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Similarly, the apparent emissivity at a zenith angle ψ or εa(ψ) can be taken as the flux 

density of downward radiation at ψ divided by ζ T 4 a . Many measurements show 

that the dependence of εa(ψ) on ψ over short periods can be expressed as 

εa(ψ) = a + b ln (u sec ψ), (5.23) 

where u is precipitable water (corrected for the pressure dependence of radiative 

emission) and a and b are empirical constants that change with the vertical gradient of 

temperature and with the distribution of aerosol (Unsworth and Monteith, 1975). 

Integration of this equation over a hemisphere using Eq. (4.9) gives the effective 

(hemispherical emissivity as 

εa = a + b ( ln u + 0.5). (5.24) 

Comparing Eqs. (5.23) and (5.24) shows that the hemispherical emissivity is identical 

to the emissivity at a representative angle ψ _ such that 

ln (u secψ _ ) = ln u + ln secψ _ = ln u + 0.5. 

It follows that ln secψ _ = 0.5, giving ψ _ = 52.5◦ irrespective of the values of a and b. 

Hence a directional radiometer recording the radiance at 52.5◦ could be used 

tomonitor the value of εa for cloudless skies, and Ld would be given by Eq. (5.22). 

Formulae for estimating εa for cloudless skies were reviewed by Prata (1996) and 

Niemela et al. (2001). The most successful equation was 

εa = 1 − (1 + aw) exp −[(b + cw)0.5], 

wherewis the precipitablewater content of the atmosphere in kgm−2, and the empirical 

constants are a = 0.10 kg−1 m−2, b = 1.2, c = 0.30 kg−1 m2. Values of w were given 

approximately by 

w = 4.65ea/Ta, 

where ea is water vapor pressure near the ground (Pa) and Ta is air temperature (K). 

An even simpler formula for estimating Ld was developed by Unsworth and Monteith 

(1975), viz. 

Ld = c + dζ T 4 a . (5.25) 

For measurements in the English Midlands, which covered a temperature range from 

−6 to 26 ◦C, the empirical constants were c = −119±16Wm−2 and d = 1.06±0.04. The 

uncertainty of a single estimate of Ld was ±30Wm−2. Measurements in Australia 

(Swinbank, 1963) gave similar values of c and d but with much less scatter. The lack 

of an explicit dependence of Ld on humidity in expressions such as Eq. (5.25) is 

probably because there is often a strong correlation between air temperature and 

humidity in the lower atmospheric layers responsible for most of the radiant emission. 



Using a linear approximation to the dependence of full radiation on temperature 

above a base of 283 K allows Eq. (5.25) to be written in the form  

Ld = 213 + 5.5T _ a , (5.26) 

where T _ a is air temperature in ◦C. Outward long-wave radiation, assumed to be ζ T 

_ a 4 (i.e. ε = 1), is given by a similar approximation as 

Lu = 320 + 5.2T _ a (5.27) 

The net loss of long-wave radiation is therefore 

Lu − Ld = 107 − 0.3T _ a (5.28) 

implying that 100Wm−2 is a good average figure for the net loss to a clear sky (see 

Figure 14). 

If the cloudless atmosphere emitted like a full radiator (an incorrect but commonly 

applied simplification in climatology texts), an expression for the effective radiative 

temperature T _ b of the atmosphere could be obtained by writing 

Ld = 320 + 5.2T _ b = 213 + 5.5T _ a , 

so that 

T _ b = _  5.5T _ a – 107 _ /5.2 = _ T _ a – 21 _ + 0.06T _ a 

 

 



Figure 14 Black-body radiation at Ta (full circles) and long-wave radiation from clear 

sky (open circles) from Eq. (5.25). Straight lines are approximations from Eqs. (5.26) 

and (5.27), respectively. 

 

This relation shows that when T _ a is between 0 and 20◦C, the mean effective 

radiative temperature of a cloudless sky is usually about 21–19 ◦Cbelowthemean air 

temperature near the ground. 

In general, for climatological work, the more complex formulae for estimating Ld that 

require humidity or precipitable water data have little additional merit over the 

simpler expressions above since the main uncertainty lies in the influence of cloud— 

the next topic. 

 

2 Terrestrial Radiation from Cloudy Skies 

Clouds dense enough to cast a shadow on the ground emit long-wave radiation like 

full radiators at the cloud base temperature of the water droplets or ice crystals from 

which they are formed. The presence of cloud increases the flux of atmospheric 

radiation received at the surface because the radiation from water vapor and carbon 

dioxide in the lower atmosphere is supplemented by emission from clouds in the 

waveband which the gaseous emission lacks, particularly from 8 to 13 μm (see Figure 

12). Because most of the gaseous component of atmospheric radiation reaching the 

surface originates below the base of clouds, the gaseous component of the downward 

flux can be treated as if the sky was cloudless with an apparent emissivity εa. From 

Kirchhoff’s principle, the transmissivity of radiation from the cloud through the air 

layer beneath cloud base is 1−εa, and if the cloud base temperature is Tc the 

downward radiation received at the surface from a fully overcast sky will be 

Ld = εaζ T 4 a + (1 − εa)ζ T 4 c . (5.29) 

Using the linear approximation Eq. (4.5)with δT = Ta−Tc, and ignoring second-order 

terms in δT, Tc can be eliminated by writing 

ζ T 4 c = ζ(Ta − δT )4 ≈ ζ T 4 a − 4ζ T 3 a δT = ζ T 4 a (1 − 4δT /Ta). 

Hence Eq. (5.29) may be written 

Ld = ζ T 4 

a {1 − 4(1 − εa)δT /Ta} (5.30) 

and the emissivity is 

εa = Ld/ζ T 4 a = 1 − 4(1 − εa)δT /Ta. 



The analysis of a series of measurements near Oxford, England (Unsworth and 

Monteith, 1975) gave an annual mean of δT = 11 K with a seasonal variation of ±2 K, 

figures consistent with a mean cloud base at about 1 km, higher in summer than in 

winter. Taking 283 K as a mean value of Ta for this location gives 4δT /Ta = 0.16, so 

that the emissivity of a completely overcast sky (cloud fraction c = 1) at this site 

would be 

εa(1) = Ld/ζ T 4 a = 1 − 0.16 {1 − εa} = 0.84 + 0.16εa. (5.31) 

 

For a sky covered with a fraction c of cloud, interpolation gives 

 

εa(c) = cεa(1) + (1 − c)εa = (1 − 0.84c)εa + 0.84c. (5.32) 

 

The main limitation to this formula lies in the choice of appropriate values for cloud 

temperature and for δT which depend on base height and therefore on cloud type. It is 

important to remember that the formulae presented in this section are statistical 

correlations of radiative fluxes with weather variables at particular sites and do not 

describe direct functional relationships. For prediction, they are most accurate when 

the air temperature does not increase or decrease rapidly with height near the surface 

and when the air is not exceptionally dry or humid. They are therefore appropriate for 

climatological studies of radiation balance but are often not accurate enough for 

micrometeorological analyses over periods of a few hours. In particular, the simple 

equations cannot be used to investigate the diurnal variation of Ld. At most sites, the 

amplitude of Ld in cloudless weather is much smaller than the amplitude of Lu, 

behavior to be expected because changes of atmospheric temperatures are governed 

by, and follow, changes of surface temperature. 

 

Net Radiation 

All surfaces receive short-wave radiation during daylight and exchange long-wave 

radiation continuously with the atmosphere. The net rate at which a surface receives 

radiation of long and short wavelengths is called the net radiation balance, or net 

radiation. (The term balance is used in the same sense as in a bank balance, which 

may be positive, negative, or zero depending on gains and losses.) Thus the net 

radiation received by unit area of a horizontal surface with reflection coefficient ρ is 

defined by the equation 



Rn = (1 − ρ)St + Ld − Lu. (5.33) 

The concept of the net radiation balance can also be applied at the global scale: maps 

and animations of the seasonal variation of the earth’s net radiation balance may be 

found at  

http://earthobservatory.nasa.gov/GlobalMaps/view.php?d1=CERES_NETFLUX_M. 

Microclimatological applications of Eq. (5.33) are considered. Here, a discussion of 

the net receipt of radiation by a standard horizontal surface is needed to round off the 

chapter, although net radiation is not strictly a macroclimatological quantity: it 

depends on the temperature, emissivity, and reflectivity of a surface. Net radiation is 

measured routinely at only a few climatological stations partly because of the problem 

of providing a standard surface but also because instruments in the past were difficult 

to maintain. More robust instruments consisting of four independent sensors for the 

components of Rn are now available from several manufacturers (e.g. from Kipp and 

Zonen B.V., Delft, The Netherlands) which make the task of observing and 

interpreting Rn at climatological sites more feasible. Examples of annual and daily 

measurements follow. 

Figure 15 shows the annual change of components in the net radiation balance of a 

short grass surface at Hamburg, Germany (54◦N, 10◦E) from February 1954 to 

January 1955. Each entry in the graph represents the gain or loss of radiation for a 

period of 24 h. The largest term in the balance is Lu, the long-wave emission from the 

grass surface, ranging between winter and summer from about 23 to about 37 MJ m−2 

day−1. The equivalent mean radiative flux density, found by dividing by the number 

of seconds in a day (86,400), is 270–430Wm−2. The minimum values of downward 

atmospheric radiation Ld (corresponding to about 230Wm−2) were recorded in 

spring, presumably in cloudless anticyclonic conditions bringing very cold dry 

airmasses; and maximum values ( ≈ 380 W m−2) were recorded duringwarm humid 

weather in the autumn. The net loss of long-wave radiation was about 60Wm−2 on 

average (cf. 100Wm−2 for cloudless skies on p. 72) andwas almost zero on a few, 

very foggy days in autumn and winter. 

In the lower half of the diagram, the income of short-wave radiation forms a 

Manhattan skyline with much larger day-to-day changes and a much larger seasonal 

amplitude than the income of long-wave radiation. The maximum value of St is about 

28 MJ m−2 day−1 (320Wm−2 ) and St is smaller than Ld on every day of the year 

.The reflected radiation is about 0.25St except on a few days in January and February 



when snow increased the reflection coefficient to between 0.6 and 0.8. The net 

radiation Rn given by (1 − ρ)St + Ld − Lu is shown in the top half of the graph. 

During summer at this northerly site (54◦N), the ratio of daily Rn/St was almost 

constant from day to day at about 0.57, but the ratio decreased during the autumn and 

 

 

Figure 15 Annual radiation balance at Hamburg, Germany, 1954/55: St, total solar 

radiation; ρSt, reflected solar radiation; Lu, upward long-wave radiation; Ld, 

downward long-wave radiation; Rn, net radiation (after Fleischer, 1955). 

 

reached zero in November. From November until the beginning of February daily Rn 

was negative on most days. In summer, net radiation and mean air temperature were 

positively correlated with sunshine. In winter, with the sun low in the sky and the 

days short, the correlation was negative: sunny cloudless days were days of minimum 

net radiation with the mean air temperature below average. 

Staff at the University of Bergen maintained records of incoming short- and long 

wave radiation for many years and overcame the problem of maintaining a standard 

surface by using black-body radiation at air temperature for Lu and by adopting a 

reflection coefficient of 0.2 (grass) or 0.7 (snow) as appropriate (The device of 

referring net radiation to a surface at air temperature is convenient in 

microclimatology too (see p. 229) and deserves to be more widely adopted.) The 



shaded part of Figure 16 represents the difference between the fluxes Ld and Lu i.e. 

the net loss of long-wave radiation; the bold line is Rn. In cloudless weather, the 

diurnal change in the two long-wave components is much smaller than the change of 

short-wave radiation which follows an almost sinusoidal curve. The curve for net 

radiation is therefore almost parallel to the St curve during the day, decreases to a 

minimum value in the early evening, and then increases very slowly for the rest of the 

night (because the lower atmosphere is cooled by radiative exchange with the earth’s 

surface). In summer, the period during which Rn is positive is usually about 2 or 3 h 

shorter than the period during which St is positive. Comparison of the curves for clear 

spring and winter days (Figure 15a and b) shows that the seasonal change of Rn/St 

noted in Figure 14 is a consequence of 

(i) the shorter period of daylight in winter and (ii) much smaller maximum values of 

St, in winter, unmatched by an equivalent decrease in the net long-wave loss. Figures 

17 and 18 show the net radiation balances during several cloudless days of short grass 

(Corvallis, Oregon), and of an old-growth Douglas fir/Western Hemlock forest(Wind 

River, Washington State) in the Pacific Northwest of the USA. By day, solar radiation 

is the dominant influence on the radiation balance. The reflection coefficient for solar 

radiation is about 0.23 for the grass and 0.07 for the forest, a consequence of the 

optical properties of the foliage and the canopy structure. 

The upward long-wave radiation varies less over the forest than over the grass 

because the tree foliage remains close to air temperature during the day whereas the 

short grass gets much warmer than the air. At night, the net radiation over both 

surfaces is most strongly negative shortly after sunset when the canopies are warmer 

than they are later in the night, and consequently lose more radiation to the cloudless 

sky. Unusually, net radiation at night is similar in magnitude over both canopies. 

More typically, if wind speeds had been similar over the grass and the forest, heat 

stored in the soil would have flowed upwards to keep the grass canopy warmer than 

the more isolated forest canopy. It is likely that the dry soil in summer did not conduct 

heat effectively in this example. Figures 17 and 18 demonstrate a good correlation 

between Rn and St which could be used to estimate Rn from total solar radiation 

records (a method that has commonly been used (e.g. Kaminsky and Dubayah, 

1997)). However, the principles 

 



 

Figure 16 Radiation balance at Bergen, Norway (60◦N, 5◦E): (a) on 13 April 1968, 

(b) on 11 January 1968. The gray area shows the net long-wave loss and the line Rn is 

net radiation. 

 

Note that net radiation was calculated from measured fluxes of incoming short- and 

long-wave radiation, assuming that the reflectivity of the surface was 0.20 in April 

(e.g. vegetation) and 0.70 in January (e.g. snow). The radiative temperature of the 

surface was assumed equal to the measured air temperature. 



 

Figure 17 Components of the net radiation balance during three cloudless days over 

short grass near Corvallis Oregon (45◦N, 123◦W). (data courtesy of Reina Nakamura, 

Oregon State University.) 

 

Figure 18 Components of the net radiation balance during three cloudless days over 

an old growth Douglas fir/Western Hemlock forest at Wind River Experimental 



Forest, Washington, (46◦N, 120◦W). Legends and line type are as in Fig. 5.17. (data 

courtesy of Ken Bible, University of Washington.) 

 

summarized in this chapter show that such an approach is not only site dependent, but 

also surface dependent, so that methods for estimating Rn from its components are 

preferable (Offerle et al., 2003). 

In the material just presented we have concentrated primarily on radiation fluxes 

when skies are cloudless because these conditions provide maximum daily energy to 

the surface and are most amenable to analysis. In overcast weather, with low cloud, 

Ld becomes almost equal to ζ T 4 a , so the net long-wave exchange is close to zero 

and Rn is almost zero at night. During the day under overcast skies Rn ≈ (1 − ρ)St. 

 

 

Problems 

1. Estimate the time difference between sunset and the beginning of civil twilight in 

Greenwich, England (51.5◦N, 0.0◦W) on 21 June (solar declination 23.5◦). 

2. Use the simple model for solar radiation under cloudless skies (p. 64) to estimate 

the direct, diffuse, and total solar irradiance on a horizontal surface at 45◦N at local 

solar noon on 21 June for three values of aerosol optical thickness, 0.05, 0.20, 0.40. 

Assume that the optical thickness for molecular attenuation is 0.30. 

3. Using the results of Question 2, estimate the daily insolation at 45◦N at solar noon 

on 21 June for the three aerosol loadings assuming cloudless sky. 

4. Assuming a cloudless sky, estimate the downward long-wave irradiance and the 

atmospheric emissivity at the ground when the air temperature is 25 ◦C. If the sky was 

covered by 50% cloud, estimate the long-wave irradiance in this case. Why are these 

values only climatological approximations? 

5. Four solar radiometers are exposed side by side. A and B have clear glass domes 

transmitting all wave lengths in the solar spectrum; C and D have domes that transmit 

95% of the radiant energy from 700 to 3000 nm and no radiation below 700 nm. A 

and C receive global (total) radiation whereas B and D have a shade ring that 

intercepts 10% of radiation from the sky as well as all the direct solar beam. On a 

cloudless summer day the instruments give the following outputs: A 11.00 mV; B 

1.30 mV; C 5.30 mV; and D 0.25 mV. Assuming that all instruments have the same 

sensitivity, 12.0 μVW−1 m−2, calculate 



 (i) the ratio of diffuse to global radiation,  

(ii) the fraction of photosynthetically active radiation (0.4–0.7 μm) in the diffuse 

component, 

 (iii) the fraction of visible radiation in the direct solar beam, and  

(iv) the global irradiance in the photosynthetically active waveband. 

 

6. A farmer plans to plant seeds in a field of soil with a solar radiation reflection 

coefficient ρs = 0.20. She decides that the soil will be warmer (and germination more 

rapid) if she spreads a thin layer of black soot over it, decreasing the solar radiation 

reflection coefficient to ρ _s = 0.05. To assess the effect of the change, she prepares 

adjacent plots and records the following data around noon on a cloudless day: 

Incident total solar irradiance St = 900Wm−2 (same for both plots). Difference in net 

radiation Rn(soot-covered)− Rn(bare soil) = 69Wm−2. Radiative temperature of bare 

soil Ts = 303 K. 

Estimate the radiative temperature of the soot-covered surface, stating any 

assumptions that you need to make. 

 

Steady-State Heat Balance 

(i) Water Surfaces, Soil, and Vegetation The heat budgets of plants and animals will 

now be examined in the light of the principles and processes considered in previous 

chapters. The First Law of Thermodynamics states that when a balance sheet is drawn 

up for the flow of heat in any physical or biological system, income and expenditure 

must be exactly equal. In environmental physics, radiation and metabolism are the 

main sources of heat income; radiation, convection, and evaporation are methods of 

expenditure. 

For any component of a system, physical or biological, a balance between the income 

and expenditure of heat is achieved by adjustments of temperature. If, for example, 

the income of radiant heat received by a leaf began to decrease because the sun was 

obscured by cloud, leaf temperature would fall, reducing expenditure on convection 

and evaporation. If the leaf had no mass and therefore no heat capacity, the decrease 

in expenditure would exactly balance the decrease in income, second by second. For a 

real leaf with a finite heat capacity, the decrease in temperature would lag behind the 

decrease in radiation and so would the decrease in expenditure on convection and 

evaporation, but the First Law of Thermodynamics would still be satisfied because the 



reduced income from radiant heat would be supplemented by the heat given up by the 

leaf as it cooled. This chapter is concerned with the heat balance of relatively simple 

systems in which 

 (a) temperature is constant so that changes in heat storage are zero and 

(b) metabolic heat is a negligible term in the heat budget. The heat budget of warm 

blooded animals, controlled by metabolism. 

 

1 Heat Balance Equation 

The heat balance of any organism can be expressed by an equation with the form 

Rn +M = C + λE + G. (13.1) 

The individual terms are 

Rn = net gain of heat from radiation, 

M = net gain of heat from metabolism, 

C = loss of sensible heat by convection, 

λE = loss of latent heat by evaporation, 

G = loss of heat by conduction to environment. 

The over bars in Eq. (13.1) indicate that each term is an average heat flux per unit 

surface area. (In the rest of this chapter, they are implied but not printed.) In this 

context, it is convenient to define surface area as the area from which heat is lost by 

convection although this is not necessarily identical to the area from which heat is 

gained or lost by radiation. The conduction term G is included for completeness but is 

negligible for plants and has rarely been measured for animals. An equation similar to 

(13.1) applies to bare soil surfaces or water bodies but without the term M. 

 

The grouping of terms in the heat balance equation is dictated by the arbitrary sign 

convention that fluxes directed away from a surface are positive. (When temperature 

decreases with distance z from a surface so that ∂T /∂z < 0, the outward flux of heat C 

∝ −∂T /∂z is a positive quantity, see p. 29.) The sensible and latent heat fluxes C and 

λE are therefore taken as positive when they represent losses of heat from the surface 

to the atmosphere, and as negative when they represent gains. On the left-hand side of 

the equation, R and M are positive when they represent gains and negative when they 

represent losses of heat. When both sides of a heat balance equation are positive, the 

equation is a statement of how the total supply of heat available from sources is 



divided between individual sinks. When both sides are negative, the equation shows 

how the total demand for heat from sinks is divided between available sources. 

The sections which follow deal with the size and manipulation of individual terms in 

the heat balance equation (13.1), with some fundamental physical implications of the 

equation, and with several examples of biological applications. 

 

1.1 Convection and Long-Wave Radiation 

When the surface of an organism loses heat by convection, the rate of loss per unit 

area is determined by the scale of the system as well as by its geometry, by wind 

speed, and by temperature gradients. Convection is usually accompanied by an 

exchange of long-wave radiation between the organism and its environment at a rate 

which depends on geometry and on differences of radiative temperature but is 

independent of scale. The significance of scale can be demonstrated by comparing 

convective and radiative losses from an object such as a cylinder with diameter d and 

uniform surface temperature T0 exposed in a wind tunnel whose internal walls are 

kept at the temperature T of the air flowing through the tunnel with velocity u.When 

Re exceeds 103, the resistance to heat transfer by convection increases with d 

according to the relation rH = d/(κNu) ∝ d0.4V−0.6 

 In contrast, the corresponding resistance to heat transfer by radiation rR (p. 41) is 

independent of d. Figure 13.1 compares rH and rR for cylinders of different diameters 

at wind speeds of 1 and 10 m s−1 chosen to represent outdoor conditions. 

Corresponding rates of heat loss are shown in the right-hand axis for a surface 

temperature excess (T0 − T ) of 1 K. 



 

Figure 1 Dependence of resistance to convective heat transfer rH and resistance to 

radiative heat exchange rR as a function of body size represented by the characteristic 

dimension of a cylinder d.  

 

The cylinder is assumed exposed in a wind tunnel where air and wall radiative 

temperatures are identical. The curves are calculated for wind speeds, V, of 1 m s−1 

and 10 m s−1. The right-hand axis shows the rate of heat transfer assuming a 

difference of 1 K between cylinder surface temperature and air/wall radiative 

temperature. Because the dependence of rH on scale and windspeed is similar for 

planes, cylinders, and spheres provided that the appropriate dimension is used to 

calculate Nusselt numbers, a number of generalizations may be based on Figure 13.1. 

For organisms on the scale of a small insect or leaf (0.1 < d < 1 cm), rH is much 

smaller than rR, implying that convection is a much more effective mechanism of 

heat transfer than long-wave radiation. The organism is tightly coupled to air 

temperature but not to the radiative temperature of the environment. For organisms on 



the scale of a farm animal or a man (10 < d < 100 cm) rH and rR are of comparable 

importance at low wind speeds. 

For very large mammals (d > 100 cm), rH can exceed rR at low wind speeds, and in 

this case the surface temperature will be coupled more closely to the radiative 

temperature of the environment than to the air temperature. These predictions are 

consistent with measurements on locusts and on piglets, for example, and they 

emphasize the importance of wall temperature as distinct from air temperature in 

determining the thermal balance of large farm animals in buildings with little 

ventilation. They also explain why warming the air in a cold room does not induce a 

feeling of comfort for people occupying the room if the radiative temperature of the 

walls remains low. When an organism with an emissivity of unity and a surface 

temperature of T0 exchanges heat (a) by convection to air at temperature T and (b) by 

radiation to an environment with a mean radiative temperature equal to air 

temperature, the net rate at which heat is gained or lost is 

 

 

where rHR = _ r−1 H + r−1 R _−1 is a combined resistance for convection (p. 31) 

and long-wave radiation formed by grouping the component resistances in parallel 

because the fluxes are in parallel. 

 

Heat Balance of Thermometers 

1 Dry-Bulb 

As an introduction to the more relevant physics of the wet-bulb thermometer, it is 

worth considering the implications of the general heat balance equation for a dry-bulb 

thermometer (i.e. a thermometer with a dry sensing element). For measurements in 

the open, it is essential to avoid heating a thermometer by direct exposure to sunlight, 

so screening is employed. In several common designs used for precise measurements 

of air temperature, a thermometer with a cylindrical bulb is housed in a tube through 

which air is drawn rapidly, and for the sake of the following discussion we assume 

that the tube completely surrounds the bulb. If the tube itself is exposed to sunshine, 

its temperature, Ts, may be somewhat above the temperature of the air (T ) and of the 

thermometer (Tt). 



The net long-wave radiation received by the thermometer from the housing (assuming 

emissivity ε = 1) is 

 

using the definition of rR on p. 41 with the assumption that Ts − Tt is small. The loss 

of heat by convection from the bulb to the air is 

 

In equilibrium, heat balance equation (13.1) reduces to Rn = C and rearrangement 

of terms in Eq. (13.4) gives 

 

 

indicating that the temperature recorded by the thermometer (the apparent 

temperature) is a weighted mean between the true temperature of the air and the 

temperature of the thermometer housing. There are two main ways in which the 

difference between apparent and true air temperature can be minimized: 

i. by making rH much smaller than rR (i.e. decoupling the sensor from the radiative 

environment), either by adequate ventilation or by choosing a thermometer with very 

small diameter (see Figure 13.1). The numerator in Eq. (13.5) then tends to rRT and 

the denominator to rR. 

ii. by making Ts very close to T , e.g. by using a reflective metal or white painted 

screen, by introducing insulation between outer and inner surfaces, or by increasing 

ventilation on both sides of the screen. 

In the standard instrument known as an Assmann psychrometer, the screen is a 

double-walled cylinder, nickel-plated on the outer surface, and aspirated at about 3 m 

s−1. Since the diameter of the mercury-in-glass thermometer it contains is about 3 

mm, Figure 1 illustrates that it is effectively decoupled from its radiative environment 



(rH _ rR). 

 

2 Wet-Bulb 

The concept of a ―wet-bulb temperature‖ is central to the environmental physics of 

systems in which latent heat is a major heat balance component, and it has two 

distinct connotations: the thermodynamic wet-bulb temperature, which is a theoretical 

abstraction and the temperature of a thermometer with its sensing element covered 

with a wet sleeve, which, at best, is a close approximation to the thermodynamic wet-

bulb temperature. 

A value for the thermodynamic wet-bulb temperature can be derived by considering 

the behavior of a sample of air enclosed with a quantity of pure water in a container 

with perfectly insulating walls. This is an adiabatic system within which the sum of 

sensible and latent heat must remain constant. The initial state of the air can be 

specified by its temperature T , vapor pressure e, and total pressure p. Provided e is 

smaller than es(T ), the saturated vapor pressure at T , water will evaporate and both e 

and p will increase. Because the system is adiabatic, the increase of latent heat 

represented by the increase in water vapor concentration must be balanced by a 

decrease in the amount of sensible heat which is realized by cooling the air. The 

process of humidifying and cooling continues until the cooling air becomes saturated 

at a temperature T _ which, by definition, is the thermodynamic wet-bulb temperature 

i.e. the thermodynamic wet bulb temperature is the minimum temperature which may 

be achieved by bringing an air parcel to saturation by evaporation in adiabatic 

conditions. The corresponding saturated vapor pressure is es(T _ ). 

 

To relate T _ and es(T _ ) to the initial state of the air, the initial water vapor 

concentration is approximately ρεe/p when p is much larger than e (see p. 15). When 

the vapor pressure rises from e to es(T _ ), the total change in latent heat content per 

unit volume is λρε _ es(T _ ) – e /p. The corresponding amount of heat supplied by 

cooling unit volume of air from T to T _ is ρcp(T − T _ ). (A small change in the heat 

content of water vapor is included in more rigorous treatments but is usually 

unimportant in micrometeorological problems.) Equating latent and sensible heat 



 

 

The group of terms (cp p/λε) is often called the ―psychrometer constant‖ for reasons 

explained shortly, but it is neither constant (because p is atmospheric pressure and λ 

changes somewhat with temperature) nor exact (because of the approximations 

made). 

The psychrometer constant is often assigned the symbol γ and, at a standard pressure 

of 101.3 kPa, has a value of about 66 Pa K−1 at 0 ◦C increasing to 67 Pa K−1 at 20 

◦C. Thus 

 

Another useful quantity which has the same dimensions as γ is the change of 

saturation vapor pressure with temperature or ∂es(T )/∂T , usually given the symbol  

(or s) . This quantity can be used to obtain a simple (but approximate) relation 

between the saturation vapor pressure deficit D = es(T ) − e and the wet-bulb 

depression B = T − T _. When the saturation vapor pressure at wet-bulb temperature T 

_ is written as 

 

where   is evaluated at a mean temperature of (T +T _ )/2, the psychrometer equation 

(13.7) becomes 



 

Equation (13.7) can be represented graphically by plotting es(T ) against T (Figure 

13.2). The curve QYP represents the relation between saturation vapor pressure and 

temperature and the point X represents the state of any sample of air in terms of e and 

T . Suppose the wet-bulb temperature of the air is T _ and that the point Y represents 

the state of air saturated at this temperature. The equation of the straight line XY 

joining the points (T, e), (T _ , es(T _ )) is 

 

Comparison of Eqs. (13.7) and (13.11) shows that the slope of XY is −γ. The wet-bulb 

temperature of any sample of air can therefore be obtained graphically by drawing a 

line with slope −γ through the appropriate coordinates T and e to intercept the 

saturation curve at a point whose abscissa is T _.  

If a sample of air in the state given by X was cooled toward the state represented by 

the point Y, the path XY shows how temperature and vapor pressure would change in 

adiabatic evaporation, i.e. with the total heat content of the system constant. Similarly, 

starting from Y and moving to X, the path YX shows how T and e would change 



 

 
Figure 2 The relation between dry-bulb temperature, wet-bulb temperature, 

equivalent temperature, vapor pressure, and dew point. The point X represents air at 

18 ◦C and 1 kPa vapor pressure. The line YXZ with a slope of −γ gives the wet-bulb 

temperature from Y (12 ◦C) and the equivalent temperature from Z (33.3 ◦C). The line 

QX gives the dew-point temperature from Q (7.1 ◦C). The line XP gives the saturation 

vapor pressure from P (2.1 kPa). 

 

if water vapor were condensed adiabatically from air that was initially saturated. As 

condensation proceeded, the temperature of the air would rise until all the vapor had 

condensed. This state is represented by the point Z at which e = 0. The corresponding 

temperature Te is called the ―equivalent temperature‖ of the air. As Z has coordinates 

(Te, 0), the equation of the line ZX can be written in the form  

Te = T + e/γ. (13.12) 

Alternatively, the equation of YZ can be written 



Te = T _ + es _ T __ /γ , (13.13) 

showing that the equivalent and wet-bulb temperatures are uniquely related. Both T _ 

and Te remain unchanged when water is evaporated or condensed adiabatically within 

a sample of air. 

Moving from theoretical principles to a real wet-bulb thermometer, it is necessary to 

account for the finite rate at which heat is lost by evaporation and gained by 

convection and radiation. 

Suppose that a thermometer bulb covered with a wet sleeve has a temperature Tw 

when it is exposed to air at temperature T and surrounded by a screen that is also at air 

temperature. The rate at which heat is gained by convection and radiation is 

C + Rn = ρcp _ T – Tw _ /rHR. ( (cf. Eq. (13.2)). The rate at which latent heat is lost 

may be found by applying the principles of equation (11.3) to give 

λE = λ {χs(Tw) − χ} /rv. (13.15) 

where χ is absolute humidity. Using the relations in Eq. (2.28), Eq. (13.15) may be 

written 

λE = _ λρε/p _ _ es _ Tw _ − e _ /rv = ρcp _ es _ Tw _ − e _ /γ rv. (13.16) 

 

In equilibrium, λE = Rn + C from which 

e = es _ Tw _ − γ _ rv/rHR _ _ T – Tw _ . (13.17) 

 

It is often convenient to regard (γ rv/rHR) (or simply (γ rv/rH) in some circumstances 

explained below) as a modified psychrometer constant, written γ ∗. That is 

e = es _ Tw _ − γ ∗ _ T – Tw _ . (13.17a) 

 

Comparing Eqs. (13.7a) and (13.17), it is clear that the measured wet-bulb 

temperature will not be identical to the thermodynamic wet-bulb temperature unless 

rv = rHR. Because rv = (κ/D)0.67rH, which may be written rv = 0.93rH (p. 181), this 

condition implies that 

0.93rH = _ r−1 H + r−1 R _−1 (13.18) 

from which rH = 0.075rR. At 20 ◦C, rR = 2.1 s cm−1, so the thermodynamic and 

measured wet-bulb temperatures would be identical when rH = 0.17 s cm−1. A wet-

bulb thermometer would therefore record a temperature above or below the 

thermodynamic wet-bulb temperature depending on whether rH was greater or less 

than this value. 



Because both rv and rH are functions of windspeed and rR is not, γ ∗ decreases with 

increasing wind speed and, when rv is much less than rR, tends to a constant value 

independent of wind speed, viz. 

γ ∗ = γ _ rv/rH _ = 0.93γ. (13.19) 

 

In the Assmann psychrometer, regarded as a standard for measuring vapor pressure in 

the field, the resistances corresponding to the instrument specification already given 

are rv = 0.149 s cm−1, rH = 0.156 s cm−1 giving γ ∗ = 63 Pa K−1. A much more 

detailed discussion of psychrometry leading to a standard value of 62 Pa K−1 for the 

Assman  psychrometer was given by Wylie (1979).With this and similar instruments, 

the error involved in using γ instead of γ ∗ is often negligible in micrometeorological 

work. 

 

A further source of psychrometer error not considered here (but treated by Wylie, 

1979) is the conduction of heat along the stem of the thermometer which can be 

minimized by using a long sleeve and/or a thermometer with very small diameter. 

 

Problems 

1. A cylindrical thermometer element, diameter 3 mm is enclosed in a radiation shield 

that excludes all solar radiation but is 5.0 ◦C warmer than the true air temperature 

which is 20 ◦C. If the thermometer is to record a temperature within 0.1 ◦C of true air 

temperature, at what wind speed must the element be ventilated? (Assume long-wave 

emissivities of 1.0.) 

2. Awet-bulb thermometer in a radiation shield has a cylindrical element 4 mm 

diameter. Estimate the radiative resistance assuming that the temperatures of the wet-

bulb and the shield are about 10 ◦C. Hence, plot a graph to show how the difference 

between measured and thermodynamic wet-bulb temperatures would vary with 

ventilation speed over the range 0.5–5 m s−1 . 

3. A leaf has a boundary layer resistance for heat transfer (both surfaces in parallel) of 

40 s m−1, and a combined stomatal and boundary layer resistance of 110 s m−1. 

Taking air temperature as 22 ◦C and vapor pressure as 1.0 kPa, set up a spread sheet 

to calculate the rates of sensible heat transfer C, latent heat transfer λE, and the sum 

C+λE as a function of leaf temperature over the range 20–26 ◦C. Hence find 



graphically or otherwise the leaf temperature when the net radiation absorption by the 

leaf is 300 W m−2. 

4. For the data in question 3, use the Penman-Monteith Equation to determine the 

latent heat flux from the leaf and hence determine the sensible heat flux and leaf 

temperature. 

5. Show, using the Penman-Monteith Equation, that the necessary condition for 

dewfall is − Rn > ρcp {es (T ) − e} r−1 H , and that the maximum rate of dew-fall 

is Emax =  Rn/λ(  + γ ∗ ). On a cloudless night, the net radiation flux density of 

an isolated leaf at air temperature T (K) is given by the empirical expression Rn = 

(0.206e0.5−0.47)ζ T 4, where e (kPa) is the vapor pressure. Neglecting other sources 

of heat, plot a graph to show how the maximum rate of dew-fall on the leaf varies 

with air temperature on the range 0–25 ◦C, and explain your results. 

6. A marathon runner, treated as a cylinder with diameter 33 cm moving at 19 km h−1 

relative to the surrounding air, has a net radiation load of 300 W m−2. The air 

temperature and vapor pressure are 30 ◦C and 2.40 kPa, respectively. Assuming that 

the runner’s skin is covered with sweat that is a saturated salt solution for which the 

relative humidity of air in contact with the solution is 75%. Estimate the rate of latent 

heat loss. If all the salt could be washed off when the runner was sprayed with water, 

what would be the new rate of latent heat loss? 

7. On the Oregon coast, Sitka spruce is frequently exposed to wind-driven sea spray. 

In the extreme case where water on needle surfaces is saturated with sea salt 

(equilibrium relative humidity 75%), by how much would the needle decoupling 

coefficient be changed relative to needles with pure water on their surfaces? 

Assume a wind speed of 5 m s−1 and needle dimension of 1 mm. 

 

Heat Balance Components 

Metabolism (M) 

Standard measurements of the basal metabolic rate (BMR) are made when an animal 

has been deprived of food and is resting in an environment wheremetabolic rate is 

independent of external temperature. It has been widely accepted by animal 

physiologists that the basal metabolic rate of an animal Mb (expressed here in watts 

and not watts per unit surface area as elsewhere) can be related to simply body mass 

W by the empirical allometric equation 



Mb = BWn, (14.2) 

where B is a constant, implying that lnMb is a linear function of lnW. Based on 

statistical analysis of many sets of measurements on animals of a wide range of sizes, 

animal physiologists concluded in the mid-20th century that n = 0.75 in Eq. (14.2), 

which became known as the 3/4 power law and has been widely used by animal 

ecologists to model metabolism in relation to body size in ecology. Kleiber (1965) 

suggested that, for intra-specific work, B = 3.4 (with units of W per kg0.75); 

Hemmingsen (1960) found that B = 1.8 was a better value for inter-specific 

comparisons over a range of mass from 0.01 to 10 kg. For application to humans, 

where knowledge of BMR is important in exercise physiology and dietetics, more 

complicated expressions are often used, taking into account gender, height, weight, 

and age ( Frankenfield et al., 2005); they generally agree with Eq. (14.2) within 10–

20%. Hemmingsen’s (1960) review also showed that the BMR of a poikilotherm kept 

at a body temperature of 20 ◦C is about 5% of the value for a homeotherm of the same 

mass with a deep body temperature of 39 ◦C. Hibernating mammals metabolize 

energy at about the same rate as poikilotherms of the same mass. Figure 14.1 plots the 

relations between BMR and body weight proposed by Hemmingsen for homeotherms 

and poikilotherms, and includes observed data from animals working at metabolic 

rates up to their maximum. 



Referring basal metabolic rates to the 3/4 power of body mass is inconsistent with the 

physics of heat transfer since most of the energy produced in metabolism is lost from 

 
Figure 1 Relation between body weight and basal metabolic rate (BMR) of 

homeotherms (upper continuous line), maximum metabolic rate for sustained work by 

homeotherms (upper pecked line), and basal rate for poikilotherms at 20 ◦C (lower 

continuous line) (from Hemmingsen, 1960). 

 

the surface of the animal. For any set of objects with identical geometry but different 

in size, surface area is proportional to the 2/3 power of mass, assuming constant mass 

per unit volume. It follows that if basal metabolic rates were proportional to surface 



area, they would be proportional to the 2/3 power of mass, at least when animals of 

like geometry are compared. In a careful re-examination of experimental data to retain 

only metabolic measurements taken in conditions conducive to the basal rate, 

Prothero (1984) found that n was closer to 2/3 than to 3/4. More recently, Roberts et 

al. (2010) further criticized the empirical basis of the 3/4 power law and developed a 

physically realistic analysis relating BMR to body size that included heat flow from 

the core to the surface of an animal and heat loss from the surface. Assuming that 

mammals of sizes ranging from a mouse to a man could be described by an ellipsoidal 

shape, they used experimental data in their analysis to show that Eq. (14.2) fitted their 

data with constants n = 2/3 and B = 4.9 with Mb in Watts and Win kg. Figure 2 shows 

their equation and the observed BMR data that they used. The figure also shows the 

relation proposed by Kleiber (1965) with n = 3/4 and B = 3.4 

 

Figure 2 Relation between basal metabolic rate (BMR) of mammals and body weight. 

Data points represent BMR for animals ranging in size from a mouse to a human. The 

continuous line is the relation with M ∝ W2/3 proposed by Roberts et al. (2010); the 

dashed line is the relation with M ∝ W3/4 as proposed by Kleiber (1965). 

 

 



Figure 14.2 shows that the proportionality between BMR and metabolic rate holds for 

mammals ranging in size from a mouse (0.02 kg) to a human (70 kg). The average 

basal metabolic rate for a mammal per unit of body surface area is about 50 W m−2. 

This is much smaller than the flux of short-wave radiation absorbed by a dark-coated 

animal in bright sunshine (say 300 W m−2) but is comparable with the energy that 

might be absorbed under shade. On a cloudless night, the basal metabolic rate is 

comparable to the net loss of heat by long-wave radiation from a surface close to air 

temperature. For walking or climbing, the efficiency with which man and domestic 

animals use additional metabolic energy is about 30%. To work against gravity at a 

rate of 20 W m−2, for example, metabolism must increase by about 60 W m−2. The 

power expended in walking increases with velocity and, in man, reaches 700 W at 2 

m s−1 (about 7 km h−1 or 4.3 mph). 

For rapid forms of locomotion such as running or flying, the work done against wind 

resistance is proportional to the wind force times the distance traveled. When the drag 

coefficient of a moving body is independent of velocity, the drag force should be 

proportional to V2 (p. 139), and as the distance traveled is proportional to V, the rate 

of energy dissipation should increase with V3. However, studies on birds by Tucker 

(1969) revealed a range of velocities (e.g. 7–12 m s−1 for gulls) in which the rate of 

energy production was almost independent of V, implying a remarkable decrease of 

drag coefficient with increasing velocity. To reduce the energy required to overcome 

drag forces, athletes such as sprinters and swimmers wear skin-tight suits of special 

fabrics, but the benefits may be more psychological than physiological. However, a 

tail-wind definitely helps sprinters; the maximum permitted tail-wind of 2 m s−1 

could reduce the 100 mrunning time for a champion sprinter by more than 0.1 s by 

decreasing the energy expended on overcoming form drag (Barrow, 2012). 

 

Latent Heat (λE) 

In the absence of sweating or panting, the loss of latent heat from an animal is usually 

a small fraction of metabolic heat production and takes place both from the lungs 

during breathing (respiratory evaporation) and from the skin as a result of the 

diffusion of water vapor, sometimes politely referred to as ―insensible perspiration.‖ 

For a man inhaling completely dry air, the vapor pressure difference between inhaled 

and exhaled air is about 5.2 kPa and the heat used for respiratory evaporation λEr is 

the latent heat equivalent of about 0.8 mg of water vapor per ml of absorbed oxygen 



(Burton and Edholm, 1955). With round figures of 2.4 J mg−1 for the latent heat of 

vaporization of water and 21 J ml−1 oxygen for the heat of oxidation (respiration), 

λEr/M is about 10%.When airwith a vapor pressure of 1.2 kPa is breathed (e.g. air at 

about50%relative humidity and 20 ◦C), the difference of vapor pressure decreases to 4 

kPa and λEr/Mis about 7%. 

In the absence of sweating, the latent heat loss from human skin (λEs) is roughly 

twice the loss from respiratory evaporation, implying a total evaporative loss of the 

order of 25–30% of M depending on vapor pressure. When sweating, however, a 

human can produce about 1.5 kg of fluid per hour, equivalent to 600 W m−2 if the 

environment allows sweat to evaporate as fast as it is produced. More commonly, the 

rate of evaporation is restricted to a value determined by resistances and vapor  

pressure differences. Excess sweat then drips off the body or soaks into hair and 

clothing. 

Sheep and pigs lack glands of the type that allow man to sweat profusely but species 

such as cattle and horses can lose substantial amounts of water by sweating. Dogs and 

cats have sweat glands only on their foot pads so lose very little heat by this mode. 

Sheep, dogs, and cats compensate for their inability to sweat by panting in hot 

environments. For cattle exposed to heat stress, the respiratory system can account for 

30% of total evaporative heat loss, the remaining 70% coming from the evaporation 

of sweat from the skin surface and from wetted hair. The maximum evaporative heat 

loss from ruminants is only a little larger than metabolic heat production, whereas a 

sweating man can lose far more heat by evaporation than he produces metabolically if 

he is exposed to strong sunlight. 

Inter-specific differences in λE/M and in mechanisms of evaporation may play an 

important part in adaptation to dry environments. Relatively small values of λE/M 

have been reported for a number of desert rodents which appear to conserve water 

evaporated from the lungs by condensation in the nasal passages where the 

temperature is about 25 ◦C (Schmidt-Nielsen, 1965). The respiratory system operates 

as a form of counter-current heat exchanger. In contrast, measurements of total 

evaporation from a number of reptiles yield figures ranging from 4 to 9 mg of water 

per ml of oxygen. 

These figures imply that 50−100% of the heat generated by metabolism was 

dissipated by the evaporation of water, lost mainly through the cuticle. For differing 

animal species, the amount of body water available for evaporation depends on body 



volume ,whereas the maximum rate of cutaneous evaporation depends on surface 

area. At one extreme, insects have such a large surface: volume ratio that evaporative 

cooling is an impossible luxury. Humans and larger animals can use water for limited 

periods to dissipate heat during stress and, in general, the larger the animal the longer 

it can survive without an external water supply. The camel, for example, can lose up 

to 30% of its body mass without harm when deprived of drinking water for long 

periods because it has several physiological adaptations to survive dehydration. But 

humans become critically dehydrated after a water loss of only about 12% of their 

body weight—typically about 8 l of water. 

 

Convection (C) 

Convective heat loss from animals can be an important component in the energy 

balance. Using principles discussed in previous chapters we can investigate the 

relation between skin temperature, wind speed, net radiation absorbed, and animal 

size. Figure 3 illustrates this analysis graphically. The left-hand side of Figure.3 

demonstrates how resistance to convective heat transfer between an organism and its 

environment decreases as body size decreases, a significant relation in animal ecology 

(see also Figure 13.1). The right-hand side of the diagram, for which the theoretical 

basis will be discussed later (p. 262), shows the linear relationship between Rni and 

r−1 HR for specified values of (Tf − T ), the temperature difference between the 

organism and its environment when convection and isothermal net radiation are 

equated (see Eq. (13.2)). In the example given, an organism with characteristic 

dimension 2 cm has r−1 H = 6.7 cm s−1. Transferring this to the right-hand side of 

the figure, we see that, 



 

Figure 3 Diagram for estimating the thermal radiation increment (see text and p. 262) 

when wind speed, body size, and net radiation are known. For example, at 8 m s−1 an 

animal with d = 2 cmhas r−1 H = 6.7 cm s−1 and r−1 HR = 6.2 cm s−1. When Rni = 

300 W m−2, Tf − T is 4 ◦C. 

 

when Rni = 300 W m−2, (Tf − T ), the amount by which the effective air temperature 

exceeds the actual air temperature because of radiative loading (see p. 262), is 4 ◦C. 

Schmidt-Nielsen (1965) regarded both convective and radiative exchanges as 

proportional to surface area and concluded that, in the desert, ―the small animal with 

its relatively larger relative surface area is in a much less favourable position for 

maintaining a tolerably low body temperature.‖ It is true that small animals are unable 

to keep cool by evaporating body water, but when convection is the dominant 

mechanism of heat loss they can lose heat more rapidly (per unit surface area) than 

large animals exposed to the same wind speed. In this context, the main disadvantage 

of smallness is microclimatic: because wind speed increases with height above the 

ground, small animals moving close to the surface are exposed to slower wind speeds 

than larger mammals. As rH is approximately proportional to (d/V)0.5, an animal with 

d = 5 cm exposed to a wind of 0.1 m s−1 will be coupled to air temperature in the 

same way as a much larger animal with d = 50 cm exposed to wind at 1 m s−1. 

Insects and birds in flight and tree-climbing animals escape this limitation. 

 



Conduction (G) 

Few attempts have been made to measure the conduction of heat from an animal to 

the surface on which it is lying. Mount (1968) measured the heat lost by young pigs to 

different types of floor materials and found that the rate of conduction was strongly 

affected by posture as well as by the temperature difference between the body core 

and the substrate. When the temperature of the floor (and air) was low, the animals 

assumed a tense posture and supported their trunks off the floor, but as the 

temperature was raised, they relaxed and stretched to increase contact with the floor. 

Figure 4 shows the heat loss per unit area, recalculated from Mount’s data, for 

newborn pigs in a relaxed posture. As the heat flow was approximately proportional 

to the temperature difference, the thermal resistance for each type of floor can be 

calculated from the slope of the lines. The resistances are about 8, 17, and 58 s cm−1 

for concrete, wood, and polystyrene, respectively. As the corresponding resistances 

for convective and radiative transfer are usually around 1–2 s cm−1 (Figure 13.1), it 

follows that heat losses by conduction to the floor of an animal house are likely to be 

significant only when it is made of a relatively good heat conductor such as concrete. 

Conduction will be negligible when the floor is wood or concrete covered with a thick 

layer of straw. 

Gatenby (1977) measured the conduction of heat beneath a sheep with a fleece length 

of about 2 cm lying on grass in the open. When the deep soil temperature was 10 ◦C, 

downward fluxes of about 160 W/m2 of contact surface were measured when the 

sheep lay down, equivalent to about 40 W/m2 of body surface and therefore 

comparable with the loss by convection. Energy requirements for free-ranging 

animals therefore depend to some extent on the time spent lying, on soil temperature, 

and on the thermal properties of the ground. 

 

Storage (S) 

As discussed in more detail below, most homeotherms have mechanisms that 

maintain their core body temperature almost constant over a wide range of 



environmental 

 
Figure 4 Measurements of heat lost by conduction from a pig to different types of 

floor covering expressed aswatts per square meter of total body area (after Mount, 

1967).  

•—concrete; X—wood; _—polystyrene. conditions. On the other hand, the body 

temperatures of poikilotherms vary in response to external heat inputs. All animals 

alter their behavior to avoid extreme conditions, e.g. seeking shade, sheltering from 

wind, or adopting a nocturnal lifestyle. In desert environments where day-time air 

temperatures may be much larger than body temperature and minimizing evaporative 



loss is important, some homeotherms allow their body temperature to increase during 

the day, thus reducing the need for evaporative cooling not only by storing heat but 

also by reducing sensible heat gain (i.e. reducing the air-skin temperature gradient) 

and increasing long-wave radiation loss. The stored heat is dissipated at night by 

sensible and radiative heat loss. Schmidt-Nielsen et al. (1956) studied the body 

temperature of dromedary camels kept in full desert sun. When the camels were 

allowed to drink water at the beginning of each day, the body temperature varied by 

about 2.1 ◦C between day and night, but when the camels were eprived of water their 

body temperatures during the day were up to 6.5 ◦C greater 

 

Figure 5 Heat balance components of a camel in a desert environment when hydrated 

and dehydrated, expressed as mean heat rates (W m−2) over the 10 h during which 

external heat loads were largest (based on data from Schmidt-Neilsen et al. 1956). 

 

 

than at night. Such a range would be life-threatening for many mammals. For a camel 

weighing 260 kg, assuming a body specific heat of 3.6 kJ kg−1 K, the daytime heat 

storage rate S averaged 15 W m−2 for the hydrated and 42 W m−2 for the dehydrated 

animals. Schmidt-Neilsen also measured evaporation rate E from the skin (ignoring 

the small respiratory evaporation rate), and estimated metabolic heat production M. 

Using the heat balance Eq. (14.1), he interpreted the residual E + S − M as the heat 



gained from net radiation and sensible heat. Figure 14.5 illustrates the heat balances 

over the hottest 10 h of the day for the hydrated and dehydrated camels. When water 

was available, the animals balanced their energy gains principally by evaporation of 

sweat; when dehydrated, the sweating rate was much decreased, and heat storage was 

similar in magnitude to the loss of heat by evaporation. Some of the large reduction in 

the radiant and sensible heat gain is probably due to postural changes that the camels 

adopted to reduce radiation interception when short of water. 

Although heat storage is not viable as a long-term component of the heat balance of 

most homeotherms, it is important during short bursts of activity. For example, Taylor 

and Lyman (1972) found that running antelopes generated heat at about 40 times their 

resting metabolic rate, and the increase of their body temperature of up to 6 ◦C over 

5– 15 min (depending on running speed) accounted for 80–90% of this heat. For 

humans, body temperature Tb also increases during exercise in direct proportion to 

the metabolic rate M until the limits for thermoregulation are reached. A convenient 

approximation for humans (Kerslake, 1972) is 

Tb = 36.5 + 4.3 × 10−3 M, 

where Tb is in Celsius when M is in W m−2. 

 

Specification of the Environment—The Effective Temperature 

The thermo-neutral diagram has been used mainly to summarize observations of 

metabolic rate in livestock or humans exposed to the relatively simple environment of 

a calorimeter. In the real world, metabolic rate depends on several microclimatic 

factors in addition to air temperature, notably radiation, wind speed, and vapor 

pressure. 

Attempts have therefore been made to replace the simple measure of actual air 

temperature used in the previous discussion with an effective temperature which 

incorporates the major elements of microclimate. Two examples are now given, the 

first dealing with the radiative component of the heat balance equation. 

 

1 Radiation Increment 

When the radiant flux is expressed in terms of net isothermal radiation, the heat 

balance equation may be written 

Rni + (M− λE) = ρcp(T0 − T )/rHR, (14.13) 

where λE is here assumed to be a relatively small term, independent of T . Suppose 



that the thermal effect of radiation on an organism can be handled by substituting for 

air temperature an effective temperature Tf such that 

(M− λE) = ρcp _T0 − Tf_ /rHR. (14.14) 

Then eliminating M− λE from Eqs. (14.13) and (14.14) gives 

Tf = T + {RnirHR/ρcp}, (14.15) 

where the term in curly brackets is similar to the radiation increment used by Burton 

and Edholm (1955), Mahoney and King (1977), and many others. Figure 3 provides a 

graphical method of estimating the temperature increment Tf−T when windspeed and 

net radiation are known.Given the characteristic dimension of an organism d and the 

velocity of the surrounding air V, the corresponding value of rH can be read from the 

left-hand vertical axis and rHR derived from Equation (13.2) can be read from the 

right-hand axis. From the right-hand section of the figure, the coordinates of rHR and 

Rni define a unique value of Tf − T . An example is shown for V = 8 m s−1, d = 2 

cm,which gives 1/rH = 6.8 cm s−1 from the left-hand axis and 1/rHR = 6.3 cm s−1 

from the right-hand axis. At Rni = 300 W m−2, Tf − T = 4 K. In a system where the 

resistances are fixed, the relation between temperature gradients and heat fluxes can 

be displayed by plotting temperature against flux as in Figure 7. By definition, a 

resistance is proportional to a temperature difference divided by a flux and is 

therefore represented by the slope of a line in the figure. From a start at the bottom 

left-hand corner, Tf is determined by drawing a line (1) with slope rHR/ρcp to 

intercept the line x = Rni at y = Tf. Rearranging Equation (14.15), the equation of this 

line is 

Tf − T = rHRRni/ρcp. 



 

Figure 7 Main features of temperature/heat-flux diagram for dry systems. Ts is skin 

temperature, T0 is coat surface temperature, Tf is effective environment temperature, 

and T is air temperature. 

 

The temperature of the surface T0 is now found by drawing a second line (2) with the 

same slope as (1) to intersect x = M−λE at y = T0. The equation of this line (see 

Equation (14.14)) is 

T0 − Tf = rHR(M− λE)/ρcp. (14.17) 

Finally, for an animal covered with a layer of hair, a mean skin temperature Ts can be 

determined if the mean coat resistance rc is known. Provided that evaporation is 

confined to the surface of the skin and the respiratory system, the increase of 

temperature through the coat is represented by the line (3) whose equation is 

Ts − T0 = rc(M− λE)/ρcp. (14.18) 



This form of analysis can be used to solve two types of problems. When the 

environment of an animal is prescribed in terms of wind speed, temperature, and net 

radiation, it is possible to use a thermo-neutral diagram to explore the physiological 

states in which the animal can survive. Conversely, when physiological conditions are 

specified, a corresponding range of environmental conditions can be established, 

forming an ecological ―niche‖ or ―climate space‖ (Gates, 1980).  

 

4 Apparent Equivalent Temperature 

A second type of environmental index is needed when the loss of latent heat from an 

organism is predominantly by the evaporation of sweat from the skin. When the losses 

of sensible and latent heat occur from the same surface, temperature and vapor 

pressure can be combined in a single variable which may be called the apparent 

equivalent temperature. To derive this quantity, the heat balance equation is written, 

Rni +M = ρcp(T0 − T )rHR + ρcp(e0 − e) γ rv , (14.20) 

where T0 and e0 are mean values for the skin surface and T and e refer to the air. 

If γ is replaced by γ ∗ = γ (rv/rHR), Eq. (14.20) can be written 

Rni +M = ρcp _T ∗ eo − T ∗ e _ /rHR, (14.21) 

where T ∗ e is the apparent equivalent temperature of ambient air given by T +e/γ ∗ 

and therefore equal to the equivalent temperature derived on p. 223 when rv = rHR. 

By analogy with the radiation increment, e/γ∗ may be regarded as a humidity 

increment. The mean value of the apparent equivalent temperature at the surface is T ∗ 

eo. In principle, the apparent equivalent temperature should be used in a thermo-

neutral diagram in place of conventional temperature when the metabolic rate of an 

animal is measured in an environment where vapor pressure changes as well as 

temperature. Extending this process a stage further, the apparent equivalent 

temperature of the environment can be modified to take account of the radiation 

increment by writing 

T ∗ eR = T ∗ e + RnirHR/ρcp. (14.22) 

The quantity T ∗ eR is an index of the thermal environment which allows the heat 

balance equation to be reduced to the form 

(1 − x)M = ρcp _T ∗ eo − T ∗ eR__ rHR, (14.23) 

where x is the fraction of metabolic heat dissipated by respiration. A thermo-neutral 



diagram using T ∗ eR as a thermal index rather than T or T ∗ e would be valid for 

changes in radiant heat load as well as in vapor pressure and temperature. 

This type of formulation provides a relatively straightforward way of investigating the 

heat balance of a naked animal whose skin is either dry or entirely wetted by sweat. 

The intermediate case of partial wetting is more difficult to handle because the value 

of T ∗ e depends on fractional wetness which is not known a priori. A complete 

solution of the relevant equations for an animal leads to a complex expression within 

which the structure of the original Penman equation can be identified (McArthur, 

1987). 

 

Problems 

1. The metabolic heat production M of a cow standing in strong sunshine at air 

temperature 22.0 ◦C is 140 W m−2. The average solar irradiance of the animal is 300 

W m−2 and the effective radiative temperature of the surroundings is equal to air 

temperature. The mean temperatures of the skin and coat surface are 34.0 and 31.6 ◦C, 

respectively, and the rates of evaporative loss from the respiratory system and the skin 

surface are 4.5 × 10−3 g m−2 s−1 and 40 × 10−3 g m−2 s−1, respectively. Calculate 

the thermal resistances of (i) the boundary layer around the cow (rHR) and (ii) the 

coat (rc). If shading reduces the average solar irradiance of the animal by two-thirds, 

and other environmental variables remain unchanged, calculate the corresponding 

reduction in the rate of evaporation from the skin necessary to maintain a steady heat 

balance if M remains constant. (Assume that changes in respiratory evaporation can 

be neglected and that the absorption of solar radiation occurs close to the outer surface 

of the coat, which has a reflection coefficient of 0.40.) 

2. A pig, trunk diameter 0.50 m, with its skin covered in wet mud at 30◦C is exposed 

in still air when air temperature is 25 ◦C and relative humidity is 30%. Calculate the 

resistance rv for water vapor transfer from the skin to the atmosphere, (i) ignoring 

humidity gradients and (ii) taking humidity into account. Calculate the evaporative 

flux of water per unit skin area. What percentage error would you have made if you 

had ignored effects of humidity gradients on rv?What other factorswould determine 

the evaporation rate in practice? 

3. Pigs wallow in wet mud to increase body cooling by evaporation. Calculate the 

maximum air temperature at which a pig could maintain a state of thermal equilibrium 



(i) if the skin was completely dry and (ii) if the skin was completely covered in wet 

mud. Assume the following: 

Minimum metabolic heat production rate 60 W m−2 

Rate of latent heat loss by respiration 10 W m−2 

Radiative heat load from the environment 240 W m−2 

Skin temperature 33 ◦C 

Vapor pressure of air 1.0 kPa 

Combined resistance to radiative and convective heat transfer 80 s m−1 

Mean resistance to conduction through mud layer 8 s m−1 

 

x-rays, microwaves 

Introduction 

Radio and television signals, x-rays, microwaves each is a form of electromagnetic 

radiation. If steam and internal combustion engines symbolize the Industrial 

Revolution, and microprocessors and memory chips now power the Information 

Revolution, it almost seems that we have neglected to recognize the ―Electromagnetic 

Revolution.‖ Think about it: Can you imagine life without television sets or cell 

phones? You may long for such a life, or wonder how people ever survived without 

these devices! These examples are from the world of engineered electromagnetic 

radiation. Even if you think we might all prosper without such technologies to 

entertain us, do our cooking, carry our messages, and diagnose our illnesses, you 

would be hard-pressed to survive without light. This form of electromagnetic 

radiation brings the Sun’s energy to the Earth, warming the planet and supplying 

energy to plants, and in turn to creatures like us that depend on them. There are 

primitive forms of life that do not depend on the Sun’s energy, but without light there 

would be no seeing, no room with a view, no sunsets, and no Rembrandts. 

Some of the electromagnetic radiation that reaches your eyes was created mere 

nanoseconds earlier, like the light from a lamp. Other electromagnetic radiation is still 

propagating at its original speed through the cosmos, ten billion years or more after its 

birth. An example of this is the microwave background radiation, a pervasive remnant 

of the creation of the universe that is widely studied by astrophysicists. 

Back here on Earth, this chapter covers the fundamental physical theory of 

electromagnetic radiation. Much of it builds on other topics, particularly the studies of 



waves, electric fields and magnetic fields. Electromagnetic radiation: Rainbows 

and radios. Sundazzled reflections. Shadowlamps and lampshadows. Red, white, 

and blue. 

 
1 - The electromagnetic spectrum 

 
 

Electromagnetic spectrum: Electromagnetic radiation ordered by frequency or 

wavelength. 

Electromagnetic radiation is a traveling wave that consists of electric and magnetic 

fields. Before delving into the details of such waves, we will discuss the 

electromagnetic spectrum, a system by which the types of electromagnetic radiation 

are classified. The illustration of the electromagnetic spectrum above orders 

electromagnetic waves by frequency and by wavelength. In the diagram, frequency 

increases and wavelength decreases as you move from the left to the right. The 

chart’s scale is based on powers of 10. Wavelengths range from more than 100 meters 

for AM radio signals to as small as 10�16 meters for gamma rays. 

All electromagnetic waves travel at the same speed in a vacuum. This speed is 

designated by the letter c and is called the speed of light. (The letter c comes from 

celeritas, the Latin word for speed. It might be more accurate to refer to it as the 

speed of electromagnetic radiation.) The speed of light in a vacuum is exactly 

299,792,458 m/s, and it is only slightly less in air. 



The unvarying nature of this speed has an important implication: The wavelength of 

electromagnetic radiation is inversely proportional to its frequency. As you may 

recall, the speed of a wave equals the product of its frequency and wavelength. This 

means that if you know the wavelength of the wave, you can determine its frequency 

(and vice versa). For instance, an electromagnetic wave with a wavelength of 300 

meters, in the middle of the AM radio band, has a frequency of 1×106 Hz. This equals 

3×108 m/s, the speed of light, divided by 300 m. The frequencies of electromagnetic 

waves range from less than one megahertz, or 106 Hz, for long radio waves to over 

1024 Hz for gamma rays. We will now review some of the bands of electromagnetic 

radiation and their manifestations. The lowest frequencies are often utilized for radio 

 

 

 

Electromagnetic wave: A wave consisting of electric and magnetic fields oscillating 

transversely to the direction of propagation. 

Physicist James Clerk Maxwell’s brilliant studies pioneered research into the nature 

of electromagnetic waves. He correctly concluded that oscillating electric and 

magnetic fields can constitute a self-propagating wave that he called electromagnetic 

radiation. His law of induction (a changing electric field causes a magnetic field) 

combined with Faraday’s law (a changing magnetic field causes an electric field) 

supplies the basis for understanding this kind of wave. 



As the diagrams to the right show, the electric and magnetic fields in an 

electromagnetic wave are perpendicular to each other and to the direction of 

propagation of the wave. These illustrations also show the amplitudes of the fields 

varying sinusoidally as functions of position and time. Electromagnetic waves are an 

example of transverse waves. The fields can propagate outward from a source in all 

directions at the speed of light; for the sake of visual clarity, we have chosen to show 

them moving only along the x axis. 

The animated diagram in Concept 2 and the illustrations below are used to emphasize 

three points. First, the depicted wave moves away from the source. For example, if 

you push the ―transmit‖ button on a walkie-talkie, a wave is initiated that travels away 

from the walkie-talkie. Second, at any fixed location in the path of the wave, both 

fields change over time. The wave below is drawn at intervals that are fractions T/4 of 

the period T. Look at the point P below, on the light blue vertical plane. The vectors 

from point P represent the direction and strength of the electric and magnetic fields at 

this point. As you can see, the vectors, and the fields they represent, change over time 

at P. Concept 2 shows them varying continuously with time at the point P. 

Third, the diagrams reflect an important fact: The electric and magnetic fields have 

the same frequency and phase. That is, they reach their peaks and troughs 

simultaneously. A wave on a string provides a good starting point for understanding 

electromagnetic waves. Both electromagnetic radiation and a wave on a string are 

transverse waves. The strengths of the two fields constituting the radiation can be 

described using sinusoidal functions, just as we can use a sinusoidal function to 

calculate the transverse displacement of a particle in a string through which a wave is 

moving. There is a crucial difference, though: Electromagnetic radiation consists of 

electric and magnetic fields, and does not require a medium like a string for its 

propagation. Electromagnetic waves can travel in a vacuum. If this is troubling to you, 

you are in good company. It took some brilliant physicists a great deal of hard work to 

convince the world that light and other electromagnetic waves do not require a 

medium of transmission. 

Furthermore, when electromagnetic waves radiate in all directions from a compact 

source like an antenna or a lamp, the radiation emitted at a particular instant travels 

outward on the surface of an expanding sphere, and its strength diminishes with 

distance from the source. The waves cannot be truly sinusoidal, since the amplitude of 

a sinusoidal function never diminishes. In the sections that follow we will analyze 



plane waves, which propagate through space, say in the positive x direction, in 

parallel planar wave  fronts rather than expanding spherical ones. They are good 

approximations to physical waves over small regions that are distant from the source 

of the waves. Plane waves never diminish in strength; they can be accurately modeled 

using sinusoidal functions, and we will do so. 

 

 



 

 



 

Creating electromagnetic waves: antennas Radio antennas create electromagnetic 

waves. A radio antenna is part of an overall system called a radio transmitter that 

converts the information contained in sound waves into electromagnetic waves. A 

radio receiver then reverses the process, converting the signals from electromagnetic 

waves back to sound waves. The system depicted to the right shows the fundamentals 

of a radio transmitter. In the illustrations, the terminals of an AC generator are 

connected to two rods of conducting material: an antenna. The AC generator produces 

an emf � that varies sinusoidally over time. The emf drives positive  



 

through the surface by the wave, per unit area, is called the area power density of the 

wave. The area power density is equal to the magnitude S of the Poynting vector. The 

surface area through which the instantaneous power density is measured is 

perpendicular to the direction of the wave’s propagation. When radiation reaches a 

physical surface obliquely, the cosine of its angle with the area vector can be used to 

calculate the power conveyed to the surface. This is analogous to the calculation of 

electric or magnetic flux. 

As Equation 1 shows, the Poynting vector equals the cross product of the vectors 

representing the electric and magnetic fields of the electromagnetic radiation, divided 

by the permeability constant. Since these fields are always perpendicular to one 

another, the sine of the angle between them, used to evaluate the magnitude of the 

cross product, always equals one, and can be effectively ignored when calculating the 

instantaneous area power density S. The units of the Poynting vector are watts per 

square meter. The direction of S is determined by the right-hand rule. If you apply the 

rule, wrapping your fingers from E to B and noting the direction of your thumb, you 

can correctly determine that it is parallel to the direction of propagation of the wave. 

When E reverses its direction, so does B, and the direction of S remains the same, 

―pointing‖ (heh, heh) in the direction of the wave’s motion. 

As an electromagnetic wave passes through a surface, the strengths of its electric and 

magnetic fields there change sinusoidally with time. Since the Poynting vector is the 

product of these fields, it changes sinusoidally over time, as well. In fact, it varies 

with values between zero and Emax Bmax/μ0, with a frequency twice that of the 

fields. If you are curious why it has this frequency, recall from the field equations that 

E and B are both cosine functions of time at a fixed point. Then use the trigonometric 

identity cos2 t = [1 + cos 2t]/2. 



 

 



 

 



 

How electromagnetic waves travel through matter Light and other forms of 

electromagnetic radiation can travel through a vacuum, and it is often simplest to 

study them in that setting. However, radiation can also pass through matter: If you 

look through a glass window, you are viewing light that has passed through the 

Earth’s atmosphere and the glass. Other forms of radiation such as radio waves pass 

through matter, as well. 

This section focuses on how such transmission occurs. It relies on a classical model of 

electrons and atoms that predates quantum theory. In this model, electrons orbit an 

atom. They have a resonant frequency that depends on the kind of atom. On a larger 

scale, atoms themselves and the molecules composed of them also have resonant 

thermal frequencies at which they can vibrate or rotate. 

We will use the example of light striking the glass in a window to discuss how 

substances transmit (or do not transmit) electromagnetic radiation. When an 

electromagnetic wave encounters a window, it collides with the molecules that make 

up the glass. If the frequency of the wave is near the resonant thermal frequency of 



the glass molecules, which is true for infrared radiation, the amplitude of the 

molecules’ vibrations increases. They absorb the energy transported by the wave, and 

dissipate it throughout the glass by colliding with other molecules and heating up the 

window. Because it absorbs so much infrared energy, the glass is opaque to radiation 

of this frequency, preventing its transmission. 

Scientists in the 19th century noted a phenomenon in greenhouses caused by the 

opaqueness of glass to infrared radiation, which they called the greenhouse effect. The 

glass in a greenhouse admits visible light from the Sun, which is then absorbed by the 

soil and plants inside. They reradiate the solar energy as longer infrared waves, which 

cannot pass back out through the glass and so help warm up the greenhouse. The same 

phenomenon occurs on a vaster scale in the atmosphere as gases like methane and 

carbon dioxide trap solar energy near the Earth’s surface. 

In contrast to infrared radiation, higher frequency radiation such as visible light does 

not resonate thermally with atoms or molecules, but may resonate with the electrons 

of the atoms of a substance. In glass, visible light experiences much less reduction in 

the amplitude of its waves than infrared radiation does, and most of its energy passes 

through the glass quite easily. Atoms with resonant electrons that do absorb energy 

from a light wave quickly pass on that energy by re-emitting it as radiation of the 

same frequency to other atoms, which in turn pass it on to their neighbors. 

This chain of absorptions and re-emissions, called forward scattering, follows a path 

close to the light’s original direction of travel. A beam of light that strikes a pane of 

glass will reach the ―last atom‖ on the far side of the pane in an extremely short time. 

We see the light after it emerges, and think of glass as transparent. 



 

 

Radiation also can be partially polarized, having a few waves oscillating in all planes, 

but with most of its waves concentrated in a single plane. This is true of sunlight 

scattered by the atmosphere. As the photo above shows, the sky in certain directions is 

partially polarized in a vertical plane so that most of its light can pass through a pair 

of sunglasses whose transmission axis is vertical. Less light (but still some) passes 

through the rotated sunglasses. (Polarizing sunglasses are specifically intended to 



reduce horizontally polarized glare reflected from roadways and water, not skylight.) 

Many forms of artificial electromagnetic radiation are polarized. A radio transmitter 

emits polarized radiation. If the rods of its antenna are vertical, then so is the electric 

field of every radio wave it creates. In this case, the most efficient receiving antenna 

is also vertically oriented; a horizontal receiving antenna would absorb radio waves 

much less efficiently. You may be familiar with this fact if you have ever tried to 

maneuver a radio antenna wire or a set of television ―rabbit ears‖ to get the best 

reception. (If you do not know what ―rabbit ears‖ are for television, well, before there 

was cable television, there was….) 

 

 

 



Scattering of light Scattering: Absorption and re-emission of light by electrons, 

resulting in dispersion and some polarization. 

The answer to a classic question � Why is the sky blue? � rests in a phenomenon 

called scattering. In this section, we give a classical (as opposed to quantum 

mechanical) explanation of how scattering occurs. When light from the Sun strikes 

the electrons of various atoms in the Earth’s atmosphere, the electrons can absorb the 

light’s energy, oscillating and increasing their own energy. The electrons in turn re-

emit this energy as light of the same wavelength. In effect, the oscillating electrons act 

like tiny antennas, emitting electromagnetic radiation in the frequency range of light. 

An electron oscillates in a direction parallel to the electric field of the wave that 

energizes it, as shown in Concept 1. The electron then emits light polarized in a plane 

parallel to its vibration. We show a particular polarized wave that is re-emitted 

downward toward the ground, since we are concerned with what an observer on the 

surface of the Earth sees. Other light is scattered in other directions, including light 

scattered upward and light scattered forward in its original direction of travel. 

Scattering explains why we see the sky: Light passing through the atmosphere is 

redirected due to scattering toward the surface of the Earth. In contrast, for an 

astronaut observer in the vacuum of space, sunlight is not scattered at all so there is no 

sky glow: 

Except for the stars, the sky appears black. To the astronaut, the disk of the Sun, a 

combination of all colors, looks white. We illustrate this below: The full spectrum 

combines to form white light. The question remains, why is our sky blue rather than 

some other color? Light at the blue end of the visible spectrum, which has the shortest 

wavelength, is 10 times more resonant with the electrons of atmospheric atoms than 

red light. This means blue light is scattered more than red, so that more of it is 

redirected toward the ground. 

Scattering also explains why we see the Sun as yellow rather than white. When you 

look up at the disk of the Sun from the Earth’s surface, the bluest portion of its light 

has been scattered away to the sides. The remaining part of the Sun’s direct light 

appears somewhat yellowish. You may also have noted how the Sun appears to 

change color when it sets. As the Sun’s disk descends toward the horizon, its light 

must pass through a greater and greater thickness of atmosphere in order to reach you. 

Since a certain amount of sunlight is scattered aside for each kilometer of atmosphere 



it passes through, its position at sunset causes it to lose large amounts of light at the 

blue end and even toward 

 

 

 



 

 

 

the concentration of the dissolved substance. The rotation is also proportional to a 

constant �0 called the specific rotation of the substance, which reflects the rotating 

power of its molecules. These relationships are summarized to the right in the 

polarimeter equation. Note that (and this is unusual for a physics equation) the 

rotation angle � is measured in degrees rather than radians, and the clockwise 

direction is considered positive. 

The polarimeter is a device that can be used to measure the net rotation of polarized 

light passing through an optically active solution. An experimenter directs polarized 

light through a container of the solution to be analyzed. The analyzer, which starts out 

parallel to the polarizer, does not transmit all the light from the polarizer because the 

light’s plane of polarization has been rotated by the solution. The experimenter turns 

the analyzer to one side or the other until the transmitted light has maximum 



brightness. Then she knows that the analyzer’s transmission axis matches the rotated 

polarized light, and she can measure the angle � through which the analyzer has 

turned. The polarimeter equation gives an expression for the angle � of the analyzer 

at which the transmitted light will be the brightest. If the polarized light encounters 

more molecules of the optically active substance, either because the solution is more 

concentrated or because the immersed light path is longer, the rotation will be greater. 

Since the amount of rotation also depends on the wavelength of the light, the specific 

rotations �0 given in tables for particular dissolved substances are based on a 

polarimeter employing the 589 nm light that is emitted by a sodium vapor lamp. 

Dextrose and fructose molecules are chemically identical (they have the same atoms 

arranged in the same pattern) but they are mirror images of each other. Because of this 

they rotate polarized light by the same amount in opposite directions. Organic 

molecules such as carvone may exist in two mirror image forms; you smell carvone as 

caraway or spearmint, depending on which way the molecule twists. The scents are  

different because the smell receptors in the nose react differently to the mirror image 

forms. Using a polarimeter is one way to distinguish between the two forms of mirror 

image compounds. Also, if the specific rotation of a particular substance is known, the 

device can be used together with the polarimeter equation to determine the 

concentration of the substance in a solution. You are asked to perform such an 

analysis in the example problem to the right. 

The diagrams below show the mirror image molecular forms of the citrus oil 

limonene, which is the essence of either orange or lemon, depending on the 

orientation of its molecules! (The gray spheres represent carbon atoms, and the blue 

spheres are hydrogen atoms.) 
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34.23 - Physics at work: liquid crystal displays (LCDs) The liquid crystal display 

(LCD) in the watch face above demonstrates variable optical activity at work. LCDs 

are found in many common devices, including calculators, cellular telephones and 

clocks. There are two types of LCDs: backlit and reflective. The one shown above is a 

reflective LCD, but we will explore both types in this section. Backlit LCDs generate 

light behind their displays; reflective LCDs like the one above utilize ambient light. 

LCDs rely on polarization. The characters of a digital watch display consist of ―digit‖ 

segments: regions that can be made dark. These segments are filled with a substance 

called liquid crystal that is optically active 

 

 



Gotchas 

A light wave is a transverse wave. Yes. Both of its components, an electric and a 

magnetic field, oscillate perpendicularly to its direction of travel. Radio signals and 

light waves are fundamentally different. Both are forms of electromagnetic radiation, 

so we lean toward ―no‖ in response to this statement. The wavelength and frequency 

of radio transmissions and light are significantly different, and humans can see light, 

but not radio waves, so one could say ―yes‖. However, both are electromagnetic 

waves, and both move at the speed of light. Intensity is the same thing as average 

energy density. No, intensity represents the average rate of power transmission of an 

electromagnetic wave per unit area, perpendicular to the direction of propagation of 

the wave. Average energy density represents the average amount of energy contained 

in an electromagnetic wave per unit volume. 



 

 

 



Light can refract � change direction � as it moves from one medium to another. For 

instance, if you stand at the edge of a pool and try to poke something underwater with 

a stick, you may misjudge the object’s location. This is because the light from the 

object changes direction as it passes from the water to the air. You perceive the object 

to be closer to the surface than it actually is because you subconsciously assume that 

light travels in a straight line. Although refraction can cause errors like this, it can also 

serve many useful purposes. Optical microscopes, eyeglass lenses, and indeed the 

lenses in your eyes all use refraction to bend and focus light, forming images and 

causing objects to appear a different size or crisper than they otherwise would. Where 

a lens focuses light, and whether it magnifies an object, is determined by both the 

curvature of the lens and the material of which it is made. Scientists have developed 

quantitative tools to determine the nature of the images created by a lens. We will 

explore these tools thoroughly later, ―focusing‖ first, so to speak, on the principle of 

refraction underlying them. To begin your study of refraction, try the simulation to the 

right. Each of your helicopters can fire a laser � a sharp beam of light � at any of 

three submarines lurking under the sea. The submarines have lasers, too, and will 

shoot back at your craft. Your mission is to disable the submarines before they disarm 

your helicopters. When you make a hit, you can shoot again. Otherwise, the 

submarines get their turn to shoot until they miss. You play by dragging the aiming 

arrow underneath any one of your helicopters. Press FIRE and the laser beam will 

follow the direction of this arrow until it reaches the water, where refraction will 

cause the beam to change direction. In addition to hitting the submarines before they 

get you, you can conduct some basic experiments concerning the nature of refraction. 

As with reflection, the angle of incidence is measured from a line normal 

(perpendicular) to a surface. In this case, the surface is the horizontal boundary 

between the water and the air. Observe how the light bends at the boundary when you 

shoot straight down, at a zero angle of incidence, or grazing the water, at a large angle 

of incidence. You can create a large angle of incidence by having the far right 

helicopter, for example, aim at the submarine on the far left. 

You can also observe how refraction differs when a laser beam passes from air to 

water (your lasers) and from water to air (the submarines’ lasers). Observe the dashed 

normal line at each crossover point and answer the following question: Does the laser 

beam bend toward or away from that line as it changes media? You should notice that 

the laser beams of the submarines behave differently than those of the helicopters 



when they change media. As a final aside: You may see that some of the laser beams 

of the submarines never leave the water, but reflect back from the surface between the 

water and the air. This is called total internal reflection. 

 

 Refraction: The change in the direction of light as it passes from one medium to 

another. 

A material through which light travels is called a medium (plural: media). When light 

traveling in one medium encounters another medium, its direction can change. It can 

reflect back, as it would with a mirror. It can also pass into the second medium and 

change direction. This phenomenon, called refraction, is shown to the right. In the 

photo, a beam of light from a laser refracts (bends) as it passes from the air into the 

water. Light refracts when its speeds in the two media are different. Light travels 

faster through air than in water, and it changes direction as it moves from air into 

water, or from water into air. Although we are primarily interested in the refraction of 

light, all waves, including water waves, refract. Above, you see a photograph of surf 

wave fronts advancing parallel to a beach. Deep-ocean swells may approach a 

coastline from any angle, but they slow down as they encounter the shallows near the 

shore. The parts of a wave that encounter the shallow water earliest slow down first, 

and this causes the wave to refract. Sound waves can also refract. During a medical 

ultrasound scan, an acoustic lens can be used to focus the sound waves. The lens is 

made of a material in which sound travels faster than in water or body tissues. 

The surface between two media, such as air and water, is called an interface. As with 

mirrors, light rays are often used to depict how light refracts when it meets an 

interface. Lasers are often used to demonstrate refraction because they can create thin 

beams of light that do not  



 

 

 



 

 

 

Everyday effects of refraction The refraction of light can cause interesting and 

sometimes confusing results as the brain interprets the position of objects it sees via 



refracted light. For instance, in the upper illustration to the right, you see an ancient 

Egyptian fisherman trying to spear a fish. The solid line indicates the refracted path of 

the light traveling from the fish to his eyes. Since his brain expects light to travel in a 

straight line, he projects the fish to be in the position indicated at the end of the 

dashed line, which causes him to think the fish is nearer to the surface than it is. 

Experienced spear fishermen know how to compensate for this effect. The fisherman 

is not the only one to experience the effects of refraction. The fish does, too. The light 

from the world above seen by the fish also refracts. Light coming straight down will 

pass through the water’s surface unchanged, but light at any angle will refract, in the 

process giving the fish a wider field of view of the world above than it would have 

if there were no refraction. In essence, the fish sees a compressed wide-angle view of 

the scene above. Certain camera lenses, appropriately called fisheye lenses, can create 

the same effect, as illustrated in Concept 2. Another interesting consequence of 

Snell’s law concerns light passing through a window. The light refracts as it travels 

from air to glass. After passing through the glass it refracts again at the second 

interface. The ratio of the indices of refraction is now reversed, so the initial change in 

angle is cancelled out. The light ray that emerges is parallel to the initial ray, but 

displaced a small amount. The amount of displacement is small enough that we 

ordinarily do not notice ―window shift.‖ However, if you place a newspaper page on a 

tabletop and cover half of it with a flat pane of glass, you will be able to observe the 

displacement effect. 

Refraction confuses fisherman 

He misjudges position of fish 
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Wavelength of light in different media When light changes speed as it moves from 

one medium to another, its frequency stays the same but its wavelength changes. The 



ratio of its wavelengths in the two media is the inverse of the ratio of the indices of 

refraction. We show this as an equation to the right and derive it below. Before 

deriving the equation, let’s consider why the frequency stays the same, since this is an 

essential part of the derivation. The frequencies in the media must be the same, 

because if they were not, waves would either pile up at the interface or be destroyed. 

Neither occurs. You can witness this at the beach, where wave speed and wavelength 

may change as waves approach the beach, but the frequency of the waves does not 

change. 

 

 
 



Variables 

In this derivation, c represents the speed of light in a vacuum. For the other two media 

we define the variables in the following table: 

 
 

Strategy 

1. Use the equality of frequencies in the two media together with the wave speed 

equation to obtain a proportionality of the light speeds and wavelengths in the 

media. 

2. Use the definition of the index of refraction to convert the previous proportion to 

one involving wavelengths and indices of refraction. 

Physics principles and equations 

The wave speed equation states that for any wave, the speed is the product of the 

wavelength and the frequency: 

 
As a wave passes from one medium to another, its speed and wavelength may change, 

but its frequency must remain the same. 

The definition of the index of refraction of a medium is 

 
Step-by-step derivation  

First, we explain the diagram you see above. The purple line is a light ray refracting at 

an interface. In the diagram, light travels more slowly in the lower medium than the 

upper. This could represent, for example, light passing from air into water. The gray 

lines perpendicular to the ray represent wave fronts. You see the wavelength labeled 

as � (�i in the upper medium, �r in the lower medium). There are two right triangles 

in the diagram that share the hypotenuse labeled x. The bright yellow triangle shows 



elements of a wave front that has not yet entered the lower medium. The dark orange 

triangle shows elements of a wave front that is now traveling in the lower medium. 

The angles of incidence and refraction �i and �r are also shown in the diagram. 

Because the wave fronts are perpendicular to the light rays, we can identify angles in 

each of the triangles that are equal to �i and �r. These base angles are shown in the 

diagram. 

Variables 

In this derivation, x represents the common hypotenuse of the two triangles in the 

diagram. For the incident and refractive media we define the variables in the 

following table. 

 

 
Strategy 

1. Consider the two triangles in the diagram. State the sines of their base angles �i 

and �r as trigonometric ratios of the triangles’ sides. 

2. Construct the ratio sin �i / sin �r. The common hypotenuse x will cancel out, 

leaving a ratio of wavelengths. 

3. Restate the ratio of wavelengths as a ratio of indices of refraction to obtain Snell’s 

law. 

Physics principles and equations 

The ratio of the wavelengths is inversely proportional to the ratio of the indices of 

refraction. 

 

 
Step-by-step derivation 



We construct the fraction sin �i / sin �r, and calculate the sines as the ratios of the 

sides of triangles. This leads to a ratio of wavelengths that can be replaced by a ratio 

of indices of refraction, yielding Snell’s law. 

 
 Interactive problem: helicopter and submarines 

The simulation on the right is similar to the one in this chapter’s introduction. As 

before, submarines lurk under the waves, but now you have only a single helicopter. 

As before, you have a laser you can aim in an attempt to disable two submarines 

before they disable you. You keep shooting as long as you keep making hits. To shoot 

your laser, aim it by dragging the aiming arrow and fire it by clicking on FIRE. The 

angle of incidence is shown in an output gauge. As soon as you miss, it is the 

submarines’ turn. Warning: The computer has been set to be far more accurate in this 

game than in the introductory one. Unless you are very precise with your shots, it is 

unlikely you will win. However, there is good news: Now you have more intellectual 

firepower because you have the aid of Snell’s law. You are also given some assistance 

from an able comrade; she has computed the angles of refraction required for your 

laser to reach the submarines, as shown in the diagram. You should use 1.33 for the 

index of refraction of water, and 1.00 for the index of refraction of air. If you 

correctly set the angle of incidence when you aim each of your shots, you can make 

two straight hits and disable the submarines before they disable you. to initial ray 



 

 



 

Fiber optic cable is used to transfer information (in glass or plastic) using total 

internal reflection. Data (such as speech) is first encoded as modulations of a beam of 

laser light. The light remains inside the transparent cable as it travels due to its total 

internal reflection off the inner surfaces of the cable walls. In this way, light is 

transmitted through the cable with little loss. Using light instead of electricity to 

transfer information has several benefits. Light can be used to encode much more 

information than electric oscillations because of its extremely high frequency (more 

than 1014 Hz for red light), and fiber optic cable is immune to interference problems 

from nearby electrical applications 



Step-by-step solution 

We start by using trigonometry to establish a relationship between sin � and sin �c. 

In the following steps we use Snell’s law and the definition of the critical angle to find 

sin � in terms of indices of refraction. Then we evaluate to find a value for the 

acceptance angle �. 

St

  

 
 

Interactive problem: laser target pistol 

In this simulation, you fire a laser pistol at two stationary targets. You want a 

bullseye, a shot that passes through the central black circle of the target. You happen 



to be immersed in a fluid with an index of refraction of 1.60. When you shoot the 

laser from within the fluid, you have to account for the refraction of your laser beam 

as it passes from the fluid into the air. Some portion of the beam also reflects from the 

interface. If the incident angle is equal to or greater than the critical angle, all of the 

beam will reflect. 

The laser pistol is designed so its beam always hits the interface between the fluid and 

the air at the same point. You drag the pistol from side to side to determine its angle 

of incidence. An output gauge tells you the horizontal distance between the pistol and 

where its beam passes through the interface. You are also told how far the pistol is 

below the surface, a value that stays constant. 

There are two targets to hit: one above the surface of the fluid and the other below the 

surface. You will have to use a different strategy to hit each target. For each target 

you know its horizontal distance from where the laser passes through the interface, 

and its height above the fluid. You must strike each target in its center to succeed. 

You have just read a fair number of facts. It may be useful now to look at the diagram 

and the simulation. You will probably find the lower target easier to hit, if you just 

reflect a bit. You can then bend your mind toward determining how to hit the upper 

target. A good way to start is to apply trigonometry to calculate the necessary angle of 

refraction. Then, using Snell’s law and some more trigonometry, you can determine 

where to position the pistol. When you have calculated the correct horizontal distance, 

drag the pistol and press FIRE to test your answer. 

 

 

 



Light is a particle.  

Many of the great scientists of the 17th and 18th centuries who made fundamental 

contributions to the study of optics, including Isaac Newton, thought that light 

consisted of a stream of ―corpuscles,‖ or particles. In the 20th century, Albert Einstein 

explained the photoelectric effect. His explanation, for which he was awarded the 

1921 Nobel Prize, depended on the fact that light acts like a particle. This property of 

light led to the coining of the term ―photon‖ for a single particle of light by the 

chemist Gilbert Lewis. 

Light is a wave. Between the 18th and 20th centuries, physicists discovered many 

wave-like properties of light. They found that a number of phenomena they routinely 

observed with water waves they could also observe with light. For instance, the 

English scientist Thomas Young (1773-1829) showed that light could produce the 

same kinds of interference patterns that water waves produce. At the right, you see 

examples of interference patterns formed by light and by water waves. The 

similarities are striking. In this chapter, you will apply to light some of what you have 

studied about the interference of sound waves and traveling waves in strings. Let 

there be light. Is light a particle, a wave, or both? Perhaps an Early Authority had it 

right. Light is light. It is a combination of electric and magnetic fields. Trying to 

classify light as a particle or as a wave may be a fruitless effort � better to revel in its 

unique properties. In this chapter, we will revel in its wave-like properties, and 

discuss the topic of interference. Your prior study of electromagnetic radiation 

modeled as a wave phenomenon will prove useful. 

Interference of light waves 

of water waves 

Expanding circular ripples 

Pattern of disturbance and calm 

 

 

 

 

 


