7-

- 1- Determine the thermodynamic tendency for silver to corrode in a deaerated acid solution of pH = 1.0 Assume = $a Ag^+ = 10^{-6}$ and $PH_2 = 1$ atm . [$E^0_{Ag/Ag+} = 799$ mv].
- 2- Determine the tendency for iron to corrode in deaerated water. Assume $a_{Fe2+} = 10^{-5}$, pH =7, and $P_{H2} = 1$ atm ($E_{Fe/Fe2+}^0 = -440$ mv)
- 3- Calculate the theoretical tendency for nickel to corrode in deaerated water (pH=8). Assume the corrosion product is Ni (OH)₂, the solubility product of which is $1.6X \ 10^{-16}$. $E^{o}_{Ni/Ni}^{2+} = -0.25 \ v$
- 4- Determine the pressure of hydrogen required to stop corrosion of iron immersed in a deaerated 0.1 m FeCl₂ solution at pH=3 .Assume $\gamma_{Fe}^{2+} = 1.0$
- 5- Determine the pressure of hydrogen required to stop corrosion of iron in deaerated water with $Fe(OH)_2$ as the corrosion product. The solubility product for Fe (OH)₂ is 1.6 X 10⁻¹⁴. Assume PH=7.0
- 6- Determine the thermodynamic tendency for silver to corrode in a aerated acid solution at pH = 1.0 Assume = $a_{Ag+} = 10^{-6}$ and $P_{H2} = 1$ atm , and $P_{O2} = 0.2$ atm compare the result to that of Example 1 (deaerated solution), $[E^0_{Ag+} = 799 \text{ mv}]$

No.	Reference Electrode	Metal A	Metal B	Metal C
1	Pb/PbCl ₂	0.721	0.13	0.62
2	Zn/ZnCl ₂			
3	Ag/AgCl			
4	SCE			

- 8- Copper surface area, A= 100 cm², is exposed to an acid solution. After 24 hours, the loss of copper due corrosion (oxidation) is 15×10^{-3} g. calculate: a) the current density I in μ A/ cm², b) the corrosion rate in mm/yr. atomic wt.= 63.54 g/mol, p=8.96g/cm³
- 9- The electrode potential of metal is (-0.16 v) SHE and metal B is (+0.25 v) SHE. What will be the potential if the following reference electrodes are used?
 SCE = 0.24 v, Cu/CuSO₄ = 0.3v, Pb/PbCl₂ =-0.33 v Zn/ZnCl₂ = -0.76 v
- 10- Calculate E for the half cell in which the reaction: Cu++ (0.1 M) + 2 e- = Cu(s) takes place at 25 °C. activity coefficient = 0.047
- 11- A tin can immersed in seawater shows a current density of 2.45×10^{-6} A/cm2. What is the rate of corrosion in mdd?

Select one best answer:

- 1. The electrode potential of a metal is:
 - [a] The potential which exists at the interface between the metal and the electrolyte
 - [b] The potential between the anodic and cathodic areas of the metal
 - [c] The potential between two metals immersed completely in the same electrolyte
 - [d] The potential of a metal with respect to another metal, which is at a higher concentration.
- 2. The double layer is formed as a result of
 - [a] attractive forces of negative charged metallic surface and positive ions only
 - [b] repulsive forces between like positive ions only
 - [c] both attractive and repulsive forces between ions
 - [d] None of the above

- 3. The most acceptable method of obtaining standard electrode potential is by [a] comparing the electrode potentials of a metal half cell with a hydrogen
 - half cell
 - [b] comparing the electrode potential of a metal immersed in a solution of its ions at any concentration, with the hydrogen half cell
 - [c] comparing the electrode potential of a metal with any standard electrode, such as Ag-AgCl or Calomel electrode
 - [d] None of the above
- 4. A galvanic cell is formed
 - [a] when two metals are immersed in solutions differing in concentration
 - [b] when two different metals are immersed in one electrolyte
 - [c] when two different metals are exposed to air
 - [d] when two metals are brought close together and electrically insulated from one another
- 5. In concentration cells
 - [a] the metal is in contact with two half cells having the same electrolyte but at different concentrations
 - [b] the metal is in contact with two half cells, having the same electrolytes with the same concentration
 - [c] no liquid junction is present
 - [d] there is no migration of ions from one electrolyte to another electrolyte
- 6. If the free energy of a reversible process is negative, it implies that
 - [a] the cell reaction is spontaneous
 - [b] the cell reaction is not spontaneous
 - [c] the cell reaction proceeds from right to left
 - [d] no reaction takes place at all