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Transport Phenomena 
 

 

Boundary Layer 
1 Introduction. 
When a fluid flows over a surface, that part of the stream which is close to the surface 
suffers a significant retardation, and a velocity profile develops in the fluid. The velocity 
gradients are steepest close to the surface and become progressively smaller with distance 
from the surface. Although theoretically there is no outer limit at which the velocity 
gradient becomes zero, it is convenient to divide the flow into two parts for practical 
purposes. 
1- A boundary layer close to the surface in which the velocity increases from zero at the 

surface itself to a near constant stream velocity at its outer boundary. 
2- A region outside the boundary layer in which the velocity gradient in a direction 

perpendicular to the surface is negligibly small and in which the velocity is everywhere 
equal to the stream velocity. 
The thickness of the boundary layer may be arbitrarily defined as the distance from the 
surface at which the velocity reaches some proportion of the undisturbed stream velocity. 
The flow conditions in the boundary layer are of considerable interest to chemical 
engineers because these influence, not only the drag effect of the fluid on the surface, but 
also the heat or mass transfer rates where a temperature or a concentration gradient exists. 

It is convenient first to consider the flow over a thin plate inserted parallel to the flow of a 
fluid with a constant stream velocity us. It will be assumed that the plate is sufficiently 
wide for conditions to be constant across any finite width w of the plate which is being 
considered. Furthermore, the extent of the fluid in a direction perpendicular to the surface 
is considered as sufficiently large for the velocity of the fluid remote from the surface to 
be unaffected and to remain constant at the stream velocity us. Whilst part of the fluid 
flows on one side of the flat plate and part on the other, the flow on only one side is 
considered. 

On the assumption that there is no slip at the surface, the fluid velocity at all points on the 
surface, where y = 0,will be zero. At some position a distance x from the leading edge, the 
velocity will increase from zero at the surface to approach the stream velocity 
usasymptotically. At the leading edge, that is where x = 0,the fluid will have been 
influenced by the surface for only an infinitesimal time and therefore only the molecular 
layer of fluid at the surface will have been retarded. At progressively greater distances (x) 
along the surface, the fluid will have been retarded for a greater time and the effects will 
be felt to greater depths in the fluid. Thus the thickness (δ) of the boundary layer will  
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increase, starting from a zero value at the leading edge. Furthermore, the velocity gradient 
at the surface (dux/dy)y=0(where uxis the velocity in the x-direction at a distance y from 
the surface) will become less because the velocity will change by the same amount 
ux= 0 at y = 0 to ux = us

 

, at y = δ) over a greater distance. The development of the 
boundary layer is illustrated in Figure 1 below:- 

 

Near the leading edge of the surface where the boundary layer thickness is small, the flow 
will be streamline, or laminar, and the shear stresses will arise solely from viscous shear 
effects. When the boundary layer thickness exceeds a critical value, however, streamline 
flow ceases to be stable and turbulence sets in. the important flow parameter is the 
Reynolds number Rea = ust5p/p . Because δ can be expressed as a function of x, the 
distance from the leading edge of the surface, the usual criterion is taken as the value of 
the Reynolds number Rex= usxpjp.        .If the location of the transition point is at a 
distance xi; from the leading edge, then Rexe= usxcp / it,       is of the order of 105

 

. 

When the flow in the boundary layer is turbulent, streamline flow persists in a thin region 
close to the surface called the laminar sub-layer. This region is of particular importance 
because, in heat or mass transfer, it is where the greater part of the resistance to transfer 
lies. High heat and mass transfer rates therefore depend on the laminar sub-layer being 
thin. Separating the laminar sub-layer from the turbulent part of the boundary layer is the 
buffer layer,in which the contributions of the viscous effects and of the turbulent eddies 
are of comparable magnitudes. 

For flow against a pressure gradient (dP/dxpositive in the direction of flow) the 
combined force due to pressure gradient and friction may be sufficient to bring the fluid 
completely to rest and to cause some backflow close to the surface. When this occurs the 
fluid velocity will be zero, not only at the surface, but also at a second position a small 
distance away. In these circumstances, the boundary layer is said to separate and circulating 
currents are set up as shown in Figure 2 below. 

Figure 1 
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The following treatment, based on the simplified approach suggested by 
PRANDTL1, involves the following three assumptions: 

(1) That the flow may be considered essentially as unidirectional (x-direction) and that the 
effects of velocity components perpendicular to the surface within the boundary layer 
may be neglected (that is, uy<<ux

(2) That the existence of the buffer layer may be neglected and that in turbulent flow the 
boundary layer may be considered as consisting of a turbulent region adjacent to a laminar 
sub-layer which separates it from the surface. 

). This condition will not be met at very low Reynolds 
numbers where the boundary layer thickens rapidly. 

(3) That the stream velocity does not change in the direction of flow. On this basis, from 
Bernoulli's theorem, the pressure then does not change (that is, dP/dx = 0). 

2 The momentum Equation. 
It will be assumed that a fluid of density ρ and viscosityµ flows over a plane surface and 
the velocity of flow outside the boundary layer is us. A boundary layer of thickness 
δforms near the surface, and at a distance y from the surface the velocity of the fluid is 
reduced to a value ux

 

.The equilibrium is considered of an element of fluid bounded by 
the planes 1-2 and 3-4 at distances x and x+dx respectively from the leading edge; the 
element is of length l in the direction of flow and is of depth w in the direction 
perpendicular to the plane 1-2 , 3-4. The distance l is greater than the boundary layer 
thickness δ(Figure 3), and conditions are constant over the width w. The velocities and 
forces in the x-direction are now considered. 

 

 

Figure 2 
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Figure 3 Element of boundary layer 

At plane 1-2, mass rate of flow through a strip of thickness dyat distance y from the 
surface 

The total flow through plane 1 -2  ……(1) 

 

The rate of transfer of momentum through the elementary strip 
 

  
The total rate of transfer of momentum through plane 1 -2  

.. ........... (2) 
 

In passing from plane 1-2 to plane 3-4, the mass flow changes by: 

  
  ………….(3) 
 

 
 
 

………..(4) 
 

 

whereMi is the momentum flux across the plane 3-4. 
 
A mass flow of fluid equal to the difference between the flows at planes 3-4 and 1-2 
(equation 3) must therefore occur through plane 2-4, as it is assumed that there is 
uniformity over the width of the element. Since plane 2-4 lies outside the boundary layer, the 
fluid crossing this plane must have a velocity usin the x-direction. Because the fluid in the 
boundary layer is being retarded, there will be a smaller flow at plane 3-4 than at 1-2, and 
hence the flow through plane 2-4 is outwards, and fluid leaves the element of volume. 
Thus the rate of transfer of momentum through plane 2-4 out of the element is: 
 
 

and the momentum flux changes by:  
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 ………(5) 

It will be noted that the derivative is negative, which indicates a positive outflow of 
momentum from the element. 

Steady-state momentum balance over the element 1-2-3-4 
The terms which must be considered in the momentum balance for the x-direction are: 
(i) The momentum flux through plane 1 -2 into the element. 
(ii) The momentum flux through plane 3-4 out of the element. 
(iii) The momentum flux through plane 2-4 out of the element. 

The net rate of change of momentum in the x-direction on the element must be equal to the 
momentum added from outside, through plane 2-4, together with the net force acting on it. 
The forces in the x-direction acting on the element of fluid are: 

(1) A shear force resulting from the shear stress Ro acting at the surface. This is a retarding 
force and therefore Ro

(2) The force produced as a result of any difference in pressure dPbetween the planes 3-4 and 
1-2. However, if the velocity u

 is negative. 

s

 

The net force = Shear force + Pressuredrop  
Ro.1.dx + ( -dP/dx).1.dx   

 outside the boundary layer remains constant, from Bernoulli's 
theorem, there can be no pressure gradient in the x-direction and dP / dx = 0. 

Thus, the net momentum flux out of the element to the net retarding force is given 

 ……(6) 
 

This expression, known as the momentum equation, may be integrated provided that 
the relation between u,and y is known. It is used for compressible or in compressible 
fluid for laminar and turbulent regime. If the velocity of the main stream remains constant 
at us and the density may be taken as constant, equation 6 then becomes: 

 ……..(7) 
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It may be noted that no assumptions have been made concerning the nature of the flow 
within the boundary layer and therefore this relation is applicable to both the streamline 
and the turbulent regions. The relation between ux

 

The coefficients a, b, c and u

 and y is derived for streamline and 
turbulent flow over a plane surface and the integral in equation 7 is evaluated. 
 
 
2.1 The Streamline Portion of Boundary Layer. 
In the streamline boundary layer the only forces acting within the fluid are pure viscous 
forces and no transfer of momentum takes place by eddy motion. Assuming that the 
relation between u, and y can be expressed approximately by: 

o

 

 

 

 

 

Figure 4 Velocity distribution in streamline boundary layer 
 
It is assumed here that the fluid in contact with the surface is at rest and therefore u

,may be evaluated because the boundary conditions which 
the relation must satisfy are known, as shown in Figure 4. 

o must 
be zero. Furthermore, all the fluid close to the surface is moving at very low velocity and 
therefore any changes in its momentum as it flows parallel to the surface must be 
extremely small. Consequently, the net shear force acting on any element of fluid near 
the surface is negligible, the retarding force at its lower boundary being balanced by the 
accelerating force at its upper boundary. Thus the shear stress Ro

The shear stress in the fluid at the surface is given by: 

 

 in the fluid near the 
surface must approach a constant value. 
 

and  constant at small values of y . 

 

           = constant at  y=0    ……………..and  
 
At the distant edge of the boundary layer it is assumed that the velocity just equals the 
main stream velocity and that there is no discontinuity in the velocity profile. 
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The velocity profile is therefore 

 

 
 
 
Velocity profiles in a laminar boundary layer  applies over the range 0 < y <δ 

 
The integral in the momentum equation   can now be evaluated for the streamline 
boundary layer by considering the ranges 0 < y<δ  andδ< y < L separately 
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Then sub in momentum equation  

 

 

 

 

 

 
 
Shear stress at the surface 
The shear stress in the fluid at the surface is given by: 
 

 

 

 

 

 

The shear stress R acting on the surface itself is equal and opposite to the shear stress on 
the fluid at the surface; that is, R =-R

 

 

Above Equation of shear stress gives the point values of R and R/ρu

0 

s2

The average value of R/ρu

 at x =x. In order 
to calculate the total frictional force acting at the surface, it is necessary to multiply the 
average value of R between x = 0 and x = x by the area of the surface. 

s
2denoted by the symbolR/ρus

2 : 
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2.2 The TurbulentPortion of Boundary Layer. 
 
In the simplified treatment of the flow conditions within the turbulent boundary layer the 
existence of the buffer layer, shown in Figure 1, is neglected and it is assumed that the 
boundary layer consists of a laminar sub-layer, in which momentum transfer is by 
molecular motion alone, outside which there is a turbulentregion in which transfer is 
effected entirely by eddy motion (Figure 5). The approachis based on the assumption that 
the shear stress at a plane surface can be calculated fromthe simple power law developed 
by Blasius equation.  
 
 
 
 
 
 
 
 
 

Figure 5Turbulent boundary layer 
 
The shear stress at a plane smooth surface over which a fluid is flowing with a velocity 
us, for conditions where Rex < 10

 
The shear stress is expressed as a function of the boundary layer thicknessδand it is 
therefore implicitly assumed that a certain velocity profile exists in the fluid. As a first 
assumption, it may be assumed that a simple power relation exists between the velocity 
and the distance from the surface in the boundary layer, or 

7. 
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If the velocity profile is the same for all stream velocities, the shear stress must be 
defined by specifying the velocityux

 
 
 
 
                                                                                         (ThePrandtl seventh power law equation) 
 
Integrating momentum equation with limits 0 < y <δ 

 at any distance y from the surface. The boundary 
layer thickness, determined by the velocity profile, is then no longer an independent 
variable so that the index ofδ , must be zero ,  

 
 
 
 
 
 
 
 

 
From the Blasius equation 
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2.3 The Laminar Sub-Layer. 

If at a distance x from the leading edge the laminar sub-layer is of thickness δb

 
Equating this to the value obtained from Blasiusequation  gives: 

and the 
total thickness of the boundary layer is δ, the properties of the laminar sub-layer can be 
found by equating the shear stress at the surface as given by the Blasius equation   to that 
obtained from the velocity gradient near the surface. It has been noted that the shear stress 
and hence the velocity gradient are almost constant near the surface. Since the laminar 
sub-layer is very thin, the velocity gradient within it may therefore be taken as constant. 
Thus the shear stress in the fluid at the surface,   

 

 
 
 

 
If the velocity at the edge of the laminar sub-layer is ub, that is, if ux= ub , when y = δ

 
  
  
 
 
 
 
 
 
 

b 
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The thickness of the laminar sub-layer is given by 
 
 
 
 
 
 
 
 
 
 
 
 

Thus ; that is,δb

 

 it increases very slowly as x increases. Further, and therefore decreases 
rapidly as the velocity is increased, and heat and mass transfercoefficients are therefore considerably influenced by 
the velocity.   The shear stress at the surface, at a distance x from the leading edge, is given by: 
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The mean value of  R/ρus
2

 
 
 
 
 
 
 
 
 
 
 

 over the range x =0 to x = x is given by: 

 
The total shear force acting on the surface is found by adding the forces acting in the streamline  

(x <xc) and turbulent (x > xc) regions. This can be done provided the critical value Rexc

 

 is known. 

 
 
  

 

In calculating the mean value of  (R/ρus
2)m in the turbulent region, it was assumed that the turbulent 

boundary layer extended to the leading edge. A more accurate value for the mean value of  
R/ρus

2over the whole surface can be obtained by using the expression for streamline conditions over 
the range from x = 0 to x = xc (where xc is the critical distance from the leading edge) and the 
expression for turbulent conditions in the range x = xc  to  x = x :- 
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2.4 Boundary Layer Theory Applied to Pipe Flow. 

When a fluid flowing with a uniform velocity enters a pipe, a boundary layer forms at the walls and 
gradually thickens with distance from the entry point. Since the fluid in the boundary layer is retarded 
and the total flow remains constant, the fluid in the central stream is accelerated. At a certain distance 
from the inlet, the boundary layers, which have formed in contact with the walls, join at the axis of the 
pipe, and, from that point onwards, occupy the whole cross-section and consequently remain of a 
constant thickness. Fully developed flow then exists. If the boundary layers are still streamline when 
fully developed flow commences, the flow in the pipe remains streamline. On the other hand, if the 
boundary layers are already turbulent, turbulent flow will persist as shown in Figure 6. 

 

Figure 6:Conditions at entry to pipe 

When the fluid is turbulent, for this purpose it is assumed that the boundary layer expressions may be 
applied to flow over a cylindrical surface and that the flow conditions in the region of fully developed 
flow are the same as those when the boundary layers first join. The thickness of the boundary layer is 
thus taken to be equal to the radius of the pipe and the velocity at the outer edge of the boundary layer 
is assumed to be the velocity at the axis. 

The velocity of the fluid may be assumed to obey the Prandtl one-seventh power law. If the boundary 
layer thickness δ is replaced by the pipe radius r, this is then given by: 

 

 

The shear stress at the walls is given by the Blasius equation:- 
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Whereu = 0.817us

 

, andd = 2r:- 

 

The velocity at the edge of the laminar sub-layer is given by: 

 

The thickness of the laminar sub-layer is given by:- 

 

 

 

 

 

 

 

The mean velocity u is shown to be 0.82 times the velocity us at the axis, although in this calculation 
the thickness of the laminar sub-layer was neglected and the Prandtl velocity distribution assumed to 
apply over the whole cross-section. The result therefore is strictly applicable only at very high 
Reynolds numbers where the thickness of the laminar sub-layer is very small. At lower Reynolds 
numbers the mean velocity will be rather less than 0.82 times the velocity at the axis. 

 


