convolution of two functions is the product of the
separate Laplace transforms:

L{(T*9)(t)} = F(5)G(s)
An equivaent identity is
L*{F(s)G(s)} = L{F(s)}*L*{G(s)}

Example: Find t* =2t

Solution:

t t 3 ! 4 4 4
t2*2tZITZZ(t—T)dTIJ(ZtTZ—ZTa)jT= 7, S L :2t——t—:t—

0 5 3 4 ), 3 2 6
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Example: Find €' =t
Solution:

e xt= j'e” (r)dr = et_t[(zef)df _ et(_ e _effl
0 0
=el-te-e*)-(0-1)|=-e'(t+1)+& =-t-l+e=€-t-1

Example: find Laplace transform of € cos(t) by convolution theorem
f(t)=€  g(t)=co &)
L{f*gt=L{fOI{g)}=L{e}L{cos(t)}

SleE) e
s—1\ 2412 ) (s—1)(s?+1)

2.5 Special Laplace Transform Functions

1- Step function

(1) = 0 t<0O A >
A 120

f(s):é 0 Time

If A=1 the changeiscalled unit step change

0 t<0
f(t)=
0-1 o

f(s):é

Step function with Time Delay

0 t<a
f(t)= {A >
>a A 5
f(s)= Age
s
0 a Time
2. Pulse function
0] t<O
f(H)=<A O<t<a A K
0] t>a
A A \ 2
f(s)=———e ™= i
(s) s s 0 a Time
= é(l— e ™)
S
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L{f (1)} = [ Ae™ + [0e™ =—%e‘5‘
0 a

— __(e—sa _ e—SO) — é(l— e—sa)
S S

If A=1=>unit Pulse (Impulse)

3. Impulse function

0 t<O0 A A Area=1
fH)=<A 0t

0 tx>a
f(s)=area= Axdt

Unit Impulse Time

This function is represented by d(t). The unit impulse function is a special case of the
pulse function with zero width (tw —0) and unit pulse area (so a= 1/tw). Taking the
limit:

REGIE m}i[l— e )= tUmé[—e‘s‘"”] =1

4. Ramp function

Slope=A
f(t)
Time
AL
ss |
Slope=A
a Time
5. Sine function A "
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Example: Find the Laplace transform for on
2 -

-1 +

Solution:

1. At t=0 the function looks like the very basic unit step function. But unit function

knows only about 0 and 1, here we have f(t)=2. That means we have to use 2u(t).
2. Thenintime t=2 its value changes from 2 to —1 (i.e. 3 down at t=2) which means

we have to add —3u(t—2).

3. Finaly the value at t=3 jumps 1 higher, which brings member u(t—3).

f(t)=2u(t)—-3u(t-2)+u(t-3)

So far we collected unit step functions to express function from the graph.
L{f (t)} = L{2u(t) - 3u(t - 2) + u(t - 3)} = L{2u(t)} - 3L{u(t - 2)} + L{u(t - 3)} = %-ge'% sl

Example: Determine the Laplace transform of the function

0 t<i1 N
1 1<t<3
f(t)=43 3<t<5
2 5<t<6
0O t>6 [
1 3 'r
Solution:
f(t) =O0u(t - 0) +1u(t - 1) + 2u(t — 3) = lu(t — 5) — 2u(t - 6)
F(s) = losp2gn Llgs_ 2q0_ }(e’S L2 g5 e )
Process Control /Lec. 2 13 Written by Assoc. Prof

Fourth Class

Dr. Zaidoon M. Shakoor



Example:

0.5
0 |05 15 2 3 |35
Solution:
f(t) =—-0.5+1u(t — 0.5) - 0.5u(t —1.5) + 0.5u(t — 2) —u(t — 3) + 0.5u(t — 3.5)
f (S) = _ﬁ + 18*0.53 _%671.55 + %e—ZS _1 —3s + %e,3_5s
S S S S S s
Example: Find F(s) for @0t
0 t<0
t O<t<1
f(t) = N .
2-t 1<t<?2 . A
0 t>2 / \
Solution: 02 04 08 08 1 12 14 18 18

fE)=tU@)—tt—DU (- —(t-DUt-D+({t-2U(t-2)
=tU(t) -2t -DU (-1 +(t-2U(t-2)
L[f(®)]=L[tu) -2t -DU (t-1)+ (t - 2U (t - 2)]
= L[tU (t)]- L[2(t DU (t =D ]+ L[(t - 2U (t - 2)]
1 2 1

_ —S ~2s

=—_Zes+—¢
s s s?

Example: Determine the Lapl acﬂ:e)transform of the function
t

A
3

\ t
Solution: |

| * ceconds
0 1 3 4

f(t) = 5tu(t) — 5(t — Du(t — 1) — 5(t — 3)u(t — 3) + 5(t — A)u(t —4)

F(s) = % —~ %e’s —~ %e’“ + %e"‘s = %(1— e -e¥+e®)
s s S S s
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Example: Find the Laplace transform of f(t) shown in Fig.
2t 0<t<1
2 1<t<4

—2t 4<t<5 2
ft)=10 5<t<6 Slope=2
— <
A b<t<v 0 1 4 5 7 /B
ot 7<t<8
0 -2

t>8

Solution:
f(t) = 2tu(t) — 2(t —Du(t —1) — 2(t — )u(t — 4) + 2(t —5)u(t — 5) — 2(t — 6)u(t — 6)

+ 2% 2(t - T)u(t — 7) — 2(t —8)u(t — 8)

2 2 o 2 4 2 5 2 g 4 45 2 g
f(S):?—?e —?64 +?es —gee +?e7 —?eg
Example:
3
2
1
01 3 4 5
T
Solution:
f()=tut)—(t-Du(t -1 +2(t-3)u(t—3)—2(t —Hu(t —4) + (t - S)u(t - 5)

1 1 _ 2 _ 2 _ 1
f(S):—z——ze S+—ze 35——28 4S+—Ze 5s
S S S S S

2.6 Rational Functions Technique: Partial fraction

Often it is necessary to break down a complicated rational function of the form %
(where P(s) and Q(s) are polynomialsin s, and the degree of the top polynomial is
less than the degree of the bottom polynomial), into the sum of simpler fractions

caled Partial Fractions.

The type of partial fraction that you use depends on the factors of the bottom
polynomial.

We will look at 3 cases:

Case 1: All the factors of the bottom Q(s) are linear and non-repeating.
Case 2: Q(s) has some repeated linear factors.

Case 3: Q(s) has someirreducible quadratic factors.
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Examples of case 1.
S r 3+2s

(s+2)(s-12) © s(s+5)(s+3)
Examples of case 2

2s+1 2 s—1 -1
T a? e a2 N o O s
(s-8) s(s-3) (s+1P(s+2) (s+3f(s-1)
Examples of case 3:

2s+1 3 4s* +3s-1

or or
s’ +4) (s-3° +1s+2) (s-1)(s* +3)2((s+1)2 +9)2

Case 1: All the factors of the bottom Q(s) are linear and non-repeating.

Case 1: All the bottom factors are linear (i.e. of the form x + some number) and then

IS no repeated factor (i.e. there is no factor which is squared or cubed, etc.) and there

are no irreducible quadratic terms (don’t worry about this!). In this case therefore, we
top polynomial

(x—a)(x—b)...(x—9g)

In this case we can rewrite the rational function as follows:

top polynomial A N B G

(x—a)(x—b)..(x—g) x-a x—b T X—g

are talking about rational functions of the form:

Example

Show that 1 -

(s+7)(s+93) - s+7

EN[E

1
44
s+3
Solution
Thisisacase 1 partia fraction so we start with

1 __A B
(s+7)(s+3) s+7 s+3
Stepl: Remove Fractions
Multiply both sides of the equation by the denominator on the left hand side
Ix(s+7)(s+3) _ A(s+7)(s+3) N B(s+7)(s+3)
(s+7)(s+93) S+7 s+3
=1=A(s+3)+B(s+7)

Step2: Choose svaluesto find A and B

The equation aboveistrue for all values of s. We can choose s values to make things
simple:

Choose s = -3 so that (s+3) = 0 and we have

1= A0)+B(4) = 1=4B = B=%

Choose s=-7 so that (s+7) = 0 and we have
1=A(-4)+B(0) = 1=-4A = A= —%

Step3: Substitute A and B into the original expression
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1 -
(s+7)(s+3) s+7

ENITE

1
+_4
S+3

Example: Write 3571 g partial fraction form
(s+D)(s+2)

Solution:

write —>>"1 ALB

(s+1(s+ 2):s+1 s+2

Multiply both sides by (s+1)(s+2):
3s-1 A B

m(s+l)(s+ 2):ST1(S+1)(S+ 2)+m (s+D(s+2)

= 3s-1=A(s+2)+B(s+1)

If chooses=-2

= 3(-2)-1=A(-2+2)+B(-2+1) = -7=A0+B(-1) = -7=—B

=B=7

If chooses=-1 = 3(-1)-1=A(-1+2)+B(-1+1) = -4=A)+B(0) = -4=A

= A=-4

Therefore —>>1 _~4, 7

(s+D(s+ 2):s+1 s+2

Example

Find the fixed constants A, B, C so that the partial fraction decomposition can be
4s+3 A B  C

s(s—=)(s+3) s s-1 s+3

compl eted:

Solution:
4s+3 A B  C
s(s—l)(s+3)_ s s-1 s+3
Multiplying both sides of this equation by the left hand side denominator we deduce
that,
45+ 3 A B C
s(s-1)(s+3) m—s(s—l)(s+ 3)g+s(s—1)(s+ 3) sTlJr s(s—1(s+ B)E
= 45+ 3=A(s-1)(s+3)+Bs(s+ 3+ Cs(s-1)
Now inturn, put,s= 0, s=1, s= -3. You will find at each stage that 2 of the A, B, C
terms will vanish:
If chooses= 0
4(0)+3=A(0-1)(0+3)+B(0)+C(0) = 3=—-3A= A=1
If chooses=1
;

4(1) +3=A0)+B()(Q+3)+C(0) > 7=4B=B= 2

If chooses= -3

4(—3)+3=A(0)+B(0) + C(-3)(-3-1) = -9=12C = B= 1_;
Therefore::
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4s+3  [-1) [F] [l 1, 7 3
S(s-1)(s+3) s s-1 s+3 s 4(s-1) 4(s+3)

Case 2: Denominator Q(s) has some repeated linear factors.
Sometimes a linear factor is repeated twice or three times or four times, etc. This

means that we will have an expression like (s —somenumber )2 or (s—somenumber )3

or ... below the line. When this occurs, you have to be careful as we have to use a
partial fraction for each of the powers. If you want, you can use the following table:

Factor in given Corresponding partial fraction
rational function
top polynomial A
S+ some number S+ some number
top polynomial A B
(s+ somenumber)? s+ some number (s+ some number)?
top polynomial A + B + C
(s+ some number)® s+somenumber  (s+some number)® (S some number)®

Examples of case 2
45 +3s-2 A B C

5 = >+ + , A B,C =constants
(s=D°(s+3) (s-1)° s-1 s+3

3x'-78°+28-5 A B C D E F
3 5 =t —t—+ R +
S (s+D)°(s+5) s s s (s+D)° (s+) (s+5)

A B,C,D,E,F = constants

Example:

Write in terms of partial fractions (25 _1)12
Solution:

Inthiscase 25-1 A B

(5-1° s—1 (s-1)
Stepl we multiply both sides by (s-1)* to remove fractions
8s-1
(s-1° (s-1°
Step2: we can choose s = 1 as before so that (s-1) = 0 and we get
8-1=B = B=7
We cannot choose another s value to directly find A however. There is more than one
approach to finding A but the easiest method is called “equating coefficients’. In this
case, we note that there must be the same “amount of s” on both sides of the equation.
On the left hand side we have 8s and on the right we have As, so that A must be 8.
Step3; write the answer down
8s-1 _ 8 N 7
(s-1f s-1 (s-1?

(s-1)*=8s-1=A(s-1)+B

z_i _\2
(s-1) _S_l(s D+
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Example

Write . 23*1

(s—1)(s+2)
Solution:
As the linear factor (s+2) repeats (i.e. we have (s+2) and (s+2)? in the denominator)
the required partial fraction is of the form,

2s+1 A B C
= + +

(s-1(s+2)° s-1 s+2 (s+2f
where A, B and C are fixed constants which are to be found.
Step1: multiply both sides by the denominator (s— 1)(s+2)?
(s—1)(s+ 2)2(5_35(—;i2)2 =(s—-1)(s+ 2)2:A1+ (s—1)(s+2)? :BZ+ (s—1)(s+2)?
= 2s+1=(s+2)?A+(s-1)(s+2)B+(s-1)C
The latter equation holds for all values of the variable s.
Step2: Choose good s values
Choose s=-2 = 2(-2)+1=(0)?A+(0)B+(-2-1)c = -3=-3C = C=1

Choose s=1 = 2(1)+1=(1+2)?A+(0)B+(0)C = 3=9A = A=%

~ in partial fraction form.

C
(s+2f

We again have the problem of not being able to choose a good s valueto find B. We
again “equate coefficients’. The best strategy is to equate the highest power of son
both sides, which iss* . On the left hand side of (1) we have 0 lots of . On the right
hand side of (1) the (s+2)A term will contribute As if you multiply it out and the

(s—1)(s+2)B term will contribute Bs®. So we have

0=A+B :B:—A:—%
This method can involve more calculation though. Either way
2s+1 11 1 B 1

(s—1)(s+2)° 3's-1 3's+2 " (s+2)

Case 3 Denominator Q(s) has some irreducible quadratic factors.
Irreducible means that the quadratic term in the denominator cannot be factorized
into two brackets.
Examples of case 3:
3s°-2s-5 A Bs+C
S TSm0 A bBeth
s(s*+4) s s°+4
ss-s+2 A B Cs+D
S(s-D(s*+2) s s-1 $+2

, A B,C =constants

, A B,C,D = constants

Example:
2 f—
Write 5s° -7s+8

in partial fractions.
(s—1)(s* —2s+5)
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Solution
The denominator contains an irreducible quadratic term (i.e, it cannot be easily
factored into two linear terms. If it did factor into linear factors then we would be
back to cases 1 or 2.) Asit does not in this example we must write:

5s°~7s+8 A . Bs+C
(s-1(s*-2s+5) (s—1) (s*—2s+5)
Note: Linear term on bottom means constant A on top. Quadratic term on bottom
means linear term Bs + C on top.
As before to find these constants multiply both sides by the denominator
(s—1) ($-2st5).

(s—1)(s*-2s+5)

Bs+C
(s*—2s+5)

55’ —7s+8 , A 2
(s-1)s’ - 2s+5) =(s-1(s"~2s+5) @+(s—1)(s —25+5)

Which gives: 55° - 7s+8=(s* - 2s+5) A+(s—1fBs+C)

The latter equation holds for all values of the variable s. So we can choose any
values for s and set up three simultaneous equations for A, B and C.

By putting s = 1 we can get one value easily:

Choose s=1

= 5(1)f° - 7(1)+8=(1* - 2(1)+ 5) A+0(B(1) + C) = 6=4A+0 = A:%

We cannot make any more brackets = 0 by a good choice of s. Asfor case 2 however,
we can equate coefficients. Start with the highest power & first

EquateS =5=A+B = B=5-A =B=5-3=1

Equates = -7=-2A-B+C= -7=-23)-1+C =-7=-2+C

=C=-3

2.7 Inverse Laplace Transforms

The Laplace transform is an expression in the variable s which denoted by F(s). It is
said that f(t) and F(s)=L{f(t)} form atransform pair. This means that if F(s) isthe
Laplace transform of f(t) then f(t) is the inverse Laplace transform of F(s). We
writeas: | f(t) =L {F(s)} or LYF(9)}=f(t)
The operator L™ is known as the operatorfor inverse Laplace transform. There is no
simple integra definition of the inverse transform so you have to find it by working
backwords.

Here we have the reverse process, i.e. given a Laplace transform, we have to find the
function of t to which it belongs. We use the following table:

Table of inverse transforms
F(s) f(t)

a

‘Hmlm

e—at

(7))
+
QD
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nl
Sn+1 tn
1 -
s" (n-1)!
a .
Zaal sinat
S
2122 cosat
a .
22 sinhat
S
a2 coshat

2.7.1 Two Properties of Laplace Transform Inverse
Both Laplace transform and itsinverse are linear transforms, by which is meant that:
I. The transform of a sum (or difference) of expressions is the sum (or difference
of theindividual transforms. That is:
L*{F(9£6(M)}= L {F(s)}£L{G(9)
Ii. The transform of an expression that is multiplied by a constant is the constant
multiplied by the transform of the expression. That is:

LHkF(s)} = kL™ {F(s)}| wherek is constant

Example: find L‘l{iz}?

S_

Solution: L‘l{i}z L‘l{ L }:e2t .
s-2 S+ (-2)

Example: find L‘l{ 28 }?
s°+64

Solution: We can write the inverse transform as we know that Ll{ 5 a 2}:sinat )
S +a

Here we have a=8 therefore: L‘l{ 28 }:L‘l{ 28 2}=sin8t.
s°+64 s“+8

Example:findL‘l{ 212 }?
s°-9

Solution: Ll{ 12 9} = 4Ll{

S2

5 }:4sinh3t
s°-9

2
3s-4

Example: Find the inverse Laplace transform for F(s) = -

Solution:
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ot

Example: Determine L_I{Z?)S—Jrle} :
S —S—

Solution: This certainly did not appear in our list of standard transforms but if we

write 235—”6 as the sum of two simpler functions, i.e.
S —S—
3s+1 1 2

: = + it makes all the difference.
s°—-s-6 S+2 s-3

Thisis simply the method of writing the more complex algebraic fraction in terms of
its partial fractions which we have previously seen.
We can now proceed to find

L’l{ 23S+16} = L’l{—lz 2 3} =g +2e”
s’ —s-— s+2 s-

5s+1 }
P -s-12)°

Example: Determine L‘l{

5s+1 _ 5s+1
?-s-12 (s-4)(s+3)
Remember from partial fractions we have the form:

s+l __A [ B % (s—4)(s+3)
(s=(s+3) (s—4) (s+3

5s+1= A(s+3)+ B(s-4)

Solution: Factorise the denominator:

Choose s=-3; 5-3)+1=0A+(-3-4)B= B=__—174=2
Choose s=4; 5(4)+1= (4+3 A+ 0B = A=271=3
Thisgivesus ostl 3 2

(s—A)(s+3) (s-4)  (s+3)
So we now haveto find

L‘l{—SS” }:L‘l{ 3 , 2 }:3[1{ ! }+2L‘1{ ! }
(s—4)(s+3) (s-4) (s+93 (s—4) (s+3)

=3e" +2e

Example: Determi neLl{ 95-8 }

s?-2s
Solution: Simplify: L‘l{ %-8 } _ 1) 9s-8
s°-2s s(s—2)
Remember from partial fractions we have the form:
9s-8 A B
=—+— xs(s—-2)
s(s-2) s (s-2
9s-8=A(s-2)+Bs
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Let s=0 then A=B:4
0-2

9x2-8

Let s=2 then B= 5

Thisgives us 95-8 4,3
s(s-2) s (s-2

So we now haveto find
L-l{ 9-8 } - L-l{f b2 } - L-l{f} ¥ 5|_-1{ 1 } = 4.4 56
s(s-2) s (s—-2 S (s—-2)

13s+11
(s-1(s+3)|
Solution: Remember from partial fractions we have the form:
13s+11 A B : :
= + Multiple both sides by (s-1)(s+3)
(s-D(s+3) (s-1) (s+3
13s+11=(s+3)A+(s-1)B

Let s=1then ao_183+11_24 .
1+3 4

Let s=-3then g ~3x18+11_-28_
~3-1 -4

So we now haveto find

e
(s—=D(s+3 (s-) (s+93 (s-2 (s+93)

Example: Determine L‘l{

Example: Find the inverse Laplace transform of F(s) =L42
(s+2)(s+1)
s+4 A B C

Solution: Expand F(s) asF(s) = S = + ~+
(s+2)(s+1)° s+2 (s+1)° (s+)

(s+4)=(s+D*A+(s+2)B+(s+1)(s+2)C
Let s=-1then p=—1*4_3_3

-1+2 1
(-2+D? 1
equate S=>1=2A+B+3C = 1:2><2+3+3C:>C:%:—2
Check by cross-multiplying:
st+4 2 3 2
(s+2)(s+1)> (s+2) (s+1* (s+)])
s+4 2 3 -2
= + +
(s+1(s+3)* s+2 (s+D* (s+))
S+4=2(5"+2s5+1)+3(s+2) - 2(S* +35+2)
s 0=2-2
s': 1=4+3-6
s’: 4=2+6-4
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L s+4 a2 3 2
(s+2)(s+1?| ~ |(s+2) (s+1? (s+))
=2|_-1{ 1 }+3L‘1{ ! 2}—2[1{ ! }:Ze‘2t+3te‘t—2e“
(s+2) (s+1) (s+21

Example: Find the inverse Laplace transform of F(s)=

s+9
s’ +6s+13

Solution:

9 s+9 s+9
f@) =L F(9]=LY 2 |- 12 =L
® [Feo)] LZ+GS+13 $?+65+ 3 -3 +13 (s+3)%+22

=L_1{ (s+32+62}=|__1{ 5+3 2}[{ 6 Z}L{ 5+3 2}[1{3_ 2 2}
(s+3) +2 (s+3)°+2 (s+3)“+2 (s+3)“+2 (s+3)°+2

-1 s+3 1 2 o L o _
: {W}:‘}L {W}e cos(21) + 3¢ sin(21) = & [cos(21) +3sin(21)]

Example: Find the Laplace inverse of -1 using
a) partia fraction b)convolution

Solution:
a) Partial fraction

L‘l[ 1 }:L-l[ A +E} Multiple both sides by s(s—1)
s(s-1) s-1 s

1= As+ B(s-1)

Let s=1 then A=1

Let_ s=0 thenB=-1

L—l 1 :| — L—l{i_&} L—l[i} _ L—l|:l:| — el _1
| S(s-1) s-1 s s-1 S
b) Convolution:

L 1 A1 1 Pt ot
L =L = — :1*e:j1e du:je du
| S(s-1) s s-1 0 5

=etje“du :et[—e’“]; :et[—e’t +e°]:e‘[1—e’t]:et -1
0

Example: Find the Laplace inverse of ﬁ using convolution theorem
S (S+

Solution:

1 1 1 ;
L =LY =. =t*te' = [u(t—u)e “du
Lz(s+1)2} LZ (s+1)2} J; (t-w

= etju(t —u)e'du =e™ [tiue“du —j'uze“du} =e" {ti ue"du —[[uze“ ]to —que“duﬂ
0 0 0 5 <
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=" {tj'ue“du —t%e" + 2Jt' ue“du} = e{(t + 2)_t|.ue“du —tzet} = e{(t + 2){[ueu ]; - j e“du} —tzet}
0 0 0 0
= e“[(t + 2)[[ue”]; - [e”];} —tzet} =e" [(t + 2)[tet —€ +1]—t2et ]: e’ [tzet —te' +t+2te' —2e' + 2—t2e‘]

=e‘t[tet +t—2¢' +2]=t+te‘t —24+2et'=tet +2e +t-2

2.8 Laplace Transform of a Derivative

Before we apply Laplace transform to solve a differential equation, we need to know
the Laplace transform of a derivative. Given some expression f(t) with Laplace

transform L{f (t)}= F(s), the Laplace transform of the derivative '(t) is:
L{f'(t)}= j Sf(t)dt
Thiscan be integrated by parts as follows:
L{f'(t)) = j e f'(t)dt where u=€e3 dv=f'(t)
du=-se* v=[f'(t)=f(1)
L{f'®)=le*t®], +sTeS‘ f (t)dt = (0— f (0))+SF(9)

Assuming e f(t) >0 ast— o
That is;|L{f'(t)}=sF(s)- f(0)

Thus, the Laplace transform of the derivative of f(t) isgiveninterms of the Laplace
transform of f(t) when t=0. The next properties is very important for the above
formula.
In general, to solve differential equation af '(t) + bf (t) = g(t) given that f(0)=k where
a, b, and k are known constants and g(t) is a known expression in t using Laplace
transform are as follows:

I. Takethe Laplace transform of both sides of the differential equation.

ii. Find the expression of F(s)=L{f(t)} intheform of an algebraic fraction

lii. Separate F(s) into its partial fractions.

iv. Find the inverse Laplace transform L{f'(t)} to find the solution f(t) to the

differential equation.

Example: Solve f'(t)-f(t)=2 wheref(0)=0
Solution: Taking Laplace transforms of both sides of the equation gives:

SF(9) - f(0)—F(s)=§

F(s)(s—l):é
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F(s) = solve using partia fraction
s(s-1)
2 =é+i solvefor A and Bwhere A=-2and B=2
s(s-1) s s-1
=212
s s-1

The inverse transformation gives the solution as
f(t)=—2+2¢ =—201-¢)

Example:Solve f'(t)- f(t)=e* where f (0)=1
Solution:

sF(s)-F(0)-F(s) =

=
N

S_
F(s)(s—l)—1:i
s-2
1 N 1 (s-2+1  (s-) 1
(s-2)s-1) s-1 (s-2)(s-1) (s—2)(s-1) s-2

Theinversetransform then givesthe solution as
f(t)=¢€"

F(s)=

Example:Solve 3f'(t)-2f(t)=4e "' +2 where f(0)=0

Solution:
IF (9~ O] 2F(9=—-+2
s+1 s
3F (s) - 3f (0) - 2F () = 25+ 2
s(s+1)
6s+2
F(s)(3s—-2) =
() ) s(s+1)
F(s) 6s+2 solveusing partial fractionsfor A=-1,B = -g,and C= 2—57

T S(5+1)(35-2)

1 4/ 1 27 1 1 4( 1 81 1
F(s)=———=| — |+2L . -
s 5ls+1) 15\ 3s-2 s 5is+1) 15 S_E

3
Theinversetransform then givesthe solution as:
2
f(t)= 1 4e, Bl
5 15

3.8.1 Laplace Transforms of Higher Derivatives
The Laplace transforms of derivatives higher than the first are readily derived. To

find higher derivative, understand the following formula
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Firstorder  L{f'(t)}=sF(s)- F(0)

Secondorder L{f"(t)}=s?F(s)—sf (0)— f'(0)

Thirdorder L{f"'(t)}=s’F(s)-s*f(0)—sf'(0) - "(0)
Forthorder  L{f"(t)}=s*F(s)-s*f(0)— *f'(0) - sf"(0) — ""(0)

Example:
Find the solution of ''(t) + 3f'(t) + 2f (t) = 4t where f (0) = f'(0) =0.
Solution:
I Take the Laplace transform of both sides of the equation
L{f"(t)}+3L{f (t)}+2L{f (t)} = 4L{t}
[$2F (s)— sF(0) - £(0))+ AsF (9) — F(O)]+ 2F (9) =Si2
ii.  Findtheexpression F(s)=L{f(t)} intheform of algebraic function
Substituting the values for f(0) and f"(0) and then rearranging the above
eguation gives

(s> +3s+2)F(s) :si;

4
F(s) =
) s?(s+1)(s+2)
li.  Separate F(s) into its partial fractions
4 A B C D

S(s+1)(s+2) s T2 sl s42

4= As(s+1)(s+2) + B(s+1)(s+2) + Cs*(s+2) + DS?(s+1)

Let

s=0 =B=2

s=-1 =>C=4

s=-2 =>D=-1

equalizes’=>0=A+C+D=A=0-C-D=0-4+1=-3
3 2 4 1

Thus,F(s)=——+—2+———
S S s+1 s+2

Iv.  Theinverse Laplace transform of the above equation isthe solution that is
f(t)=—3+2t+4e" —e™
Example: Use Laplace transforms to solve the following D.E. with initial conditions.
d2y(t dy(t ,
di’z( ) 4 Zji)+3y(t):1 L y0)=1 , y(@0)=1
Taking the Laplace

Y ()~ 57(0) - y'(0) + 4[Y(8) — y(0)]+ 3¥(9) =§

Y(9)[ &+ 4s+3] = 5(0) + Y'(0) + 4y(0) +§

:s+5+l
S
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We want to solve for Y (s), so

1 1
S+5+g S+5+§  P4Bs+l

=G s (s+3)(s+])  5(5+3)(54])
Notice that we factored the denominator into individual terms. Once again, we use
partial fraction expansion to break this down into terms we can look up in the table:
S+56s+1 A B C
Y§)=—F—=—4+—+—
s(s+1)(s+3) s s+1 s+3
Multiple both sidesby s(s+1)(s+3)
s* +5s+1=(s+1)(s+3)A +s(s+3)B+s(s+1)C
1 1
1x3 3
lets1-p_ (D7 -5+1 -3 3
~1(-1+43) -2 2
co (-3°-15+1_-5
-3(-3+1) 6
So now we have
Y(S) :%+ﬁ+i/6
S s+l s+3
and going back to the time domain gives

1 3 5
==+—e'-Ze*
y(t) 373 5

Let s=0= A=

Let s=-3=

Example: Solve dl{z(t) +4dd{t) +4y(t)=eu(t) y(0)=1y'(0)=0

Taking the Laplace s*Y(s)-sy(0 »4[sY(s) - y(0 )+4Y(s)= %
chgi 2 s a]=sias L
Which gives Y(s)[s +4s+ 4} =S+4+ o3
S+ 4+i
Y(s)=—S43
(s+2)
Y(9) = (s+ 4)2 N %
(s+2)° (s+2)(s+3)
This gives me two different terms, but they’ re ssmpler.
Y(8) =Yi(5) +Y,(9)
Y= et
(s+2) (s+2) (s+3)
First term:
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Y(s) = s+42: s+22+ 2 i

(s+2)° (s+2)° (s+2)
12

(s+2) (s+2)

y,(t) =€ +2te™
Now look at the second term:

1 C D E
Y,(S) = 5 = + >+
(s+2)°(s+3) s+3 (s+2)° (s+2)
(s+2)7|__ 12
1
ey
S = _12 g
ds| (s+3) ., (s+3) . 1
Check:
1 1 -1
Y2(S)ZS+3+(5+2)2+(S+2):
:1(sz+4s+4)+(s+3)—(52+5$+6): 1
(s+3)(s+2)2 (s+3)(s+2)2

S0
y,(t)=e +te® —e™*
And putting the two solutions together:

yO) =y,)+y,(t)=[2te* +e ] +[e* +te* —e?]=e + 3te™

2.9 Solving Systems of Linear Differential Equations
Example:

Solvey '=-y +y,, y, ==y, -v,, y,(©O=1and y_(0)=0.
Solution:

Taken laplace of both equations

syl(s) -V (0) ==V (S) + yz(s) and S}/Z(S) -Y (0) ==Y (S) =Y (S)
< (s+D)yy(9)- Y, (s) =1 and (s+1)y,(s)+y;(s)=0
Solving for y,(s)and y,(s) algebraicaly we get

(s+1)y;(s) +fT(? =1 and (s+1)y,(s)+y,()=0
& (s+D)2y, (9 + (9 =(s+1) and y, (9) =[—§J v,(9)

& [(s+D7+1y,(9=(s+Dand y, (9 :[—S%J %09
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s+1 1
& y(9)= and vy, (s)=—
%) (s+1)2+1 Y2(S) (s+1)2+1
Now, LY 31 1= etcostand L7} 1 | = etsint
(s+)“+1 (s+)“+1

Therefore, yl(t)ze_tcost and Y, (t)=—e_tsint,

Example: Solvey,'=5y, +V,, ¥,'= ¥, +3Y,, y,(0)=-3 and y,(0)=7.
Solution:

Taken Laplace of both equations

Sy, (S) =¥, (0)=5Y; (S) + Y,(9) and Y, (S) =Y, (0)=y;(S) +5Y,(9)

S (s-9)Y(9-Ya(9)=-3 and (s-5)y,(s)-y,(s) =7

Solving for y,(s)and y,(s) algebraicaly we get

- T _7+%(9
< (s-Hy(9) 5 - 3andy,(s)= 5
& (-9 (9-7-y1(9=-3(s-5and yz(S)='7(+szls()S)
& [s-97-1y(-7-3(s-9and y,(9- 2
_ _ S-S 7 7 ~ 3
Rt yl(s)_(s_5)2_1 {(8—5)2—]] and Y2(S)— S—5+(s—5)((5—5)2—1) [(3_5)2_1}

7 A B+<C
(s-5)((s-5)2-1) s-5 =571
7= Al(s-5)2-1)+ (B + sC)(s-5)
Letssb = A=-7

Lets=s0 —=7=A25-1)-5B=B

multiple both side (s-5)((s-5)%-1)

_-168-7_

f=>0=A+C=C=-A=7

7 7 7s-35 3

T el 2 1) 2
s-5 (s-5 ((s-5)2-1) |(s-5°-1

s-5 3
Y2 () _7[(5—5)2—1} [(3—5)2—1}

Now, L‘l{ 55 }:e‘r’tcosht and L‘l{ =
(s-5°-1 (s-5°-1

Therefore, v, (t)=e”'(7sinht—3cosht) andy, (t)=e "' (7cosht—3sinht) .

Y, ()=

}=e5tsinht

Example: Solvey "=y +3y, y2":4yl—4et, y,0=2, ¥,'(0)=3, y,(0)=landy, '(0)=2

Solution:
The subsidiary equations become
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S yl(s) syl(O) Y1 '(0)= y1(5)+3y2(s) ands? Y5(8)—sY,(0)-y,'(0)=4y,(s) _i

-1
o (s ~1)y; () —-3y,(s) =3+2sand s%y,(s)—4y,(s) =2+ s—il
Solving for y,(s)and y,(s) algebraicaly we get
_ 3+2s+3Y,(9) 2 _ 12+8s+12y,(s) _ 4
n(s) = (s>-1) and s7y,(9) (s°-1) s-1
2
yi(9) = 3+2(22+ 3;;2(3) and s2(s?~1)y,(s) ~12-8s—12y,(s) = (s> ~1)(2+ s)—%
yi(9) = 2(2; 3;;2(5) and [s2(s?~1) ~12]y,(s) = +12+ 85+ 252 + &3 — 2 5 4(s+1)
y1(9) :3+2(S; 31);2(8) and [s* - s?~12]y,(s)= §° + 28* + 35+ 6
S —
_3+2$+3y2(s) 3 s +2¢° +3s+6 1
W=y G T R )
3+28+3———
(s) = (s-2) (3+2$)(s 2)+3 3s—6+2s°—4s+3 25 —s-3
i (s’-1) (s—2)(s?-1) (s-2)(s*-1D)  (s-2)(s°-1)
S+ -5-1-2 (S-5-2)+(s°-1) (s+D(s—-2+(s*-1) (s+) L1
T (s=2(s*-) (s-2)(s°-D)  (s-2)(sP-D)  (sP-D) (s-2)
1 1
= +
(s-D) (s-2

1 1 1
&Y, (9) _—and AC) _T1+Tz

Therefore, vy, (t)= €' + € andy, (t)=e”.

2.10 Laplace Transform of a integers

If f(t) is a function having Laplace transform F(s)= L{f(t)}, then the Laplace
transform of the integration of afunction f(t), is given by:

LJ.f(t)dt— F(S)
S

Proof:
Ljf(t)dt_IUf(t)] S‘dt{—eﬁjf(t)} += jf(t)e s‘dt——F(s)

0

2.11 Initial value theorem:

It can be used to find the steady-state value of a system (providing that a steady-state
value exists).
If LF(t)=F(s) ,then
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F(0) =limF (1) =limsF(s)

2.12 Final value theorem
!imF(t):IingsF(s)

Example:

Find the final value of the function x(t) for which the laplace inverseis:-

1

X(s)=
() (S +3s? +3s+1)

limx(t)=lims(s) =lim—— <
t>0 50 s509(s” +3s” +3s+1)

=lim— 21 =
s50(s”+3s“ +3s+1)

Example:

Suppose Y(s) = —>5+2

s(bs+4)

Then steady state value of Y can be calculated by:

o) i T (5s+2) |
Y(0) = ItLTY(t) = I;rrg{s (551 4)} =05
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Response of first order systems

3. Dynamic behavior of first order system

Before studying the control system it is necessary to become familior with the
response 0s some of simple basic systems (i.e study the dynamic behaviour of the
first and second order systems).

3.1 The transfer function:
The dynamic behaviour of the system is described by transfer function (T.F)
Laplace transform of the output (responce)

T.F =
Laplace transform of the input (forcing function distubance)

X(s Transfer Y(s
Input functionG (s) Output
Forcing function Responce
Block diagram

T.F = G(s) _ye)

x(s)

This definition is applied to linear systems

3.2 Development of T.F for first order system:
Mercury Thermometer:

It is ameasuring device use to measure the temperature of a stream.

Consider a mercury in glass thermometer to be
located in a flowing stream of fluid for which the

x=surrounding )( Film resistance
temperature x varies with time.

temperature

The opject isto calculate the time variation of the
thermometer reading y for a particular change of x

The following assumptions will be used in this analysis:-

1. All the resistance to heat transfer resides in the film surrounding the bulb (i.e.,
the resistance offered by the glass and mercury is neglected).

2. All the thermal capacity is in the mercury. Furthermore, at any instant the
mercury assumes a uniform temperature throughout.

3. The glass wall containing the mercury does not expand or contract during the
transient response.

It is assumed that the thermometer is initially at steady state. This means that,
before time zero, there is no change in temperature with time. At time zero the
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thermometer will be subjected to some change in the surrounding temperature x(t).
(il.,eat t<0 , x(t)=y(t) =constant thereisno changein temperature with time).

At t=0 there is a change in the surounding temperature x(t)

Unsteady state energy balance:

mej—ZzhA(x—y)—0=hAx—hAy

1% order differential equation
Where

A: area of the bulb

Cp: heat capacity of mercury
m: mass of mercury in the bulb
t: time

h: film heat transfer coefficient

h depend on the flowrate and properties of the surounding fluid and the dimension

of the bulb.

The dynamic behaviour must be defined by a deviation variables.

At steady state (ss) , t<O , x(t)=constant=Xs

X(t)=constant=xs
mcp % =hA(x; —y.s) = hAx, — h Ay,
Substract eg. (2) from eqg. (1)

d - Js
mcn%=hfl(x—xs)—hz4(y—y55)

y—y., =Y also x—x,=X
at t=0 Y(0)=0 and X(0)=0

dYy
mcpE:hAX—hAY

mcepdY
hA dt

X—-Y

m cC
Let T = T;=ti me constant and has time units

dy
T +Y = X takenlaplace for the equation
T[sY(s) = Y(0)] +Y(s) = X(s)

(s + DY (s) = X(s)

, y(t)=constant=y ,

Process Control /Lec. 3 34
Fourth Class

Written by Assoc. Prof.
Dr. Zaidoon M. Shakoor



Y(s) 1

X(s) =G = s+ 1 - (3)
Y(s) L. T of the deviation in thermometer reading

LE= m =G = L. T. of the deviation in surounding Temperature

Any system has a T.F of the form of equation (3) it iscalled first order system which
isafirst order differntial equation (Linear).

3.3 Properties of transfer functions

T.F relates two variables in a physical process. One of these is (Forcing or Input
variable) and the other is the effect (Reponce or Output).

If we select aparticular input variation x(t) for which the L.T is x(s) then the reponce.,
Y(s) =G(s).X(s)

LY (s) =Y() = LG (s).X(s)
If G(s) is 1% order of athermometer

1
Y(S) = G(S).X(S) = m.X(S‘)

X()——>{ G(s) ——>Y(9

3.4 Transient response for different changes

Y(s) =

Ts + 1'X(S)

Y (t)=? For different types of x(t)
1-Step Change

X(s) =2
s
N
Y(s) = 1 Ao, o x(t)
s+1s s s+1
A=a,(1s+1)+0,S t

S=0 =a,=A

s=-1/t = A=ao(—z'/r+1)—0511 then o, = -Ar
T

Y(S)_é_ AT _é_ A’Z,' 1/_T_£\_ A A """" Ultlmat
s s+1 s s+11/r s +1lz y(t)
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Y(t)= A-AeV = Al-e ")
Severa features of this response, worth remembering, are

e The vaue of y(t) reaches 63.2 % of its ultimate value when the time elapsed is
egual to one time constant t.

e When thetime elapsed is 21, 3 7, and 4 7, the percent response is 86.5%, 95%,
and 98%, respectively.

Where the ultimate value is final steady state value
UV =limy(t)=Ilimsy(s)
t—owo s—0

Example:

A thermometer having a time constant of 0.1 min is at a steady state temperature of
90 F°. At time t = 0, the thermometer is placed in a temperature bath maintained at
100°F. Determine the time needed for the thermometer to read 98 F°.

Solution:

At s.s. Xs=ys=90 F°

Sepchange X(s)= é

A=100-90=10
X(s):E
S
v(sy= L A1 10 10 10 A B

1s+1s 0.Jds+1s 9g0.1s+1) 0.15(s+10) O.ls+s+10
A(s+10)+ B(0.1s)=10
S=0:>A=E=1
10
s=-10=B=-10
1 10 10 10

Y(s)= — = —
0.1s s+10 s s+10

By taken laplace inverse for the equation
Y(t)=10-10e ™ =10(1-e™™)
Substitute Y (t)=y(t)-ys =98-90

Y ()=8

8=10(1-e')

0.8=1-¢*

In(e ™™ )=In(0.2)

—10t =In(0.2)

t=-In(0.2)x0.1

t=0.161 min

2-Impulse Input
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X(s)=A

Y(s) = ! x A= A
s+1 s+1
Y(g=—2°
s+lr

YO =y -y =2
y(t)

Y = 2e 1y,
T

3-Sinsoidal input

X(t)= X, + Asinwt t>0
X(t)— X, = Asinwt

X(t) = X(t) - x, = Asinwt

Aw
X(s)=
(s) s% +wW?
Y(s)= Aw 1 1

2 2 % =AW — 2
s“+w- (15+1) (s“+w)(1s+1)
This equation can be solved for y(t) by means of a partial fraction expansion as
described in previous lectures.
1 oS+ a o
Y(s)=Aw = Aw[ —=° 1y 2
(s) [(SZ+W2)(rS+1)] (% +w?) (rs+1)]

(a,S+0)(tS+1)+0,(s® +W)=1

0L, TS + 0Ly S+ 0TS + Oly + 0L,S° + oW =1

SO (Xl+(12W2:1 (4)
s o, +a,1=0=0a,=—0,1 (5)
s 0,T+0,=0=>0a,=-0,T (6)

By substitution eq.(5) in eg.(6)

oLy = OL1T2 (7)
By substitution eq.(7) in eg.(4)

o + o TWA =1

3 1
1+ t°wW?

0y
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2
T

*2 :l+ 2w
-1
to T W
-t ol 1 2
Y(s)= An[ 1+ 12W22 12+ W L1+ W
(s"+w") (ts+1)
1 —1s+1 7

Y(s)=Aw +
(s) 1+ t?wW?  (s?+w?) (1S+1)

_ Aw - 1S N 1 V_V+ 2 T
1+7°W2 (s +wW?) (SP+wW)w (tS+1)1

Y(s)

Aw - 1S 1 W T

Y(s)= +— +
(s) 1+ 12W% (P +wW?) w(s?+w?) (s+1/1)

Y(t) = [—7 coswt +lsinvvt+ze‘/f]
W

AW
1+ 72w
Using the definition

pcosé +gsind =rsin(f + ¢)

r=yp’+q° tan¢=§

_ 1 2 2 1 2 V1+VV2T2
r_\/(v_v) ) =y -

—rcosvvt+lsinwt =rsin(wt + @)
w

N1+ wr?

AW e f NIEWT Gt + )]
w

Y(t) =

1+ 72w
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As t > then eY"=0, the first term on the right side of main equation

vanishes and leaves only the ultimate periodic solution, which is sometimes called the
steady-state solution

A .
Y(t) = — wit
(1) msn( +¢)]
A X(L) T /\
-A

By comparing Eq. for the input forcing Y (t) function with Eqg. for the ultimate
periodic response X(t), we see that
1. The output is a sine wave with afrequency w equal to that of the input signal.

2. Theratio of output amplitude to input amplitudeis _ <1.

V1+w?t?
3. The output lags behind the input by an angle ¢ . It is clear that lag occurs, for the
sign of ¢ isaways negative.

$<0 phase lag
¢>0 phase load
Example:

A mercury thermometer having a time constant of 0.1 min is placed in a temperature
bath at 100°F and allowed to come to equilibrium with the bath. At time t= 0, the
temperature of the bath begins to vary sinusoidally about its average temperature of
|00°F with an amplitude of 2°F If the frequency of oscillation is 10/r cycles/min, plot
the ultimate response of the thermometer reading as a function of time. What is the

phase lag?
In terms of the symbols used in this chapter
=01
t<0 X, =Y, =100
t>0 X(t)=100+ 2sin(wt)
10
T
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Solution

W= 27f =27z><£=10 rad / min
T

T _ L1 10 min/ cycle
f =z

X(t)=x(t)—x,=100+ 2sin20t —100
X(t)=2sn20t

2x 20

X(8)=——=

(2) s* +20°
Ultimate response t — o

A
V1+wAt?
d=tan*(—wr)=tan *(-20x 0.1)=tan *(-2)

¢ =-63.5°
Ultimate response at the above angle

Y(t)= sin( 20t — 63.5)]

then eV =0

Y(t)= sin(wt + )]

\/1+(o.1><20)2
Y(t)= \/_sm(ZOt 63.5)]
Y(t)=0.896sin( 20t — 63.5)]

Ultimate response

In general, thelag in units of time

isgiven by:- 10z.9

‘(I)‘ 100.9

phase lag = 100.0

lag=0.056 min

eriod=0.314 min

360 ' i
_ 9.1
63.5 cycle © _min 1

360 10cycle !
=0.0555min |

phase lag =

B80F -+ —

\ 7 \ 4
Yo AN RN %
|
| Bath
——— e e temperature

Thermometer

Ultimate periodic response

|
1 temperature
.'
|

10 cycle

A frequency of —
is equivalent to 360°and lag is 63.5°

} min

means that a complete cycle occursin (—) min. since cycle

How to calculate the time constant () for first order system

1) Mathematical method
Using the definitions
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— Thermometer
hA
7=AR Liquid level tank
r:\i Mixing tank
q

A

Y(t) = Al-e")
ast— o Y(0) = Al—€e™”) = A

ast—-r

Y(r) = All-e™) = A(1- 0.3678) ~ 0.63A

Time constant (7)is the time required for the response to reach 63% of the its utimate

value.

3. Third method
Y(t)=Al-e"")

dy —t/‘c A
—-Ae =—e
dt ]/T) T

—t/t

Y (t)slop|

D

Slope of thetangent at t=0is
A

slope

Y(t)=Al-e"")

Y(t)=A- AeV"

AeVT = A-Y(t)

e—t/r _ A_Y(t)

A

A-Y(1)

Therfore 7 =

~t/t=In

A-Y(1)

Let B=—4
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InB:_—1
T

let y=InB and x=t

slopez—1
T
Y (t) B_A—Y('[) InB
A
slope:—l
.
_ 1
~ dope

InB
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Physical Examples of First Order System

1.Mercury Thermometer

Mercury thermometer was discussed in detail in a previous lecture.

2.Liquid Level Tank

Consider the system shown in below figure which consists of:
1. A tank of uniform cross-sectional area A.
2. Vave attached to the output flow which resistance constant=R.
Jo: The output volumetric flowrate (volume/time) through the resistance, is related to

the head h by the linear relationship. qm______l
g, < h Linear Valve |
h = ____ﬂ'
“©=r (1) Be
Where: R
R isrelated as alinear resistance ——>gy(t)
If g, h" (n=1) Non linear valve

g(t) is a time varying volumetric flowrate with constant density p.
Find the T.F. that relates the head to the input flowrate q(t).

We can analyze this system by writing a transient mass balance around the tank:
Mass flow in - mass flow out = rate of accumulation of mass in the tank
d
W -tp="F (v= Ah)
t
dh

—g = A—
a-q, ot

h ,dh
a-== AE .................. (2)
At staedy state
qs _E = A% =0
R dt
Substracting Eq(3) from Eq. (2)

gy n=h _ ,d(h-h)

let Q:q_qs ’ H:h_hs
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A= 4=
a TR™C

AR%—T+ H =RQ Taken laplace for both sides of equation

(ss+DH(s) = RQ(s) where 7= AR
HE__R

Qs (s+1| Firstorder systemequation ... (4)
R
= 5)

Comparing the T.F. of the tank with thr T.F. of the thermometer we see that eq. (5)
contain the factor (R) which isrelate H(t) to Q(t) at s.s. ass - 0,t — w

For this reason, afactor R in the transfer function ZSR 1 is called the steady state gain
_l_
To show that
TakeQ(s) =§
ThereforeH (s) = i.l
S5+1 s
Final value theorm
: : . R 1 . R :
[ImH(t)=limsH(s)=lims——.—=lim——=R S.Sgaln
t—o s-0 s50 7S+1 S s207S+1

Also to find the level as afunction of time
H(t)=L"H(s)

3.Mixing Tank

Consider the mixing process shown in Figure in *,” B

which a stream of solution containing dissolved salt _ / - ()
flows at a constant volumetric flow rate q into a tank :?_S— q
of constant holdup volume V. The concentration of - —;

the salt in the entering stream x (mass of salt/volume) y(®)

varies with time. It is desired to determine the transfer
function relating the outlet concentration y to theinlet ~ FIGURE 5-4

. Mixing process.
concentration X.
If we assume the density of the solution to be constant, the flow rate in must equal the
flowrate out, since the holdup volume is fixed.
F: Volumetric flowrate

X, Yy : Input and output salt concentrations (mass or mole/vol)
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Unsteady state material balance
dvy _v dy

dt dt

Steady state

@ g
dt

Fx-Fy=—=

Fx,—Fy, =V

Subtracting the above both equations and introducing the deviation variables

F(x— %)~ Fly-y) =v S0

(rs+2Y(s) = X(s)
Y(s)

Example:
Find the T.F for the system shown in figure

Solution:

h h
F+F,-n_ad
R dt
F15+F23_&: dhs
R dt
let _1:F1_F13 'fz_Fz Fas h_h_hs
ErF-n_pdn
R dt
dh

AR— +h = FR+F,R
dt

(s+1Dh(s) = F()R+ F,()R

R R
h(s)= s )1()( )2()

When F; constant —

When F, constant —

Rl) Fi(s9) =0 = R(s) =

R _ _
D F,(s)=0=h(s) =

- \Y}
X(s) (1s+1) 1% order system , wherer = =

R
(s+

1

R
+1)

F,(s)

Fi(s)

qo

Il
| s
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4.Heating Tank

Energy balance equation.

VpeSL = we(T -T)+Q 2 |
Assumption: constant liquid holdup and == :
constant inflow(w is constant), alinear 0 _E
mode! result. rbnmnmm]

Q
If the process is at steady-state, dT/dt=0 =

0=wC(T,-T,)+Q,
Figure: Continuous stirred-tank heater.

Subtract equations
a7 d(T-T,

Voc S =vpe ST el (1 - 1) - (7Tl Q-Q)

Define some important new variables(Deviation variables).

T:T _Ts’-ri :Ti _Tis’(j: Q_Qs

By substituting deviation variables for variables.

VPCE:WC(TFT)*'G
VPOl _f _T.:Q/wC
w dt

Let k=1/WwC,t=Vp/w
Apply Laplace Transform.
ST (9) = (T/(9) - T(9)) + kQ(9)

(5s+DT(9) =Ti(9) +kQ(9)

1

1=

T(9+-5Qq
Ss+1

= _'IT(S)_ k
If T,(s)=0G,(s) 50 " mil
= . T 1
If Q(s)=0 GZ(S)_—f(s) =il
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5. CSTR with constant holdup:

dc, !

V=_£=FC, —FC,-VKC, I

dc
at steady state V——==FC,  —FC,« ~VKC,

dt e
by subtracting both equations : P VA

Vv d(CA - CA,$)
dt

=F(Cy —Cus)—F(C,-C,)-VK(C,-C,&)

\Y; d;’* +(F +VK)C, =FC,, +(F +VK)

v &"'C_:A ZLEN
(F+VK) dt (F +VK)

Let, - v and K = F
(F +VK) (F +VK)

aC, =~ =
Td—tA'i‘CA = KCAi

Taking Laplace Transform:
(5+1)Cu(S) = KC, (9)

w

Taken sinusoidal changein C, (t) — C,, (t) =sin(wt) —» C,,(s) = e

K w b L s+ d
(;5+1) 2+ W  (5+1) S*+wW
Multiply both sides by (ts+1)(s*+w?) gives:

Kw =b(s* + w?) + (cs+d) (rs+1)

-1 Kw Kwz?
Let S=—= b= 1 :W2 22—+1
2 T
v W

6A(S) =

Kw’z?  Kw’z?+ Kw-Kw’z?  Kw
wirl+1 w?r®+1 w2+l
Equating the coefficients of each power of %, yields:
b+cr=0= c:ﬁz_f#

T W+l
Substituting the constants in the main equation:
KW[T2_2'S+1]:KW[T_ZS+1
W2zl +1s+1 SS+w SS+w Wi+l s+lr SS+w S+ wW
Using Laplace Table:

Let s=0= d=Kw-bw?=Kw-

s*:

C.(9) = ]

- Kw - 1.
CA(t)=m [TeT —z’COS(V\It)—I—WSln(Wt)]
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Response of first order systems in series

Many physical systems can be represented by severa first-order processes connected
In series as shown in figure:-

q (1)

e

44

1

v Y
q2 qz
(a) (b)
Figure 5.1 Two-tank liquid-level system: (a) Non-interacting; (b) interacting.
Infig (5.1 a) variation of h, does not effect on g, then g, =%
: - h —h,
Infig (5.1 b) variation of h, does effect on g, then g, = R
1-Non Interacting System
Material balance on tank 1 gives
h dh, q (1) y
1
TR A 3/
Atss gq.——=A—-=0 - |-
Qis Rl A& dt }'71
. . R,
By substracting both equations — /Az
q
i is R]_ dt _—2_ - T R2
H dH S
[Qi_RlleL d’[l] xRy qz
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dH
RQ =H; +RA- !

Hyi(s) _ R
Q(s) ~us+1f WheeT=AR

Material balance on tank 2 gives

h dh
i_ 2:A2 2
R R dt
hls hZS thS
Atss = 25 = A, =25
SSRTR -4
By substracting both equations
fh—hls_hz—th:AZd(hz—hzs)
R R, dt
H, H, dH,
- = R
R R ot e
dH R
R 24H,=—2H
AR, at +H; R 1
R
T25H2(S)“‘H2(5):€2Hl(s) T, =RH,

(r2s+1>H2(s)=%Hl(s)

H,(s)= R/R

(1,5+1)

H,(s) By substituting the lapace transform of H(s)

H,(s)= B (5P

(1,5+1) 1,5+1

R Q(s)

HZ(S):(rls+1)(rzs+1)

HZ(S) — R2 ] .
Q(s) (t,;5+1)(t,5+1) Non-interacting system

In the case of three non-interacting tanks in sereies the transfer function of the system
will be as below:-

Hy(s) _ Ry
Q(s) (t;S+1)(t,5+1)(t55+1)
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Example:

Two non-interacting tanks are connected in series as shown in Fig. 5.1 a. The time
constants are 17, =1 and 1, =0.5; R ,=1. Sketch the response of the level in tank 2 if a
unit-step changeis madein the inlet flow rate to tank 1.

Solution:
The transfer function for this system is found directly from Equation above thus

g (@)

R A
H,(s)= 2 (S }
2(8) (rlS+1)(rZS+1)Q'( ) ___‘r_r/
Substituting Qi(s):1 Unit step changein Q; ___JTIT_
S
Hy(s)= R, 1
(t,8+1)(t,8+1)s
A, a4 0%} +
s (t s+1)+(r s+1) 92
1 2

R, =o,(t,S+1)(t,5+1)+a;(1,5+1)+a,1,5+1)
lets=0 = o,=R,
1 1 1 T 1 T,—1
lets=——= oy (- )(1(-)+1) =R,z oy (5 -—)=R=>u(-*5+)=R,
T T T T T

)

T

ooy =Ry (

T, =T

1 1 1 T T
lets=——=a,(— ) (1 (-)+1)=R, m o5 -)=R = a,(—+52)=R,
Ty Ty P T, T T

15 )
w7 1 15 1

+
-1, (1,5+1)  C 1 -1, (1,5+1)

o, =Ry (

11— 7

R
Ha(8)="2 + Ry (

1 T,T T 1 T,T T 1
Hy(s)=R[ =+ (—2-)-*+ (—+2-)-2 ]

1 T,T 1 1 T,T 1 1
Hy(8)=R[ = —(—%)— ()= ]

Ha(0) = Ry(1- (272 )( et - et

T1—T, 7, 2]

1x0.5 )(}e_t/os _ie—tll)

H.(t)=1-
(1) (0.5—1 1 0.5
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Hz(t)=1—(%)(e-2t—2e*> .

Hy(t)=1+e* -2e™")

Hy(s)=— L Q(s)

T,S+1

H (1)
(]
<
T

Hy(s)= R 1

rls+1'g
H,(t)=R(1-e"'™) /
Substitute R;=1 /
H (t)=41-e"%%) /

-
p——
e
-
-

Two tanks

H(t)=1-e?* 00

Example:

Obtain the transfer function of the following system (no reaction):

Where:

F = volumetric flow rate, F, = F;
C = conc. of solutein stream

V =liquid volumein tank

Solution:
M ass balance on concentration; i.e.
In —out = accumulation

dC, = =
Tld—tl+C1=Ci where T]_:V]_/Fl

Laplace transform — 7, sC,(s) + C,(s) = C, (9)

Vo, C, —»FZ’ &

(non-interacting system)

C(s)__1 _ . _
Ci (S) T]_S‘l‘ 1 e (1) Ci (S) —_—) Tls+1 — Cl(S)
dC
R L )
F, dt F, F,
T2 dd(-iz +C, = ch_:l +K,G;
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M

K, c
(r,5+1)(z,5+1)

62 (S) =

2.Interacting System

Material balance on 1%tank
—q=A

q (1)

—+/A

h-h,

:%
R N

dt

q —

Steady state

-

W

hls 25 — dlls —
R =A

By substracting both equatlons

Us —

d(hl_h’ls)

hl th Zs:
(G —Gis) - R Rl A

_Hi, , dH,
Rl R A

dH
QiR1+H2:|'|1"‘A1R1?l

rldd—l_tI+H =QR +H,

(1,8+1)Hy(8)=RQ(8)+ Hy(s)

Hi(s)= R
(t,5+

— s at

[Q + xRy

Q(s)+

H,(s)

1
1) (t,5+1)
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Materia balance on second tank
-h, h dh
L__zz A, —2

R R, Zdt
SR
Ay <R,

AR, S He = 2 (HuHy)
(rzs+1)H2(s):%(H1(s)—Hz(s)) .............. 2)

Substituting for Hl(s)from eq(1) ineq(2)

R, R 1

(to8+1)H,(s)= Rl[( s 1)Qi(s)+(rls+1)
2Qi(3)+R Hz(s) R,
(1,5+1) R (rls+1) R1

(t25+1)(7S+1)Hy(s) = RzQi(S)"‘ﬁsz(S)_

H,(s)—Hy(s)]

[(t,5+1)H,(s)= H,(s)] x(1;5+1)

(1,5+1)R, H, ()]

RS H,(s)=RQ(s)

T
(1,7,8° + 1,8+ 1,8+ 1)H,(s) + -2

L et uR _ ARR

=AR, =1,
R R T
(T1T232 +(1y + 7, + 1, )S+1)H,(S)= R,Q(S)
H,(s)= R Q(S)] Interacting system

T,T,8% + (T + T, + T, )S+1

R,
1,1,8° + (1 +1,)s+1

H,(s)= Q(8)] Non- Interacting system

The difference between the transfer function for the non-interacting system, and that
for the interacting system, is the presence of the cross-product term A;R; in the
coefficient of s. 1, = AR,
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Example:
To understand the effect of interaction on the transient response of a system, consider

atwo-tank system for which the time constants are equal (r;=7,=1).
T1 = T2~ T1271
Q,(t)=? Output flow rate

1
Q(s)==

S
Solution:
Non-interacting system
H,(s) _ R, .
QI(S) T1T252+(T1+’[2)S+1 1 2
H,(s) R, H,(s)

= but S)=
Q(s) 1t°s*+2ts+1 Q(s) R,
Qy(s) _ 1 _ 1 1
Q(s) t%s®+21s+1 (ts+1)(ts+1) s+l
If Qi(s):}

S

Qz(s):;l &+ %1 o)

_I_
(ts+1)* 1s+1

By multiplying both sidesby §( ts+1)%*and expanding, we get

(ts+1)° s s

o (tS+1)° + o S+ o, 1s+1) =1
oo (128% + 218 +1) + 0, S+ 0, (18 + 5) =1

S* (ot + 0l,T) + S 2ta, + 0y + 0y )+, =1
0

S =>oa,=1
s? :>a012+a21:=0:>rz+0c21::030c2:—1:
st = 20,T+a,+0,=0=2>2t+0;, —1=0=>0a,=-7
1 T T
S)==- —
Qu(s) s (ts+1)* 1s+1
1 T T
S)==- —
Qu(s) s (ts+1)* 1s+1
1 1 1 1
Qx(s)==--

s t(s+l/t)? s+l/t

for non-interacting
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Interacting system
If the tanks are interacting, the overal transfer function, according to Equation of
Interacting system (assuming further that A;=A,)

1 1
Qu((s)= 125 +3ts+1'S
By application of the quadratic formula, the denominator of this transfer function can
be written as

1 1
QZ(S)_E(0.381-5+ 1)(2.62ts+1)
Qy(8)="2+ o °‘2

+
s 038ts+1 262ts+1
let s=0=a,=1

let s=— = o, =—0.38t 1 = 0.06641
0.381 2.621(———)+1
0.387
let s=— — o, =-2.621 1 i = -3.6641
621 0.381(———)+1
2.621
1 0.0664t 3.0664t
Qy(s)=—+ -
s 0.38ts+1 2.62ts+1
1 0.0664t/0.38t 3.0664t/2.621
Qy(s)==+ -
S s+1/0.38t s+1/2.62t
1 0.17 1.17
Qz(s) =—+

s s+1/0387 s+1/2.627

Qz(t ) = 1+ 0'176—“0-38‘5 _ :Ll?e—t/ 2.261

1.0

08 Q=ul) 1 1 Oz

s+1 T5+1

06+

Noninteracting

0,0

Interactin
04+ &

o 1 1 O,
02F Q=)™ 038ese1 | | 2620541

0 l l l
0 1 2 3

te —

Figure: Effect of interaction on step response of two tank system.
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Linearization of non-linear systems

To solve non-linear systems there are two methods:-
1-Linearization method
Making the non-linear function as linear using Taylar series and give approximate

results.

2-Non-linear solution
It isdifficult and give exact solution

Linearization Technique

=2t
i o }Linear(all terms to power =1)
=t+
y=t*
y=2t Non-Linear (power #1)
y=Inx

To make the non-linear function linear one use Tayler series.

B df(x) ldzf(x) Y
f(x)=f(x,)+ A X=)%(x X))t

Neglacting the non linear terms because their value are very small.
Then

(X—=X%,)+

X=X,

F(0 = Fx)+ 0 ()
X=X,
‘ d
Jw Slope =‘a—{| ]
(M
Linear approximation:
ft:n df
---------- [ f[?)+ ti _(‘I ~X)
| (T)
|
[
|
|
|
Nonlinear f :jf .
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Example:
The flow of water through a valve or other construction usually follow a square-root

law.

If qO:D Linear valve i

R
9, =cv/h Non-linear valve 1'

c is aconstant ‘1' __________

o

d(pv) ,dh A

0 — = = pA—

Gp—Gop=—" " =PA pa—. X
dh

_cht?=A— 1

q pm (1)

0o may be expanded around the s.s. value hg using linearization method

11
E hl/g (h_ hs)

S

v

h1/2 — h;./Z +

q, —cl:hi/z +%i(h—hS )}zA@ ........ (2)

h1/2
Qs — c[hi’z]: A% =0 assh=hs........ (3)

11

2hy?

9 _F 1 H}_AdH

(qi_qis)_c|: (h_hs):|_A;

dt

1
5 Tangent line

2\/E R 70 Slope = 1 _ dq,(h)
R, dh

dH Jo,r———= o = Ch12

By taking laplace transform 0 h
(ts+1)H(s)=RQ.(s) h

H(s) R .
Q(s) T sral e 1” order system

Where RZZ_\/ht and t=AR
C
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1-Transfer functionis similar to linear.

2- R depends on the s.s. condition (at steady state the flow entering the tank equals to

the flow leaving the tank,then go=0os).

Example: Mixing tank with chemical reaction
2A—>B+C

Reaction Rate=r = —kc?

F, G
G(s)==25) _»
Gi(s) F,C

Ci,c: Composition of component (A)  [TTTTTTTTT —>
V: Constant=L \
F: Constant=L/min 2A—>B+C
Solution:
In - out - rate of reaction = accumulation

Fc — Fc—Vkc? :V% Un-steady state
c®=c2+2c(c-c,)

Fc — Fc—VK[ cZ +2c(c—c,)] =V%

Fc, — Fc, —VkeZ =V d(;:ts =0 Steady state c=cs

F(G —6a)— F(o—c,)~VK[ 26,(c—c, )] =v HEE)

dC ‘
VE-F(F'FZ\/sz)C:FCi T(F'FZ\/kCS)
rd—C +C=RC,
dt

C(s) R

C(s) ts+l 1st order system
Where C=c-c, , C =c —cg
T :L R:L

F + 2Vkc, F + 2Vkc,
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Linearization of n'" order nonlinear differential equation

Consider the " order nonlinear differential equation ~ f (X %....%; ) =u(t)
Expanding the nonlinear function in a Taylor series about an operating point that
x’ ,1=12...,n satisfiesthe original differentia equation and retaining only the linear
termsyields:-

df (X4, % - Xy )|
= dx,

F (XX 00X )2 F (X %o e X ) | (% —X)
X=X’
LA (X%, % )

dx,

N df (X, X5 ,--X, )|
dx

(% =5 )+ (X, = %7 )

Lq=>q° n Lq:mo

Example:
Mixing tank F.¢
G(s):C(S)z’? | F,c
F(s)
A/ EE L P E —>
c: Variable (kg/L)
F: Variable (L/min)
Ci: Constant
V: Constant
Solution:
Fc - Fc :V$
nonli;;c/a_‘rterm dt

of of
f(xy)= f(xs’ys)+_ x:xS(X_Xs)+_ x:xs(y_ ys)

OX| y=y, Y| y=y.
~Fc=Fg,+c(F-F,)+F(c—cy)
Fc —[ Fcs+c(F —F )+ F(c—cy)] :V% unss

dc
F.c —F., =V dts =0 ss
d(c—c

Ci(F - Fs)_cs(F - Fs)_ FS(C_CS):V ( dt S)
cX—-c X — FSY:VOI—Y

dt
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Y=cCc-cC,
X=F-F

where

dy
[VE+FSY:(ci—cs)X] +F,
ld_Y+Y:MX
F, dt F

rd—Y+Y:RX

S

\ R:(CI_CS)
F

S

Y(s): R "
X(s) ts+1 17 order system

Time Delay
The most commonly used model to describe the dynamics of chemical process is
First-Order Plus Model Delay Model. By proper choice T4 , this model can be
represent the dynamics of many industrial processes.

e Time delay or dead time between inputs and outputs are very common
industrial procsses, engineering systems, economical, and biological systems.

e Transportation and measurement lags, analysis times, computation and
communication lags.
Any delay in measuring, in controller action, in actuator operation, in computer
computation, and the like, is called transportation delay or dead time, and it always
reduces the stability of a system and limits the achievable time of the system.

The Transportation Lag
The transportation lag is the delay between the time an input signal is applied to a
system and the time the system reacts to that input signal. Transportation lags are
common in industria applications. They are often called “dead time”.

x(t) X (t-7)

— Transportation Lag —
X (s) e =X(s)
Process Control /Lec. 6 60 Written by Assoc. Prof.

Fourth Class Dr. Zaidoon M. Shakoor



Dead-Time Approximations:-

/Cross—scclional area= A

x() —( O r@
q , ; . q

qi(t) q;I(t
|:[> Dead ﬁ>
Time

gi(t) = Input to dead-time element.
do(t) = Output from dead-time element.

The ssimplest dead-time approximation can be obtained graphically or by physical
representation.

qo(t): qi(t_Td )
Q,(s)=Q(s)e ™"
Q(S) _ gras
Q(s)

The accuracy of this approxiamtion depends on the dead time being sufficicently
small relative to the rate of the change of the sope of q;(t). If q;(t) were a ramp
(constant slope), the approximation would be perfect for any value of t4. When the
slope of g;(t) varies rapidly, only smal t4'swill give a good approximation.

If the variation in x(t) were some arbitrary function, as shown in figure below, the
response y(t) at the end of the pipe would be identical with x(t) but again delayed by t

x(t)
/ x(t) ¥ "

” -—T 7"
_____ ,
| T /
:-e’ () le— Y@
| I
| ri
0 T ¢ 0 T f
(@) (b)
Figure Response of transportation lag to various inputs.
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Example: Thermal system

— air

Temp Temp
Sensor 1 Sensor 2
o : :
| g
heater

If measured at T this can be modelled as:

T(s) K

V(s) 15+1

Due to the delay time the temperature T, represented by:
T,(s) Ke™e®

V(s) 1s5+1

Example: Mixing tank with time delay.

F,V:Constants === ======

Time delay

C2( S) — e—’Cd S
Ci(s)

__Volumeof tube AL AL L
Volumetric flowrate q UA U

C(s)_ R
C(s) ts+1

Ty

Cy(s) _Cy(s) « Cy(s)
C(s) GC(s) GC(s)
CZ( S) _ R e—rds

1C(s) C1s+1 (Time Units)
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Second order system

A linear second order system under dynamic condition is given by the differential

eguation:-

A dy 2edy
o’ Ot o, dt
1

—=7
1)

n

+Y =kX

2
d Z+2§rd—Y+Y:kX
dt dt

Where:-
k : Steady state gain
Y : Response value

2
T

X: Input disturbing variable

wn: Natural frequency of oscillation of the system.
Y(0)=Y(0)=0

& : Damping factor (damping coefficient)

By taking laplace for the above second order differential equation
728%Y(S) + 2£1SY(S) + Y(8) = KX (9)

(£?S° + 2E15+1)Y(S) = KX (8)

_Y(s) _ k
S X(s) 728’ +28s+1

G(s)

T.F. of second order system

If X is sudden force, such as, step change inputs, Y will oscillate depending on the
value of damping coefficient & .

& <1 Response will oscillate (Under damped)
&>1 Response will oscillate (Over damped)
=1 Response critical oscillation (critical damped)
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Response of second order system

1) Step change response

2
X©=2 = Y=, KAl ;/T 1x5 ...... (1)
S r?s* +2&s+1 s Sz+§s+2 S
T T

The quadratic term in this equation may be factored into two linear terms that contain
the roots

N i [42° 4 5 €1
_ 7z V't P _—c N7® 7 _—¢. 72
2 2 r 2 r 2

=Two real roots

:—§+\/§2—1
T T

...... (2
Eq. (1) can now be re-written as
2
Y(g)=— AT
S(s—s))(s-s,)
£>1 Overdamped Two distinct real roots
¢=1 Critically Damped Two equal real roots
0<g<1 Underdamped Two complex roots
Y= x T St
7°8°+25s+1 s S 1S +281s+1
a,(r°S’ + 265+ 1) + o, + a,5= KA
s° a, = kA
s 20, lt+a,=0 = a,=-2KALT
s’ a,r’+a,=0 = a,=-KAr®
1 r°s+ 26t
2 Y(s)=kA—-
) I<A[s r’s? +2¢fzs+1]
Process Control /Lec. 7 64 Written by Assoc. Prof.

Fourth Class Dr. Zaidoon M. Shakoor




s+2§ s+2§

1 1
Y(s) = kKAl—— 2 > 2]: - 22’ 2]
> (5+2é3+i2)+i2—i2 > (S+2£S+%)+iz—7
T T T T T T T T
1 s+2§
Y(s) = kA= — .
S (s+£)2+1_;’g
T T
1) For <1 ==> under damped system
1 s+2§ 1 s+f+f
Y(s) = kA= - )= kA - ]
O A ot I W LA C
T T T T
st 4
:kA{l_ T _ T ]
S s+ (VS (se o)z (Ve
T T T T
¢ VLN l
et >t ro1-¢g? e
_kA{g_

2 N 2 ]
(s+577+ (57 (s e (VS
T T T T

Y(t)=kA[1—e(‘§’”‘cos”1_§2t— o e(‘g’”‘sin—vl_gzt]
T J1- &2 T

V1-¢&°

T

W=

Y(t) = kA1-e"¢'7" (coswt + ¢ sinwt]

1-£2
_ 2 2 5 2 1
r=4p?+q _\/1+( 1_§2) =1 e
_ —1£: -1 1 _ -1 1_§2
¢ = tan . tan £ tan ;

J1-&2

Y(t) = KA[1- €77 (r sin(wt + ¢))]
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1.6

T =0.21 T T T T T 1 T
1.4 — —
0.4
1.2 — —
0.6
1.0 —
Yy 0.B
kA ©.8 |— _
0.6 |— |
0.4 |— —
0.2 — —
1 1 1 ! 1 1 1 ! 1
© 8] 4 8 12 16 20
2) For &1 =»Overdamped system
S+ 2é s+—+é
1 T 1 T T
Y(S):kp{g— é: 1_52]:kA{g 5 52 _1]
(S+7)+7 (s+ ) —
T T r?
Y ;
Bhare £ j/gz 1, 1/ -1,
(s+7)" —( )? (S+
T T
6 é)( T \/ —1
e g \/52 )
S 21 1
RGN (s+5y - =
T T
1.2 T T T T | T T T T
1.0+ —
y=1.0
0.8 1.5 _
y o
HO.G — 2o =
0.4} —
0.2 |— -
8] 1 1 1 I 1 1 1 1 1
Q 4 8 12 16 20
t
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Terms Used to Describe an Underdamped System
Second order system response for a step change

Period T

| —
|

Response time
limit
] .-0 I —
|
|
|
|
|

o
©

=

Lt Response
Rise time time

Yy

B

0

0

et

r
Figure (8.3) Terms used to describe an underdamped second-order response.

1. Overshoot (OS)

Overshoot is a measure of how much the response exceeds the ultimate value (new
steady-state value) following a step change and is expressed as the ratio % in the Fig.
(8-3).

— &
V1-¢7)

0OS % =100x OS

OS=exp

2. Decay ratio (DR)

The decay ratio is defined as the ratio of the sizes of successive peaks and is given by
% in Fig. (8.3). where C isthe height of the second peak

—2r&

N

3. Risetime(t,)

This is the time required for the response to first reach its ultimate value and is
labeled in Fig. (8.3).

7 —tan™ “1;§2
t =

' w

DR=exp = (0S)?

Process Control /Lec. 7 67 Written by Assoc. Prof.
Fourth Class Dr. Zaidoon M. Shakoor



4. Response time

This is the time required for the response to come within £5 percent of its ultimate
value and remain there. The response timeisindicated in Fig. (8.3).

5. Period of oscillation (T)
The radian frequency (radians/time) is the coefficient of t in the sine term; thus,

2nT

1- &2

T-=

6. Natural period of oscillation

If the damping is eliminated (£=0), the system oscillates continuously without
attenuation in amplitude. Under these “natural” or undamped condition, the radian
frequency is 1 . Thisfrequency isreferred to as the natural frequency wi,.

1 T
W, ==

.
The corresponding natural cyclical frequency f, and period T, are related by the

expression:-

f = 1 = 1 Thus, t has the significance of the undamped period.

“ T 2xr

7- Timeto First Peak(t, ) :
Is the time required for the output to reach its first maximum value.
T T

N\
AN
AN

\ Xtm,‘ghm \

T~

T

s — NN
Decay- \
ratio \
0 [
0 0.2 0.4 0.6 0.8 1.0

g

Figure(8.4) Characteristics of a step response of underdamped second-order system.
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Derivations

1-Over shoot
W+ d=0+nNn

Nz

t=— : —
w | maxor min n=1,2,3 ......

Ifn=0,2,4,6,................ - min
Ifn=1,3,57, ..c.coevvnnnn... - max

1% max when n=1

L
W W
1 - Vs

y(t) = kA1- e sin(w—+g)]

J1-&2 w

1

Ve = KL~ ——— e (~sing)]

V1= &2
For Underdampded system

: 2 1-¢°
cosg=-¢E , Sng=41-&° |, tang= :
1
Yo = kAL We@ (1-£2)]
—én

Yo = AL+ 7]
Overshoot = 2 = MX=B

B B

f’l
£

Overshoot = KAL+e” |-kA
Overshoot = exp
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2-Decay Ratio

Decay ratio = % (The ratio of amount above the ultimate value of two sucessive

peaks).

tzn—” for n=3 then t:?’—Tc
w w

&
Firstpeak at n=1 vy, =kA1+ e@]
-3¢

Second peak at n=3 vy, = kA[1+ e@]

—37& —37&
 KAL+e kA e S
Decay Ratio = — =——F=e""

KAL+e ™ ]-kA e

3. Risetime (t,)
It isthe time required for the response to first tauch the ultimate line.

e_7§t sin(tw+ ¢)]

1
y(t) = kAfl-
N

At t; y(H)=kA
-&
KA = kA[1— er sin(t,w+¢)]
1- 52
O=sin(t,w+¢)]
NNEPI
o (0)-¢
W
1—52
¢ _
for n=1
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4-Period of oscillation (T)

1- &2

T

w = Radian frequency =

w=2x also T:%

5. Natural period of oscillation (T,).
The system free of any damping for £&=0

J1-&2
.

w, radian of frequency =

= wn:l for £=0
T

w, =224 = 1:27zf

6-Response time(t)

The time required for the response to reach (x5%) of its ultimate value and remain
there.

7- Timeto First Peak (t, )
Is the time required for the output to reach its first maximum value.
Nz

t=
w
First peak is reached when n=1

= nr o nt
wow 12
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2- Impulse Response

If impulse d(t) is applied to second order system then transfer response can be written

as.
V=7 2§zs+1x(s)
X(s)=Area=A
k
Yie)= r%s? + 2815+1
KA/ 7?2 KA/ 72
Y(s) = =
sz+2§s+2 32+2§s+12+(§)2_(5)2
T T T T T T
B KA/ 72 _ KA/ 72
125G o) (s+8y S
T T T T T
) &>1
kA 7 £2-1
Y(s)= ;Alle_éﬂ: et 2= L 2
(S+T)2+2 (S+§)2_ E (S+§) . 5 -1
T T
Y KA B h
t) = - sinhwt
() T\/?_le sin
W= &t
T
i)E<1
KA 7 41—
Y(s) = gkA/Tzl_(fz: AT 2= T ald
(S+z-)2+ 2'2 (S+§)2+[\/1;TJ (S-l-é) +{ 1- 5 j
-a
Y(t) = KA e+ snwt

Process Control /Lec. 7 12

Fourth Class

Written by Assoc. Prof.
Dr. Zaidoon M. Shakoor



W=
.
1i)é=1
Y(s) = kA/z? KAIZ2 KA/Z?
o g2 12 1
(S+é)2+1 f (s+})2+:L 21 (s+7)°
T T T T T
Y(t)= k—/jte”’
T

Example A step change from 15 to 31 ps in actual pressure results in the measured
response from a pressure indicating element shown in Fig. E5.14.

12.7
11.2
R (mm)
8
Time (s)
Figure E5.14

Assuming second-order dynamics, calculate al important parameters and write and
approximate transfer function in the form

R(s) K
P'(s) 728%+2(7s+1
where R is the instrument output deviation (mm), P' is the actual pressure deviation
(psi).

Solution:

Gain= w =0.20 mm/ psi
3lps —-15ps

Overshoot — 12.7mm-11.2mm 047

11.2 psi — 8 psi

Overshoot = exp{ 7 J =047

J1-¢2

¢ =023
. 2t
Period = = 2.3%€C
J1-¢2
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\1-0.2347

r=23%cx——— =0.3565eC
2

R(S) 0.2
P'(s 0.1275°+0.167s+1

Example: A control system having transfer function is expressed as.

_Y() _ 5

G(s) = =
) X(s) 7%s*+2prs+1

The radian frequency for the control systemis 1.9 rad/min. The time constant is 0.5
min. The control system is subjected to a step change of the magnitude 2.

Calculate :

(i) Risetime

(i1) Decay ratio

(iii) Maximum value of Y (t)
(iv) Responsetime

Solution:
Given
X(s) = 3
S
Time constant 7 =0.5min

Radian frequency w=1.9rad/min

_ 2 _ 2
VIZ6 19V L sloa2
T 0.5

1) Risetime

W=

L 41-€&2 J1- 2
7—tan™ ; 31416 tan* V1= 0312
tr = = 0312 _1 omin
w 19
- 2r¢ —-270.312

.. . C
i) Deacay ratio = — = exp(—==) =exp(—=)
A J1- &2 V1-0.3122
..Decay ratio=0.127
i) Ultimate value of the response Y

Y(s) 5
X(s) 0.25s%+0.316s+1

(B)att— o

ultimate

X(s)=§

10

Y(s) = 5
5(0.25s° +0.316s+1)
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10

sY(s)] =lim =10
[sY(s) 7 (0.25s% + 0.3165+1)

lim,, Y(t) =lim_,

YuIti mate (B) = 10

Maximum value of response = B(1+ %)

_ 72-5
J1-&2 )
Decay ratio=Overshoot”
0.127=Overshoot?

Overshoot:% = exp(

overshoot = 0.356 :%

Maximum value of response =10(1+0.356)=13.56

iv) Responsetime ts =3§=4.8077 min  for £5%of ultimatevalue
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The Control System

The control system

A liq
flow

uid stream at a temperature T;, enters an insulated, well-stirred tank at a constant
rate w (mass/time). It is desired to maintain (or control) the temperature in the

tank at Tr by means of the controller. If the indicated (measured) tank temperature T,
differs from the desired temperature Tg, the controller senses the difference or error,

E=Tg T
Final control 'Recorder-
Electrical power / element ‘controller
or steam ]- L«
I.
T

_-Temperature

w, T, —
.
measuring

Process—7]- T — % element

—uw, T
Figure (8.1) Control system for a stirred-tank heater.

There are two types of the control system:-

1)

2)

Negative feedback control system

Negative feedback ensures that the difference between Tr and T, is used to
adjust the control element so that tendency is to reduce the error.

E=Tgr-Tn

Positve feedback control system

If the signal to the compartos were obtained by adding Tr and T,, we would
have a positive feedback systems which is inherently unstable. To see that this
IStrue, again assume that be system is at steady state and that T=Tg=T;.

If T; wereto increase, T and T,, would increas which would cause the signal
from the compartor to increase, with the result that the heat to the system
would increse.

Atss. T=Tr=Ti,

E=Tr+Th

Proce
Fourt
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Servo Problem versus Requlator Problem

+* Servo Problem

There is no change in load T;, and that we are interested in changing the bath
temperature (change in the desired value (set point) with no disturbance load).

¢ Requlating problem

The desired value Tr is to remain fixed and the purpose of the control systemis
to maintain the controlled variable Ty in spite of changein load if thereis achangein

the input variable (disturbance |oad).

Control system elements
Control system elements are:-

1) Process

2) Measuring element

3) Controller

4) Final Control Element

GL(9)
Ti(s)
—) Load I
Comparator
TrorY :
RT R Controller Final control Process _I or'Y
. element
Set point
Ge Gy G
TmOF Yom Measuring
device

Closed Loop Feedback control
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Development of block Diagram

Process
The procedure for developing the transfer function remain the same.

An unsteady-state energy balance around the heating tank gives.

WCp(T, -T,)+q-W Cp(T -T,) = pCpVOcll_-'I[-
Where T, isthe reference temperature
At steady state,% =0
WCp(T—T,)+9s —-WCp(T,—-T,) = pvaz—Tzo
By substracting both equations
d(T-Ty)

WCp((T| _Tis)_(T_Ts))_"q_qs:pCpV dt

Note that the refernece temperature T, cancels in the subtraction. If we introduce
thedeviation variables.

TI Ti _Tis
T=T-T,
Q=9-0q,
WCp(T -T)+Q= pCpVCL—-[
Taking the laplace transform gives
W Cp(T; () - T (8)) +Q(s) = pCpVsT =W Cp

pV + = Q(s)
WsT+T(s) WCp+T(s)

The last expr&sion can be written as

Q(s) | Ti(s)
(rs+1)WCp 1S+1

T(s) or Y (s) = controlledvariable

Q(s) or m(s) = manipulated variable

T. (s) or d(s) = disturbancevariable

If there is a change in Q(t) only then T.(t)=0 and the transfer function relating
T.t0Q is
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T(s) 1 1
Q(s) (s+1)WCp

If thereis a changein T,(S) only thenQ(t)=0and the transfer function relating T toT,
IS

T(s) 1
T(s) (15+1)

Gd
d(s) 1
T | s+l

Gp *
rWQ__*]JWCp " Y(s)
Q(s) 15+1 T(s)

Block Diagram for process

Y(s)=G,-m(s)+ G, -d(s)

Measuring Element
The T.F. of the temperature-measuring element is afirst order system

Tn(S) _ K - -
T(S) 7t,5+1 =T(9) =G, T(9)

— km
moor.s+1
Where T and T, are deviation variables defined as
T=T-T,
T =T = To
K,, = steady state gain= %
Alnput

Tm=time lag (time constant)=(1-9) sec

T(S) %Gm: Ksm+1-—-% Tm(s)
Tm

Figure Block diagram of measuring element
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Controller and final control element
The relationship for proportional controller is

%=GC(S) E() —s| K, —> QO
Q(8) = KcE(s)

| O

P_P_P
E= R_-rm

—

G(s) for propertional controller  G_(s) = K¢
T.=T =T at steady state

Controller
Te(or ) E P(s)
—

4 > GC
Tm

Written by Assoc. Prof.
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Controllers and Final Control Element

Final control Elements:
Control vave, Heater, Variec, Motor, pump, damper, louver, .... €etc.

Control valve
Control valve that can control the rate of flow of a fluid in proportion to the

amplitude of a pressure (electrical) signa from the controller. From experiments
conducted on pneumatic valves, the relationship between flow and valve-top pressure
for alinear valve can often be represented by afirst-order transfer function:
Air supply Air supply
-

F

Control valve (Air to close) Control valve (Air to open)

Figure Pneumatic control valve (air-to-close).

(air to open)

(air toclose)
close open

open close
!

P =(3-15) psi
i ¢)|osu91

P =(3-15) psi
i ¢)|C>S|g

flow max
rate flow
=0 rate

max flow
flow rate
raae =0

Transfer Function of Control Valve
GV(S) — m(S) — Q(S) — KV
p(s) P(s) rt,5+1

A Output _ (Qz - Qlj
SS

K,=steady state gain =

A Input P,-R
1, = Timelag
1, <10sec (Good)
Where:
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K,: steady-state gain i.e., the constant of proportionality between steady-state flow
rate and valve-top pressure.

1,. time constant of the valve and is very smal compared with the time
constants of other components of the control system. A typical pneumatic valve has a
time constant of the order of 1 sec. Many industrial processes behave as first-order
systems or as a series of first-order systems having time constants that may range
from a minute to an hour. So the lag of the valve is negligible and the T. F. of the
valve sometimesis approximated by:

A9

P(s)

The time constant of lag valve depends on the size of valve, air supply characteristics,

whether avalve positioner is used, etc.
Control Action

It is the manner, in which the automatic controller compares the actua value of the
process output with the actual desired value, determines the deviations and produce a
control signal which will reduce the deviation to zero or to small value.

Classification of industrial automatic controller:
They are classified according to their control action as:

1) On-off controller

2) Proportional controller (P)

3) Integral controller (1)

4) Proportiona plus Integral controller (PI)

5) Proportional plus Derivative controller (PD)

6) Proportiona plus Integral plus Derivative controller (PID)

The automatic controller may be classified according to the kind of power

employed in the operation, such as pneumatic controller, hydraulic controller or
electronic controller.

Self operated controller: In this controller the measuring element (sensor) and the
actuator in one unit. It iswidely used for the water and gas pressure control.

d=Ti(s)
L —

Comparator :‘ |

T P m ;
® | Ge=Kc G, = Kv - 1, G l(i)
Set point \. B TS + Q P T(s)

Orye Controller Final control

element T ;

Tm(s) _ Km T(S)
. " rs+1 [

Figure: Closed loop block diagram of first order system
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Types of Feedback Controllers

1) Proportional controller (P):

For a controller with a proportional control action, the relationship between the
output of the controller, p(t), and the actuating error signal (input to controller) is

P(t) = K¢ x E(t)

p(t) — p, = K. x E(t) set point E(s) P(S)
Kc j—)
p(t) = Ko xE(t) + p, g

Ge =K =1 (T.F)
E(s)
_(Ap
KC - (AE)SS

P(s) = K. x E(9)

Proportional Band (Band Width)
Is defined as the error (expressed as a percentage of the range of measured variable)
required to make the valve from fully close to fully open.

P.B:KixlOO%

Cc

On-Off Control

On-Off control isaspecial case of proportional control.

If the gain K¢ is made very high, the valve will move from one extreme position to
the other if the set point is slightly changed. So the valve is either fully open or fully
closed (The valve acts like a switch).

The P.B. of the on-off controller reaches a zero because the gain isvery high

PB~=0

2) Propertional-Integral controller (PI):
This mode of control is described by the relationship

p(t) = p, + K[E@) + - [ E@a]
T| 0

K¢ : Steady state gain
7, - Integral time constant

t E(s) 1
(p(t) - Ps) = P() = KoE() + S [ E(t)ct Kelts ) B9
T| 0

Taking L.T
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Prob(10-1): PI controller with step change in error E(s) = A
S

1 A
P(S) - KC (1+ _S)g E(t)

7,

KCAt A

T 0

Y=c+mX 0 t

t () 20)

3) Proportional-derivative control (PD):

PO =KL EQ +7, =1+,

(D) - p.) = P(t) = K (E(t) + K .y SEV

set point
PO ok +Kors
E(s)
P(s) _

e K+ %9) =G,

p(t)

KcA

Ps

Kc.A

T

0

E(s)

t

Response of a Pl controller (lineaer)

P(s)
Kc(1+1pS) —

Kc: gan
1p . Derivative time (rate time)

Example:

For Ramp Error  E(t) = At (Ramp) E(s) = ﬁz
S

A _AK. KAz,

P(s) = Ko (1+758) x E(s) = Kc(1+TDS)>< 2 S

P(t) = K At + K Atp

4) Proportional- Integral -Derivative (PID) controller

p(t) = K [E(t) +—J E(t)dt +, df ) + P set point

E(s)

Kc(@+ 1 +7p9) >
7,S
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| ke > ke
P —
E u o r P(D) , v PO
- | . - " k|j — e
Eis) 5
—p» D
d
» kDT > ks

Motivation for Addition of Integral and Derivative Control Modes

The value of the controlled variable is seen to rise at time zero owing to the
disturbance. With no control, this variable continues to rise to a new steady-state
value.

+ With control, after some time the control system begins to take action to try to
maintain the controlled variable close to the value that existed before the
disturbance occurred.

« With proportional action only, the control system is ableto arrest the rise of the
controlled variable and ultimately bring it to rest at a new steady-state value.
The difference between this new steady-state value and the original value (the
set point, in this case) is called offset.

¢ The addition of integral action eliminates the offset; the controlled variable
ultimately returns to the original value. This advantage of integral action is
balanced by the disadvantage of a more oscillatory behavior.

+ The addition of derivative action to the Pl action gives a definite improvement
in the response. The rise of the controlled variable is arrested more quickly,
and it isreturned rapidly to the original value with little or no oscillation.
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Control action
1 None

2 Proportional
3 Proportional-integral
4 Proportional-integral-derivative

from initial value

Controlled variable, deviation

r
Offset

8

Time (min) —

12

Figure: Response of atypical control system showing the effects
of various modes of control

Example: A unit-step change in error is introduced into a PID controller. If K, = 10,
T, =1, and 1p = 0.5, plot the response of the controller, m(t).

Solution:

The equation of PID controller is

P(s) 1
——=K.[Q+—+155) m(t
E(s) el s ) ™

E(s) = sop=1

wliR

P(s) = %(1+%+ 0.55) 5

P(s):EngjLS 10
s s

m(t) =10+ 10t + 55(t)

Example: Consider the 1% order T. F. of the process with control valve

Vave process
P(s) Ky Kp YO =
n,5+1 ts +1 g
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If we assume no interaction;
TheT.F.from P(s)toY(s)is

Ky K

Y(s) _ VP For aunit step input in P
P(s) (z,s+D(rs+1])
(g =1 5%

s(r,s+1)(rs+1)
y(t)=KVK{1— o [le”fv—ie“fﬂ

T, —7\7 7,
Y(S)_ KVKP

If >>7, thentheT.F.is =
P(s) (rs+1)

For aunit step input in p
y(t) = K\Kp (1 - e’

Example: a pneumatic Pl controller has an output pressure of 10 psi when the set
point and pen point are togather. The set point is suddenly displaced by 1.0 in (i.ea
step change in error isintroduced) and the follwing data are obtained.

Time (s) 0- O+ 20 60 80
Psi 10 8 7 5 35
Determine the actual gain (psi/inch displacement) and the integral time
E
1.0in
10 ps
KC
8ps
K

For PI control

p(t) =K, +ﬁjEdt+ P,
7

For E=1

p(t) = K, + St + p,
7
From the above figure
Kc.=2
K. (-5 3
T 60-20 40
7, = 20K, =20x(2) =40sec
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Example: (A) aunit-step change in error isintroduced into a pid controller, if K =10
, 1=1 and 15=0.5 plot the response of the controller P(t).

(B) if the error changed with aratio of 0.5 in/min plot the response of p(t).

Solution:

(A)_For a PID control

p(t) = K.t +&J'Edt+ KCde—E+ Ps
T, dt

For a unit step change in error E(t)=1
At t=0 pP(0) =K, + pq

t>0 p(t) =K, +&t + Ps
7

P=p-p,=10+10t

KC
1 10 7
E P
0 0
0 0
dE
(B) E=05t =-=05 and [dEdt=[0.5dt
dt
>, p(t) =10x 0.5t +10[ 0.5tdt +10x 0.5x 0.5+ p,
p(t) — p, =5t + 2.5t* + 2.5
P(t) = p(t) - p, = 2.5+ 5t + 2.5t° i P()
0 2.5
1 10
E 05 P(t) 2 22.5
3 40
0 25 4 | 625
5 90
0 t 0 t
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Dynamic Behaviour of Feedback Controlled Process

Overall transfer function of a closed- loop control system:

- dg
Comparator
Yo (s c. L9 G mg
- Controller Final control
dement =
| Ym(S) G, L_ YO

Process balance

y(s) = Gp m(s) + Gd d(S) M easuring Device

Measuring device

Ym(8) =G, ¥(s)

Controller system

E(S) = Y (S) — Ym(s)  Comparator

C(s) =G, E(s) Controller

Final control element

m(s) = G, C(s)

Algebra manipulation of the above equations and arrange then
y(s) =G, m(s) + G, d(s)

y(8) = G, G;C(s) + G, d(s)

y(s) =G, GG, E(s) + G4 d(s)

Y(8) =G, GG (Yo () = Ym(9)) + G4 d(9)

¥(8) =G, G; G, (Yo (S) — G ¥(9)) + G, d(s)

Y(S) =G, GG, Yg (5) -G, GGG, y(s) + G4 d(9)
L+G. GGG, Y(s) =G, GG, Yo, (S) + G4 d(9)

Let G=GcGi Gp

Gy
y(s) = S) + d(s
y(s) 11 GG, Y () 1+ GG, (s)
G G
= GSP d = Gload
1+ GG, 1+ GG,
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Types of control proplems:
1) Servo systems:

The distubance does not change (i.e. d(s)= 0) while the set point undergoes change.
The feedback controller act in such away as to keep y close to the changing y,, . The

T.F. of closed loop system of thistypeis:

G,G,G
y(s) = P ¢ Vols
y(s) 1+G,G,G,G, Y (S)

2) Regulated systems:

In these systems the set point (desired value) is constant (y,,(s)= 0) and the change

occurring in the load. The T.F. of closed loop control system of thistypeis:
G

y(s) = d d(s
v 1+G.G,G,G, ()

Y(8) = Gigag d ()

The feedback controller tries to eliminate the impact of the load change d to keep y at
the desired setpoint.

Effect of controllers on the response of a controlled process:

(1) Effect of Propertional Control

The general T.F of the closed loop controller is:

19 Loses T et O )

Consider G,=1 , G;=1

Also for propertional controller G = K

And egn. (*) becomes

OIS SN FESLCN: [© (**)
1+ K.G, 1+ K. G,

For afirst order systems

Tp%—F y=K,m+K,d

Which gives
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9(8) =—2_m(s) +—4_g(s)
7.5+1

Thus for the uncontrolled system we have time constant= 1,
Static gains: K, for manipolation and Kq for load

K
put G, =—2F— and G, = Ky
7,5+1 7,5+1
Then by substitution in egn. (**) and take the closed loop reponse as
Kp Kd
Cc
7,5+1 7,5+1 _
W)= P Yepl(S)+ Py —d(s)
1+ K, 1+ K,
T s+1 T s+1
_ KsK _ K — 1+K Kc
y(s) =I[ P Ve(9) + : d(s)] —
7,5+1+ K, K¢ 7,5+1+ K K¢ 1+K Ke
KpKe Ky
o 1+ K, Ke 1+ K, Ke g
V& ="73 1+K R Y+ 1+K kg 4
1+ K, Ke 1+K Kc 1+ K, Ke 1+K K

Rearrange the last egn.

fp:T—P Closed loop time constant
1+ K K¢

_ K, K

K, =-—2—-— Closed loop ststic gain
1+ K K¢

I?dzL Closed loop ststic gain
1+ K K¢

The close-loop response has the follwing charactrstics:-
1- It remainsfirst order with respect to load and setpoint change
2- Thetime constant has been reduced (7, < zp) which mean that the closed-loop

response has become faster than the open loop response, to change in set point
or load.
3- The static gain have been decreased.

Disadvantage of Propertional control
Consider a servo problem with a unit step in the set point

Process Control /Lec. 10 91 Written by Assoc. Prof.
Fourth Class Dr. Zaidoon M. Shakoor



1
Vo, =— d(s)=0
Yoo =3 ()
y= KP }
rps+1 S
y(t)=K (1-¢"'™)
.'.V(w):Kp

The ultimate response of t — o never reaches the desired new setpoint. There is
aways a discrepancy called offset which isequal to:

Offset = New set point - Ultimate value
p'MC
1
1+ K K¢
Offset decreases as K becomes larger an thoretically offset -0 when K — o

Yp()]  of fset =
1

.. Offset =

1+KpK \1'

y() 0

0

2- Effect of Integral Control
Consider aservo problem, d(s)=0

— Gch Gp —
y&) =1+ Y (9) (*)

Consder G,=G; =1

Kk
For the 1% order processG, = —"
7,5+1
For asimpleintegral control
1

G, . =K,—

C C Tl S
Subinegn. (*)

Process Control /Lec. 10 92 Written by Assoc. Prof.
Fourth Class Dr. Zaidoon M. Shakoor



Ko Ke
7,5+1 7S

o - KeKc _
) 1+KP,KcySP( ) (7,5+1)(7,5)+ KpKc Veo(S)
7,5+1 7,
KoKe
= KeKc _
S)= S
y(s) 7, Ye(S)

p ns | KeKe
KeKe  KpKe  KpKe
= 1 =
S) = S
v 7252+2y/zs+1ysp( )
Where

07, 1 T,
T = _— l//:— _—
KoK, 2\ 7, K K,

Eqgn. (**) indicates an important effect of the integral control action:-
1- It increases the order of the dynamic for the closed-1oop reponse.

Thus for a first-order uncontrolled process, the response of the closed-loop
becomes second order.

**)

2- Increase K decreases y ... more oscillatory
3- To examinethe effect of integral on s.serror

O —
%8 + 2prs+1

_ 1
If Yo (S) =S

The ultimate value= AK=1*1=1

.. offset= New setpoint-ultimate value
=1-1=0

It indicate that the integral control eliminates any offset

Y (S)

3- Effect of Derivative Control Action
For derivative control

G, =K.7pS

_ 7,5+ _ 75 S _

y(s)= < K Yo(S)= lp IC<DK Y(S)
T,S+ 1 ¢

_ KeK.7pS = .

S) = S

y(s) e+ KpKCrD)S+1ySP( ) (*)

Eqgn. (*) indicates that:-
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1- The derivative control does not change the order of the reponse.
2- The effective time constant of the closed-loop response (7, + K Kz > 7))

This means that the response of the controlled process is slower than that of the
original first-order process and as K. increase the response become slower.
Effect of Composite Control Action

1- Effect of PI control
Combination of propertional and integral control modes lead to the follwing effects

on the response of closed-loop system.

1- The order of the response inceases ( effect of | mode).

2- The offset is eliminated (effect of | mode).

3- As K, increses, the response becomes fater ( effect of P and | modes) and more
oscillatory to set point changes [ovesrshoot and decay ratio increase (effet of |
mode)].

Large value of K, create avery sensitive response and may lead to instability.

4- Asr, decreases, for constant K., the reponse become faster but more oscillatory

with higher overshoot and decay ratio (effect of | mode).

2- Effect of PID control
To increase the speed of the closed loop response, increase the value of the controller
gain K.. But increasing enough K, in order to have acceptable speed, the response
become more oscillatory and may lead to unstability.
The introduction of the derivative mode brings a stability effect to the system. Thus
to achive

1- Acceptable response speed by selecting an appropriate value for the gain K.

2- While maintaining moderate overshoot and decay ratios.

»(nh
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Example: Regular loop with the following elements

_ 3
Gel9) = 5o (process)
_ 1
Cal®) = 1051 (L-oad)
Gn(s) =1 (measuring device) if not given take 1
Ge(s) =2 (controller)
Gi(s)=15 (vave)

Gy(s)

. . . 6

Determine the system response for aunit stepinload ~ %© 1
10s+1
esp(s). 2 | 15 | 3 + S
Setpoint "\ g "| 10s+1
GC(S) G (S) GP(S)
1 e
Solution:
Gu(9)

Regulator loop: O6(8) __ Gu(S)

0,(s) 1+G, (9)G(s)
G(8) = Ge(s) G (8) Ge(s) = 2x1.5x 1o:+1=10:+1

1
0(S) _ _10s+1 _ 1
Oy(s) 1, O 10s+10
10s+1
04(9) = = 1/10
S
1
a.(s) = 10 0,(t
5(9) S5+ 1) (®

0.(t)=0.1(1-€")
Att=0,6,(t)=0
Att=o0, 0,()=0.1
Or
1

) . 1
0.(0) =lims@.(s) = lims—10 - =
() =M S8 =1, s(s+1) 10

Offset= New s.s value-Ultimate value= 0 - 0.1=-0.1

off-set

v
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Example: the set point of the control system shown in the figureis gives a step
change of a0.1 unit. Determine

1- The maximum value of C.

2- The offset.

3- The period of oscillation.

5 C

4,?_“%* K,=16 —>
_ (s+1(2s+1)
C(s) _ GG, _

R(s 1+GG,

y

v

5
1.6x
C(s) _ (s+D(2s+1) _ 8
R 1.16x 5 2s* +3s+1+8
T (s+1)(2s+1))
8
Cs) 8 g 0.8889

R(s) 25°+3s+9 2. 1. , 02228°+0333s+1

7 =0.222= 7 =0.471
2yt =0.3333= i =0.3538 (Underdamped)
Ultimate Vaue=A*K=0.1*0.8889=0.08889
Overshoot = exp(—— wr ) = exp(C 3.1418x 0.3538
N J1-(0.3538)2
1) The maximum value =Ultimate value* (1+Over shoot)
= 0.08889*(1.3047)=0.1160
To find the time required to reach maximum value apply K, A , Crpa, W and 1
In the equation.

) = 0.3047

Y(t)=kA[ 1€/ (coswt + ——— sinwt]
1-y

2) The offset=New set point- Ultimate vaue
=0.1-0.088889=0.01111
T 271 x0.471

2nT__ =3.1640
J1-y?  1-(0.3538)

3) Period of oscillation =

Example: Consider the figure below, a unit step change in load enters at either
location 1 or location 2.
What is the offset when the load enters at location 1 and when it enters at location 2
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Ul G UZ GZ

Ge !
2 1
s - b
Ke=5 2s+1)| & (25 +1) C

a-when the load enters in location 1
1
Ul(S):g , Uy(s)=0

c(9=— A%y

1+ GGG,
2 1
2s+1 2s+1 2
C(s)= U.(s)= U.(s
(s) L2 1 1(8) 4s% + 4s+1+10 1(s)
2s+1 2s+1
2 2/11
=44 ﬂUl(S):4 7 Uy(s)
S +as+ S+ s+1
1° 1
2
K =-<-=0.1818
11
T:\/E:O.GOSO
11
4 4 1
2t =— =y = —x—=0.3015
R TIRG AR T P

Ultimate value=A.K=1*0.1818=0.1818
Offset=0 - 0.1818=-0.1818

b-when the load enters in location 2
G

C(s)=——2—U,(s
-1 66650
1
2s+1 25+1
C(s) = U,(s) = U,(s
© L2 1 . 9= 4 asr1e10 2
2s+1 2s+1
2s+1 2s+1
VTR 4
—sf+—-s+11
11 11
C(ee) =lim- 254+1 L1 _o0m
A A |
11
Offset= 0 - 0.0.091=-0.091
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Example: For the figure

u
1 C
RT K (12 —»&)—»
'(? ol +r,s+TDS) 7,5+1
Forrp =7, =1 andr, =2 '

& Calculate y when K.=0.5 and K =2

b- Determine the effect for a unit-step change in load if K =2
C(s) _ GG,
R(s) 1+GG,

v

1 1
K.(1+—+7,5S -
C(S) B C( TIS D )TlS+1 - KC(1+ S+S) 28+1
RS 14 Kc(l+i+rDs) 1+ KC(1+}+S) 1
7,S 7,;S+1 S 2s+1
K s+1+s%. 1
B o S 2541 K.(s+1+5°) B K.(s+1+5°)

1K (s+1+ 52) 1 282 +s+K (s+1+5%) (2+K)s?+(1+K,)s+K,
¢ S 2s+1

B (s+1+5%)
(2+K,) 2. Q1+ K,) si1

C c

al) K.=05
o 2+ K, :\/2+o.5 50361
0.5

KC
=(1+K°)=1+0'5=3=>l//=i= 3
K. 0.5 2r 2x2.2361

a2) K=2

= ,/% ~1.4142

2t = (1+KKC) _1+2

2ur = 0.6708

15, _15__ 15

w=""=_=>___05303
2 2r  2x1.41421

c

B)C(8) = — 22— ~U(9
1+ GG,
1 1
ns+1 U(s) = 2s+1 U(s)
1+ K. (1+ R +5)

C(s) =

1+ K. (1+ —+ 7S
ol 7,S P )rls+1

2s+1
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S S 1

T o2 U8 =53 "

25 +s+ K (s+1+5) 25°+s+2(s+1+s°) s
1

T 4% +3s+1
=2

2!//T=3:>l//=%=0.75

C(o)=lims————=
) =1 4s® +3s+1

Offset=0-0=0

Example A PD controller is used in a control system having a first order process as
shown. For Servo problem

a-find expression for y and 7 for the closed loop response.

b-if t;=1, t1,=10 sec . Find K. so that y=0.7 for two cases (1) t1p=0 ,(2) 1p=3 Sec.

c- Calculate the offset in both cases. Y .

v
+ 1
% K.+ 7pS) —»@—» (e5:]) > C

I

Gc

(zS+D
For the closed loop T.F. G
G.G G

C=— P R(§)=——2—U(9)

1+GG,G, 1+G.G,G,

K.(1+7p9)-

o 7,S+1 . R(S)

1+ K. (1+7p59)- :

7,S+1 7, s+1

C K.+ 17p9) R(S)

7,S+1+ K. (1+759)-

SRS

co 2 K.+ 17p9) R(s)

S + (7 +7,)S+1+ K.+ K 7S

TS+1

C : K.+ 759 (7 Ss+1) R(s)

7,70,S" + (7 + 7+ Ko )S+ 1+ K,)

K.(1+758)(7,S5+1)
C_ ) (1+K,) R(s)
T1T,S N (7, + 75+ Koz )S+ 1

(1+K.) (1+K.)
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Ottt Ky 1+ K
21+ K,) T
_ n+r,+Kerp

- 2Ja+ Kt
b)..w = it o + Ketp for y=0.7
2\/(1+ KC)\/rlz'm
1) TD=O
60+10+0 35

. 07: =
2,/(1+K,)+/60x10 /600 + 600K

,/600+ 600K, =50
600+ 600K , = 2500
K. =3.166

c

2) 1p=3 seC

7 60+10+3K, _ 70+ 3K,

2,/(1+K,)v/600 2,/(1+K,)+/600

70+ 3K, =34.292,/1+K,)
2.04(1+0.042K,) = /(1 + K,)
4.1616+0.355K , +0.0075K * = (1+ K )
0.0075K > - 0.0645K , +3.1616 =0
- K,=80.73 or K_=5.66

(c) Theoffset
limf(t)=Ilimsf(s)
t—o s—0

1

R=~
S

K1+ rDs)(rms+1y
(L+K) 1 K, _3166_ .

Ultimate value=lims = = =0.
s 1+K, 4.166

s—0 TleSZ (ry+ 7+ Krp)
Q1+ K,) 1+K,)
Offset=1- 0.76=0.24

s+1
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Overall transfer function of a closed- loop control system

The transfer function of a block diagram is defined as the output divided by its input
when represented in the Laplace domain with zero initial conditions. The transfer
function G(s) of the block diagram shown in Fig. (1).

Y9 a9

X(s)

Here the path of the signals X(s) and Y(s) is aforward path.

X(s—» G(S) ——»Y(9)

Fig. (1) Transfer function of ablock diagram

Consider the block diagram of cascaded elements shown in Fig. (2a). Form the
definition of atransfer function we have:

X, ()
X9 G,(9)

X5(9)
—XZ(S) =G,(9)
Y(s) _
X4(9) = G;(9)

And substitution yields

Y (8) = G3(9)X3(8) = G3(9)[G, (X ,(5)] = G3(5) G, ()G () X1 (S)

Which can be written as

Y
xl((ss)) = G3(5)G,(9)G,(s) = G(9)
Y
><1(S)> Gi(9) ‘—>X2(S) Gy(s) X—?’(S)> G4(s) '—>(S) xﬂ’ G(s) —’Y(S)

@) (b)
Fig. (2) Cascaded elements

The overal transfer function then is smply the product of individual transfer
functions.

For applications where it is required to generate a signal which is the sum of two
signals we define a summer or summing junction as shown in Fig. (3a). If the
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difference is required, then we define a subtractor as shown in Fig. (3b). Subtractors
are often called error detecting devices since the output signal is the difference
between two signals of which one is usually areference signal.

Xa(s) — PXUPKAY  Xal) — X1(9-XA9
+
X2(9) X2(9)
(@) (b)
Summer Subtractor (Error detecting device)

Fig. (3) Addition or subtraction of signals

The combination of block diagrams in parallel is shown in Fig. (4a). Form the
definition of the transfer function we have

Y1(8) = G, ()X (s)

Y2(8) = G,(9)X(s)

Y3(8) = G3(9)X(9)

And the summer adds these signals,

Y (8) =Y (8)+Y5() + Ys(S)

or

Y (8) =[Gy(8) + G (5) + G4(s)1X(9)

The overdl transfer function shown in Fig.(4b) is
a9

X(s)
where

G(s) = Gy() + G () + G5(9)

— Gi(9

X(9)

\ 4

G2(9)

X(s) — G(9) >Y (9

—» G3(9)

b

@ (b)
Fig. (4) Parallel combination of elements

In summary, we observe that for cascaded elements the overall transfer function is
equal to the product of the transfer function of each element, whereas the overall
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transfer function for parallel elements is equal to the sum of the individual transfer
function.
Example:Derive the overal transfer function for the control system shown in Fig.

(5).

| Bi(9) H(9
E; -
R(S)—J;Qﬁb Gi(9) Cl(S):é EAS) Ga(e) 529, 9 C(}S)
TBZ(S) Ha(s)

Fig.(5) Block diagram of a system with two feedback paths

Solution
Ei(s) = R(s) - B,(s)
E,(s) = Cy(s) - By(9)

C(8) = G1(9E,(9)
C,(8) = G,(9E,(s)
C(s) = G3(9)C,(9)

B, (8) = Hy(S)C(s)
B,(8) = Hy(5)C,(9)

Substituting of the sub-transfer functions
C(s) = G5(s)C,(9)

C(s) = G5(5)G,(9)E,(9)

C(s) = G5(5)G,(9)[Cy(s) — By (s)]

C(s) = G3(5)G,([G1(S)Ey(s) — Hi(5)C(9)]
C(s) = G5(5)G,(S)[G4()(R(s) — B, (s)) — Hy(s)C(s)]

C(s) = G5(5)G()[G1(R(8) = G1()H(S)C,(s) — Ha(S)C(9)]
C(s)

C(9) = G3(9G-(ICLIRE - Gi(IH-9)
3

—H,(5)C(9)]

C(s)
G;(s)
[1+ G, (S)G1()H,(S) + G3(5) G, (S)H1(IIC(S) = G3(9) G, ()G (S)R(S)
Finally, the overal transfer function
Cls) _ G,(9)G,(9)G5(9)

R(S) 1+ Gy (5)G,(s)H(S) + G5 (s)G3(s)H,(9)

C(s) = G3(9)G,(9)G1(YR(S) — G3(S)G, ()G (S)H,(9)

— G3(S)G,(s)H,(S)C(9)
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Example: A single-loop control system is shown in figure below. Determine closed-

loop transfer function Y@
R(s)
R *
NG o= 255+ L YO
S(s+2)(s+4)
Solution
Transfer function Y (S = G
R(s) 1+GH
2(s+1)(s+3) 2(s+1)(s+3)
Y(S) s(s+2)(s+4) s(s+3)(s+4)
R(s) 1, 2As+D(s+3) ~ S(s+2)(s+4)+2(s+D(s+3
S(s+2)(s+4) S(s+2)(s+4)
2(s+1)(s+3) 25° + 65+ 25+ 6

S(5+2)(5+4) + 2(5+1)(S+3) S +45 + 252 +85+ 252 + 65+ 25+ 6
" Y(  25°+8s+6
"R(s) $°+8s?+165+6

Block Diagram Reduction

When the block diagram representation gets complicated, it is advisable to reduce the
diagram to a simpler and more manageable form prior to obtaining the overall
transfer function. We shall consider only afew rules for block diagram reduction. We
have already two rules, viz. Cascading and parallel connection.

Consider the problem of moving the starting point of asignal shown in Fig. (6a) from
behind to the front of G(s). since B(s)=R(s) and R(s)=C(s)/G(s), then B(s)=C(s)/G(S).
therefore if the takeoff point is in front of G(s), then the signal must go through a
transfer function 1/G(s) to yield B(s) as shown in Fig. (7b).

R(s) —»{ G(9 ——»C(s) R(S) —>{ G(9) »C(9)
S

B(9)+—

arting point of B(S) B(s) +— VG(s) [+

(@ (b)
Fig.6 Moving the starting point of asigna
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Consider the problem of moving the summing point of Fig. (7a). Since
E(s) =[M(s) + C(9)]G(s) = M(s)G(s) + C(s)G(s)

E(s) =M, (s) +C,(s)
where
M, (s) = M(s)G(s);

Cy(s) = C(5)G(9)

The generation of the signals M(s) and C,(s) and adding them to yield E(s) is shown
in Fig. (7b). A table of the most common reduction rulesisgivenin Table 1.

M(s) + G(9)

B9, MO

g

+

C(9)
@

G(s)

M 1(3)>

+

Ci(s)
(b)

Fig.(7) Moving a summing junction

»E(9)

G |«
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Table 1 Some rules for block diagram reduction

Rule Original system Reduced system
Cascaded R C
RO Gy >l Gy(9) [y RO, 6,(9Gy(9 (<2
elements
RO Gy(s > CE),
Addition or S C RS , C(s

G1(9)+Go(s) —=—»

+
subtraction |
—> Gz(S) ‘
R(S) G(S) ‘ C(s
_R_.{S) Cls), |
Moving a G | >

starting point B(S), G(s)
B(s)
. RO 3 G(s) €, RO, G(s) > <@,
Moving a - i

summing point

B(s) _BE | G(9
R(s) * C
Closed loop _ 69 52 R(9) G | cs),
system 1+ H(9)G(s)
H(s)

Consider the transfer function of the system shown in Fig. (8a). The final transfer
functionisshown in Fig. (8d).

Process Control /Lec. 11 106 Written by Assoc. Prof.
Fourth Class Dr. Zaidoon M. Shakoor



| &— Firgt reduction

i G3(s) i
+ : =+ :
R(s) Gi(9) : %: M Gy(s) C(S)>
Hz(S) o
(a N le/xt reduction
; e Ty c
g Gi(9 > Co9+Co9) |—] Gul9) i3
i H,(9) i
L G.(9) :
Ho(s) [«
(b)
R(s) | *+ [G,(9) + Gy (9G4 (9) C
= _ o E s A P RE TN X

Ho(s) |«
"""""""""""" ©
R(S) G(9G(9) C(s)
1+ G(9G,(9H,(9)
(d)

Fig.8 Obtaining transfer function by block diagram reduction

Example: Obtain the transfer function C/R of the block diagram shown in Figure
below.
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R G,(1+G)

£

1+ GG, - H,)

Example: Obtain the transfer function C/R of the block diagram shown in Figure
below.

G4(s) T
Re + s Y7

O O Gis) Ga(s) G3s) |—>O—> Co
. T N
Hi(s)
: H2(s)
Solution:
Res)
50 i O G1s) Ga(s) G3(s) + G4(s) Cs)
. T .
Hi(s)
: Y H2(s) :
Res)
+ Gi(s) x G2(s)
——sO— G G
T 1-H1s)x(G1(s) x G2(s)) 3s) + GAls) Ces)
H2(s)

Gy(9).G2(9)(G5(5) + G4(9)
C(s) _ 1-H,(9).G4(5) .G, (9)
RO . HZ(S){Gl(S) G5 (9{(Gs(9) + G4(s))}
1-H,(9).G4(5).G,(9)
G1(9)-G,(9)(G3(9) + G4(9))
_ 1-H,(9).G,(9).G,(9)
1-H,9G,(9G2(9) , 4 G19C-(9(G:()+Cs(9)
1-H,(8)-Gy(9)- G,(9) 1-H,(5).G,(9).G,(9)
C(s) _ (Gl(S) -G, (S))X (Gl(s) + G4(S))
RS  (1-H,(9)-G,(9)- G1(9)+(H3(9)- G1(5)- G,(5))x (G5(5) + G4 (9))
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Stability Analysis

A stable system is one where the controlled variable will always settle near the set
point. An unstable system is one where, under some conditions, the controlled
variable drifts away from the set point or breaks into oscillations that get larger and
larger until the system saturates on each side.

Set point Set point

Stable system unstable system

Methods of Stability Test

1-Determination the roots of equation

U
+
L?_'Qaéb—»ez C

__GG, R(s) + ——2—U(9)
1+ G,G,H 1+ G,G,H
1+ G,G,H = 0(Characterstic Equation)
(s—r)(s—r)(S—1r3) ... =0

v

Re

A linear control system is unstable if any roots of its characterstic equation are to the
right of imaginary axis.

If this equation has some roots with positive real parts, then the system is unstable, or
some roots equal to zero, the system is marginaly stable (oscillatory), therefore it is
unstable.

Then for stability the roots of characteristic equation must have negative
real parts.
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Example:if

G, =10 0-5s+1 Pl control
S
1 :
G, = Stirred tank
2s+1
H=1 Mesuring element without lag

1+G=1+G,G,H=0

N 10(0.55+1) _0
S(2s+1)

S(2s+1)+5s+10=0

25 +6s+10=0

s +3s+5=0
-3_+49-20
s=—"F
2 2
iee 3V gy s o3 L
2 2 2 2

Sincetherea partins; and s;in -ve (—%).‘.The systemis stable

2-Routh-s Method
a-Write the characterstic egn. on the form of a polynomial shape:

as" +as"t +as"?+....a, =0 (*)

Where g, is positive

It is necessary that a,, &, &,.... &.1, & be positive. If any coeff. is negative, the
system is unstable.

If all of the coeff. are positive, the system may be stable or unstable. Then apply the
next step.

b. Routh array:

Arrange the coeff. of egn. (*) into the first two rows of the Routh array shown
below.

Row

1 b R A T

2 & B &k &K

3 A A Az

4 B, B, Bsj

ntl C; C GC;
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A, = e s T N . Lo T . C. ke

a Y 3 a
B. — Aas —aA, B. — Aas —aA;
1 A]_ ' 2 Al
C. = B.A;, —AB, C. = BA; —AiB;
1 Bl ’ 2 Bl
Examine the elements of the first column of the array a,, &, A1, B1,Cy.......... W,

a) If any of these elements is negative, we have a least one root on the right of
the imaginary axis and the system is unstable.

b) The number of sign changes in the elemnts of the first column is equa to the
number of root to the right of the imaginary axis.

.. The system is stable if al the elements in the first column of the array are
positive

Example:Given the characteristic egn.
s'+35° +55° + 45+2=0

Solution;
Row A _3><5—4><11_£.
1 1 5 2 e 3 3
2 3 4 0 3x2-0
3 13 2 0 Az = 3 =2
4 236 0 Blzly3x4—6:2_36
5 2 11/3

| 2.36%x2

17 236

.. The systemisstable

Example: Apply the Routh's stability criterion to the equation:
s'+28 +3% +45+5=0
Solution:
s$135
s 2 4
15

w

s

ss 60
’ 5
The system is unstable.
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Example: A system has a characteristic equation s®+9s”+26s+24=0. Using the
Routh criterion, show that the system is stable.

Solution

g(s) = s®+9s® +26s+24

Using the Routh-Hurwitz criterion,

s’|1 26
s’l9 24
st 260
240

No sign changein 1% column then the system is stable.

Example: Consider the feedback control system with the characteristic equation.

S +25% +(2+ Kc)s+&= 0
&

Solution:
The corresponding Routh array can now be formed
Row
1 1 2+K, O
2 2 K. 0
T

3 22+K,)-K./7;, O 0

2
4 K./7 0 0

The elemnets of the first-column are positive except the third, which can be positive

or negative depending on K. and 1.

So state the stability

put 22+ Kc;‘Kc/T' 20 =2(2+K,)>Ke
T

If K¢ and 1, satisfy the condition, then the system is atable

Critical stability
Put the third el ement=0
KC

7

e 22+K,)=

For 1,=0.1
2(2+K,)=10K, = 4=8K,
K.=05
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1) if K, <0.5, the systemis stable (all of the elementsin the 1% column is +ve)

2) if K, >0.5, the third element of the 1% column is negative. We have two sign
change in the elements of the first column.

..we have two roots to the right of imaginary axis.

Example:

U

(z,8+D(z,8+1

1

%’1

Ifrl=1,72=%,r3=1

R

—( > K
3
Determine K for a stable system
Solution:
The char. Egn.

1

=0
1 1
(s+ 1)(§S+ 1)(§s+ )]

1+ K,

1 1
(s+ 1)(§s+ 1)(§s+ D+K,=0

1, 3 1
—S°+—s+(=s+D)+K_.=0
s +5s+DEs+D+K,

s & s & 3s

— +—+—+—+1+K_ =0
6 2 3 2 2

lo ooy K.=0
6 6

Row

11/6
1+K,

W N
[EEY

4 1+K,

Since K>0
.. The system will be stable
If 10-K>0

(rg5+1)
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K. <10
Therfore K. must within the range 0<K< 10

Example: U
R T 3 %
K.(1+2) 2 .
S
— C
ﬂ 1

0.2s® +0.4s+1

Study the stability for K.=2
Solution:
1

0252 +04s+1
2

0252 +04s+1
K, +3K, 2
X —
s 025 + 0.4s+1
0.28° +0.45° +5+ 28K .+ 6K . =0

0.28* +0.48* + (1+ 2K )s+ 6K, =0
Row Row | For K =2

1+ K. 1+ §) X 2%
S

1+ KC(S:Q’)X

1+ (

0.2 1+2K. 0.2 5
0.4 6K, 0.4 12
2-24 0
B: 0 0.4

4 1.2 0

A _OA@L+2K)-(12K,) _04+0.8K 12K, _0.4-04K,
! 0.4 0.4 0.4
0.4-0.4K_>0

The systemisstablefor K. <1

B, =6K.,=6K_.>0

And K. >0

Therfore K. must withintherange 0<K.<1

W N -

A wnNpR
>
-
o
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Example: Designers have developed small, fast, vertical-take off fighter aircraft that
are invisible to radar. This aircraft concept uses quickly turning jet nozzles to steer
the airplane. The control system for the heading or direction control is shown in
figure.

Determine the maximum gain of the system for stable operation.

+ controller (s+20)
R AETE L - > Y(9
() k s(s+10) Heading
Solution
_ k(s+20) _ ks+ 20k ks+ 20k

G(s) 2 T 2 -3 2
s(s+10)° s(s®+20s+100) s’+20s”+100s

Characteristic equation,

1+GH =0

1+ ks+220k *1-0

s° + 20s” +100s

s® + 205 +100s+ks+20k =0

s® 4+ 20s% + (100 + k)s+ 20k =0

The corresponding Routh array can now be formed

Row

1 100+k
20 20k

a 0
b 0

A WODN PR

= 20(100+ k) — 20k _ 20* 100+ 20k — 20k
20 20
b= a*20k -0 —20 k
a
The systemis stable, no sign changein 1* column,
b>0
20k >0
k>0
-.Range of k ismust be k>0

= 100
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Frequency Response Analysis

It is how the output response (amplitude, phase shift) change with the frequency of
the input sinusoidal.

The input frequency is varied, and the output characteristics are computed or
represented as a function of the frequency. Frequency response analysis provides
useful insights into stability and performance characteristics of the control system.
Figure below shows the hypothetical experiment that is conducted.

AVAV A

System or Process

Output
Input

Figure: How frequency response is defined.

Response of a first-Order System to a Sinusoidal Input
Consider asimple first-order system with atransfer function
Y, K
G =L _ "
F(s) 7,5+1
Let F(t) be asinusoidal input with amplitude A and frequency o;
F(t) = A sin (wt)
Then

1)

F(9) = Sz’i“; i @

Sub. F(s)fromeg. (2) into eg. (1)
Kp Aw Kp Aw

X2, 2° X - -
,5tl s"+0° 7S+l (st+jw)(s-jw)

Expand into partia fraction and find

yo=-—2 2 &
s+llz, s+jo s—jo

Compute the constants C,, C, and C; and find the inverse of laplace transform.

y(s) =

K,Awrt, -K,Awr, KpA
Cl:zz g C2:22 , 3= 2 2
T +1 T, @ +1 Ty @ +1
_ K,Aowr, _, K Aot KA |
y(t)=———re " ——2——Lcog(wt) + 55—sin(at)
T, @ +1 T, @ +1 T, +1

Ast—so, then € '™ — 0, and the first term disappers.
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Thus, after a long time, the response of a first order system to a sinusoidal input is
given by:
K, Aot

V. (t) = —2——Pcog(at) + —>—sin(awt

Y=V r§w2+1 Slat) réa) +1 ()
K A

V() =— [, cos(at) + sin(at)] (3)
2w’ +1

Use the follwing trigonometric identity.

pcosd +qsing =rsin(é + @)

r=Jp?+?  p=tan'P

q

q=1 p=-wr1,
r= \/(—z'pa))z +(1) = ,/z‘ia)z +1
p=tanP - tan "Ly s tan o r)
Then eq.(3) yield
Y (t) =57 A [(/7%®® +1)sin(wt + ¢)]

= rs | P

K,A
Ya(t) =2 —sin(ot + ) (4)
T, @ +1
¢ =tan " (~o7,) | phase lag 5)

From eg.(4) and eg. (5), we observe that:
1) The ultimate response (also referred to as s.s.) of afirst order system to a sin
Input is also asinusoidal wave with the same frequency o.
2) The ratio of the output amplitude to the input amplitude is caled the “
amplitude ratio” and is afunction of the frequency:

K A

[ 2 2 .
ATow™ +1 K
AR = amplituderatio = ¥-" — p
A \/r§w2+l

(6)

3) The output wave lags behind (phase lag) the input wave by an angle |¢|>,

which isafunction of the frequency o (see eq.(5)).
Input = Asin (wt) ¢
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2
>
AN
m-;

2'aVAS
VA Ay .S

- »

. > Output = B sin (wt-¢)

It is the most important methods for stability analysis and used for design purposes
control system.

Suppose the input to the processis sinusoidal signal

Where: A isamplitude

A

o is frequency (rad/sec) = %

T is period of one complete cycle (time)

Frequency Response of a Second Order System
For a second order system the transfer functioniis:

GE =y 2
%% 4 2yrs+1

Put ssjo then
1) Amplitude Ratio

K
AR = £

\/(1— ?w?)? + (2 tw)?
2) Phase shift
2y tw

¢ =tan"'(—

1- 72w?

Whichisaphaselag since ¢ <0

Frequency Response of a Pure Dead-Time Process

That isaphaselag since ¢ <0
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Frequency Response of a Feedback Controllers
1- Propertional controller:
The transfer function isG(s) = K.

$=0

2- Pl controller:

The transfer function is G(s) = K (1+ i)
7, S

3- PD controller:
The transfer function isG(s) = K (1+ 7 S)

The positive phase shift is called phase lead and implies that the controller output
lead the input.

4-P1D controller:

The transfer function isG(s) = K (1+ 1 +7p S)
S

¢ is+ or — ve depending on the values of 1p, 1, and ®
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Bode Diagrams

The bode diagrams consist of apair of plots showing:
1. How the logarithm of the amplitude ratio varies with frequency.
2. How the phase shift varies with frequency.

First Order system:

K
Amplitude ratio AR = ——2 *)

A1+ TSa)z

Phase lag=¢ = tan™— T,

AR 1 .
IogK—p:—EIog(1+ ) (**)

The plot can be carried by considering its asymptotic behaviour as @—0 and as
w—o . Then

1. As ©—0, then T,0—> Oand from eq.(*)

Iog% —0 or % =1.This is the low-frequency asymptote. It is a horizontal line

p p

passing through the point % =1.
p

2. As 0>, then 7, @ — coand from eq.(**)

Iog% =—logr, ». Thisisthe high frequency asymptote.
p

It isalinewith slope -1 passing through the point % =1forr, 0 =1.
p
3. Atthecomner 7,0 =1— o=,

1
WOcomner = W = —
Tp
) AR 1
The frequency w,isknown as the corner frequnecy (and — = —— =0.707)
K, ~2
The phase lag plot
asaw—>0 , ¢->0
asw— 1 . ¢g—o>tan(-1) =-45°
TP
asw—>o , ¢—>tan(—w)=-90°
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10 20

Corner frequency

AR Low-frequency
asymptote \
s | ) e

K = S coh_fr 10
p \ High-frequency
o o

ue curve isymptote

oy

0.1 =20

Decibels

¢ 0.01 —40
or 0
Phaselag -45
-90
0.01 0.1 1 10 100
Tp W —l—

Figure:Bode diagram for first-order system.

Second —order system

K _

AR = " § = tan (212

\/(1— 0% + (2urw)? 1-7°w

10 o1

y=0.

5

3 AT

A_R | ____...-—-“i—'///- 0.5

- \\\ Asymptote
0.05 -

ANV
0.02 AN
\\
0 —— .
45 \N&
¢ \2006:
or
Phase lag -0

=135 S g:\

—-180 - -
0.1 0.2 0.5 1.0 20 5.0 10.0

1

Figure: Block diagram for second-order system—,—
T°8° +2ps+1
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|og§ _ —%Iog[(l— 22072 + (2pre)?]

p

1) asw — 0, then Iogﬁz—llog(l) =0
Ko, 2

% = 1stright line of a slope=0 (L.F.A)
p
1-0
—tan'—=0
/ 1
AR 1 4
2) asw — o, then IogK—:—EIog(ra)) =-2log(rw) (H.F.A)

p
It isastraight line with a slope -2 passing through the pointAR=1 and tow=1

3) a):a)czl
T

Pure dead-time system

For the system
AR=1
¢=—140
asw—>0 , ¢=0
aSw—>0 , g=0o©
AR
0
¢ -180
-360 . .

Example: Two systemsin series

1 6
G,(8)=——andG,(s) = —
1(8) 2s+1 2(9) Bs+1
Theoverdl T.F.is
Gg=-t .0
2s+1 5s+1

1 6

V1t 40? 1+ 25072
logAR =10g6+ |0g(AR), + 10g(AR),

S AR
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1- Region 1: From w=0t0 o = % , slope of the overall asymptote =0+0=0
(i.e. horizontal * going through the point AR=1)
2- Region 2: From o = % to w= % , Slope of the overall asymptote =0+(-1)=-1

going through the point AR=1, o = é

3- Region 3: From o > % , Slope of the overall asyptote =(-1)+(-1)=-2

For ¢
Whenasw —> 0,4 —->0,¢, >0, >0

When asw — «©, ¢ — —-90, ¢, > —90, ¢ —> —180

1 _———

-45

¢-90

-135

-18

Feedback Controller
1-Propertional controller
AR=K_ ¢=0

AR
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2-Propertional Integral controller (PI)

AR=K_ |1+ 1 5
(7))

p=tan (-1 )<0

7

AR
K

1
(a”])z

log(

):%Iog(1+ )

[

1- Low frequency asymptote

asw—>0, 1+ >>1 thennlog("r) - —log(w1,)
(07)) c
Consequently, the LFA isastraight line with slope=-1

1
=tan"— = =-90°
/ 0
2- High frequency asymptote

AR) -0 i.eAR

C Cc

asw— o, > — 0 then — log(

-1

(o7))

AR

HFA isahorizontal line at vaue 1

Cc

For the ¢
asw—>0,¢9—>-90
asw—>ao,,p—>-45
asw—>o,p—>0
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100

10

Amplitude ratio
K

0
0.01 0.1 1 10 100
W —

Figure Bode diagram for PI controller.

2-Propertional Derivative controller (PD)
AR =K 1+ 750
¢ =tan " (wry) >0

1) Low frequency asymptote

asw—0,1og(>R) = Liog(r2w?) 0= AR _1 (L.F.A) slope=0

K.” 2 K.
$=tan10=0°
2) High frequency asymptote

AR, 1 5

asw — Iog(K—) = §|09(Toa) ) =log(rpw) (H.F.A) slope=+1

C

¢ =tan"10=90°

asw=0,4=0

asw=aw,,p=+45°

asw=o0,¢—>+90°
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100
10
2
B | bl
= 7
=y 7
< i _/,’ (D=1/TD
0.1
e 90 —
= /
g 45
£
0 I—
0.01 0.1 1 10 100
(T e—

Figure: Bode diagram for PD controller.
3-Propertional Integral Derivative controller (PID)

AR::JL+hbw——lﬁz

Kc T,

p = tan ™ (zpm——)
7,0

1) asw — 0 then AR _ 1+ (i)2 Pl Controller
Kc 7,0

2) asw — oo then % =1+ (rpw)>  PD Controller
c

3) asw—> + then 2R

=1+ (rnw —1)?
T, Kc \/ (7o )

4) asw—>i then ﬁ:\/1+(1—i)2
Kc 7,0

p

Freguency Response of non-interacting capactine in sereies

G(8) =G,(9) xG,(5) xG5(S) X urrrerurennn x G, (9)
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Example: Bode Digram of PID Controller
1
G,(s) =10(1+—+5s
1(8) =10(+ 7 -+ 59)

1 .
Wy (S) = 0 0.1 signal(-1)

0 (S) = % ~02  signal(+1)
4R \ /
Kc 1.0 1\ «
9

+45
¢

45 /

e! /

1/T1 ® 1/TD

—> Y (S)

Example:
Bode plots of open loop system
Gc G Gp
Y sp(9) N 1 ) S| 10 502
\ ns 0.1s+1 (2s+1)(s+1)
Ym(S)
2 i
0.5s+1 |
The Open loop T.F. of the feedback control
GOL = Gc Gf Gp Gm
1 1 1 1

Go, =100K (1+-)

7,8 01s+1 (2s+1)(s+1) (0.5s+1)

With K.=4 and 1,=0.25
. K=400
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AN 14—
\/ (+ 0255
\\
. slope 1 N Y T
RN & 01s+1
N AN N
slope = =2 \\ NN
AR NN / 1
? AN AN o |05s 41
c Ny N Q 0l
\\ \\
slope = =3 \\\ ( S _;1_ 1
AN
\\ﬁs/ 2s+1
slope = —4
\
01 05 1 2 AN_ 10
N
Otm=====__ slope = -3 ==
_45 \\ o~ N\ //\\
IS U S L slope = —4
-90 —— =7 \“—‘-*:;ss..?-L
¢) 135 0
- \
180 ~ '
) Overall \\
\

Example: Plot the B.D. for the open loop T.F. for the fig. below

G U Gp
R K (1+ 759 4>é—> 1
' (s+1)?(0.1s+1)
Ym(S) s

v

@]

For Kc=10 and 1p5=0.5 the overall transfer function is

S

_ 10(0.55+1)e ©
GoL(8)= (s+1)?(0.15+1)
Overall Bode diagram

=

G,(9) = lsl-l-l_)a)Cl :1:1

G (9= o= -1
G3(9)=05s+1>> ¢, = 05~ 2
Ca(8)= o.1i+1_)w"4 =0%1=10
G;5(9) =e%

e 10

stright line slope=-1
stright line slope=-1
stright line slope=+1

stright line slope=-1

stright line slope=0

<
<
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Amplitude Ratio Curve Prediction

0-1 0 0 0
1-2 -1 -1 0 0 0
2-10 -1 -1 +1 0 0
10- -1 -1 +1 -1 0
Phase Lag Curve Prediction

rd
4
Cd
,I
5 rd
(715 + l) —_ 7
rd
I’
1 ~Z
1 T~ 1
17 IR
05 c+ S0
AR; ‘</
~
or ~N
~
ARoveral Slope =-2 |~ Slope =— 1 \\\
10 0.1
Overall curvd with
derivative ag¢tion
0.05 \ -
Overall curve without __4 Slope
derivative action )
0.01 0.05 0.1 0.5 1 5 10 50
(1) e—
(a)
90 ——==
”- B
J"’
45 —e=
L - 1
_________ - ‘\ (Ts =+ 1)
0 i e =i ::—-_'-—-'—_"'““-.--._ - 1
o] I -
» \ ...,_..N. 1-«\:{ 103-[-]
e -~
\\ ‘\{: s+ 1 \\\"‘*n_
R T A
= 90 il PP W -

Overall curve /f‘ Overall curve 1
: cvati ; sontive W\ € 10
without derivative \ with derivative -
—135 action action

\ N A\
\ \
1 \
-180 - >
Curve corresponding to s + 1 N \
has been added twice to form \ L
—225 — overall curve I, ._‘
1
-270 L
0.05 0.1 0.5 1 5 10 50
© —
(b)

Figure: Block diagram for: (a) Amplitude ratio; (b) phase angle.

Process Control /Lec. 13 129
Fourth Class



The Instrumentation and Control Diagrams

-
‘ Controller
Transmitter | ©
(8wl

mi :iﬂ |F;Iil  —

Orifice
(Flow Sensaor)

Set point

Instrumentation

The example level-control problem had three critical pieces of instrumentation: a
sensor (measurement device), actuator (manipulated input device), and controller.
The sensor measured the tank level, the actuator changed the flow rate, and the
controller determined how much to vary the actuator, based on the sensor signal.
Each device in a control loop must supply or receive asignal from another device.

Sensors (Sensing Element)

A device, usualy electronic, which detects a variable quantity and measures and
converts the measurement into a signal to be recorded elsewhere. A sensor isadevice
that measures a physical quantity and converts it into a signal which can be read by
an observer or by an instrument.

There are many common sensors used for chemical processes. These include
temperature, level, pressure, flow, composition, and pH.

For example, amercury thermometer converts the measured temperature into
expansion and contraction of a liquid which can be read on a calibrated glass tube.
A thermocouple converts temperature to an output voltage which can be read by
avoltmeter.

Control of unit operations
1) Level Control
* A levd control is needed whenever thereisaV/L or L/L interface
* Many smaller vessels are sized based on level control response time
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LAH fTic
LAL k_

Figure 14.1 Liquid level control system

Example: A boiler drum with a conventional feedback control system is shown in
Fig. 14.2. Thelevel of the boiling liquid is measured and used to adjust the feed water
flow rate.

This control system tends to be quite sensitive to rapid changes in the disturbance
variable, steam flow rate, as aresult of the small liquid capacity of the boiler drum.
Rapid disturbance changes can occur as a result of steam demands made by
downstream processing units.

e

I~
]
|
|
|
|
I
I
|
——> Steam
Feedwater i Boiler

drum

Hot
gas

Figure 14.2 The feedback control of the liquid level in aboiler drum.

The feedforward control scheme in Fig. 14.3 can provide better control of the liquid
level. Here the steam flow rate is measured, and the feedforward controller adjusts
the feedwater flow rate.
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Feedforward
Controller

___@(_ __________ |

|
|
|
|
|
|
|
I
: > Steam
Feedwater e é Boiler

drum

Hot
gas

Figure 14.3 The feedforward control of the liquid level in aboiler drum.

2) Pressure Control

* Pressure control isusually by venting a gas or vapor.

 In hydrocarbon processes, off-gasis often vented to fuel.

* In other processes, nitrogen may be brought in to maintain pressure and vented
via scrubbers.

* Most common arrangement is direct venting.

» Several vessals that are connected together may have a single pressure

controller.
4
(P9
\_/
L
Figure 14.4 Pressure control system
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3) Flow Control

« Most common arrangement is a control valve downstream of a pump or
COMpPressor.

FIC

ic
ORI

Figure 14.5 Flowrate control system

Example:Vaporizer Flow Control
» Vaporizer flow control needsto prevent liquid accumulation.

» Hence use level controller to actuate heat input to the vaporizer and maintain a
constant inventory.

» Control of liquid flow in is easier than control of vapor flow out.

Vapor

FIC V/4 V/4
77 77

®
5 o

é Steam
Trap

Condensate
Figure 14.6 Vaporizer control system

v

Feed

4) Temperature Control: Single Stream

» Heaters and coolers are usually controlled by manipulating the flow rate of the
hot or cold utility stream.

» Fina control element can be on inlet or outlet of utility side.
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Hot or cold
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Figure 14.7 Temperature control system

Example: Heat exchangers temperature control

» Temperature control for an heat exchanger is usually by manipulating the flow
through a bypass.

* Only one side of an exchanger can be temperature controlled.

It is also common to see heat exchangers with temperature control on the
downstream heater and cooler.

--------------

v
Figure 14.8 Temperature control of heat exchanger

Example: Air coolers temperature control
* Ambient air temperature varies, so air coolers are oversized and controlled by
manipul ating a bypass.

* Alternatively, air cooler can use a variable speed motor, louvers or variable
pitch fans.
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Figure 14.9 Temperature control of air coolers

Example: Temperature Control of CSTR

AT
! - Q

Cooling
water C><> :
\r/ @ » Product

Figure 14.10 Temperature control of CSTR

Distillation Control
¢ Distillation control isa specialized subject in its own right.
¢ In addition to controlling condenser pressure and level in the sump, a simple
distillation column has two degrees of freedom.
= Material balance (split) and energy balance (heat input or removed).
» Therefore needs two controllers.
» Therefore has the possibility that the controllers will interact and “fight”
each other.
+ Side streams, intermediate condensers & reboilers, pump-arounds, etc. all add
extra complexity and degrees of freedom.

The Energy Balance (LQ) Distillation Column Control Structure

The LQ control structure is the most natural control structure for asimple distillation

column. This is because the separation in a distillation column occurs due to
successive condensation and vaporization of the counter-current vapour and liquid
streams flowing through the column. Adjusting the cold reflux, the source of
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condensation, and the reboiler duty, the source of vaporization, is then a natura
choice for regulating the separation achieved in the column. The LQ control structure
shown in figure (14.11 a) is thus the most commonly applied distillation control
structure. It is also sometimes referred to as an energy balance structure as changing
L (cold reflux) or Q alters the energy balance across the column to affect the distillate
to bottoms product split.

Material Balance Distillation Column Control Structures

The other control structures are referred to as material balance structures as the
product split is directly adjusted by changing the distillate or bottoms stream flow
rate. The material balance structures are applied when a level loop for the LQ
structure would be ineffective due to a very small product stream (D or B) flow rate.
Figure 14.11 b, ¢ and D show Schematics of DQ, LB and DB distillation column
control structures. The DQ structure is thus appropriate for columns with very large
reflux ratio (L/D > 4). The digtillate stream flow is then afraction of the reflux stream
so that the reflux drum level cannot be maintained using the distillate. The level must
then be controlled using the reflux. The LB structure is appropriate for columns with
a small bottoms flow rate compared to the boil-up. The bottoms stream is then not
appropriate for level control and the reboiler duty must be used instead. The DB
control structure is used very rarely as both D and B cannot be set independently due
to the steady state overall material balance constraint. In dynamics however, the
control structure may be used when the reflux and reboil are much larger than the
distillate and bottoms respectively.
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Figure 14.11 Schematics of LQ, DQ, LB and DB distillation column control

structures

Other Distillation Column Control Structure

Other variants of the basic control structure typesinclude the L/D-Q, L/D-B and DQ/
B. In the first two structures the reflux ratio is adjusted for regulating the separation.
In the last structure the reboil ratio is adjusted. These control structures are illustrated

in Figure 14.12,
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Note that when the reflux is adjusted in ratio with the distillate, the distillate stream
can be used to control the reflux drum level even as it may be a trickle compared to
the reflux rate.

(a) L/D-Q === (@O (b) /D-B GO

Condesﬁ_’ Condeserﬁ_é*

Re%( @ @_1 4_I Reé'lg’. @

1
>(Z)-
=)
=
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1
1
=,
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mw

Reboiler steam

Bottoms

@-: Reflux ] i
; =i,
@, Distillate

1 Bottoms

__________________

Figure 14.12 Schematics of L/D-Q, L/D-B, and D-Q/B distillation column control
structures.
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Batch Distillation
» Reflux flow control adjusted based on temperature (used to infer composition)

FIC

I} ok \[/]mermitlent
drain

[ntermittent I Trap
charge

Figure 14.13 Batch distillation column control system

Steam

Heat Exchangers

Heat exchangers process used to transfer heat between two process streams. The flow
of these process streams is usually set elsewhere in the plant so that adjusting the
flowrate of one of the process streams to regulate the amount of heat transferred is
not possible.

To provide a control degree-of-freedom for regulating the heat transferred, a small
by-pass (~5-10%) of one of the process streams around the heat exchanger is
provided. The outlet temperature of this process stream or the other process stream
can be controlled by manipulating the by-pass rate. These two schemes are illustrated
in Figure 14.14. In the former, tight temperature control is possible as the amount of
heat transferred is governed by the bypass. In the latter, a thermal lag of the order of
0.5 to 2 minutes exists between the manipul ated and controlled variable.
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Figure 14.14 By-pass control of process to process heat exchangers
(a) Controlling and bypassing hot stream (b) Controlling cold stream and bypassing
hot stream

Control of Miscellaneous Systems

Vapor Absorption Cycle

In addition to compression systems, refrigerant absorption systems are also applied
industrially. The absorption based refrigeration cycle and its control scheme is shown
in Figure 14.15. Ammonia (refrigerant) rich strong liquor is distilled at high pressure
to recover liqguid ammonia as the distillate and ammonia lean weak liquor as the
bottoms. The liquid ammoniais fed to the evaporator where it absorbs heat from the
process stream to be chilled and evaporates. Vapor ammonia is absorbed by the
‘weak liquor’ water stream. The ‘strong liquor’ so formed is fed to the distillation
column to completed the closed circuit refrigerant loop. The temperature of the
chilled process stream is controlled by adjusting the level setpoint of the evaporator.
The heat transfer rate is thus varied by changing the area across which heat transfer
occurs. The evaporator level controller adjusts the distillate liquid ammonia flow. An
increase in the level of the evaporator implies an increase in the ammonia evaporation
rate so that the weak liquor rate is increased in ratio to absorb the ammonia vapours.
The strong liquor is cooled and collected in a surge drum. The level of the surge drum
is not controlled. Liquid from the surge drum is pumped back to the distillation
column through a process-to-process heater that recovers heat from the hot ‘weak
liquor’ bottoms from the distillation column. The flow rate of the strong liquor to the
column is adjusted to maintain the column bottoms level. Also, the steam to the
reboiler is manipulated to maintain atray temperature.
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Figure 14.15 Absorption refrigeration control system
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