7.3 COMPRESSION PROCESSES

Just as expansion processes result in pressure reductions in a flowing fluid, so
compression processes bring about pressure increases. Compressors, pumps, fans,
blowers, and vacuum pumps are all devices designed for this purpose.

Compressors

The compression of gases may be accomplished in equipment with rotating blades (like a
turbine operating in reverse) or in cylinders with reciprocating pistons. Rotary equipment
is used for high-volume flow where the discharge pressure is not too high. For high
pressures, reciprocating compressors are required

In a compression process, the

isentropic work, as given by Eq.

(7.15), is the minimum shaft work

required for compression of a gas from W, >
a given initial state to a given

discharge pressure. Thus we define |
compressor efficiency as: :

Compressor
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n W, Figure 7.5 Steady-state compression process

In view of Egs. (7.14) and (7.15), this is also given by:

(AH)g :
= 7.
n N (7.17)
Compressor efficiencies are usually in the range of 0.7 to 0.8
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Figure 7.6 Adiabatic compression process



Saturated-vapor steam at 100 kPa (r** = 99.63°C) is compressed adiabatically to
300 kPa. If the compressor efficiency is 0.75, what is the work required and what are
the properties of the discharge stream?

For saturated steam at 100 kPa.
$i=73598 K kg~ K™ Hy =26754k kg’

For isentropic compression to 300 kPa, §) = §; = 7.3598 kI kg~' K™, Interpo
lation in the ables for superheated steam at 300 kPa shows that steam with thi
entropy has the enthalpy: H: = 28888 k) kg™ '.

Thus, (AH)s = 2,888.8 —2,6754 = 2134k kg~!

__(AH)s 2134
. n T 075

Whence, HMH:=Hi+AH =26754+2845=29599kl kg™!
For superheated steam with this enthalpy, interpolation vields:

ByEq.(7.17).  AH = 2845kl kg~

T; = 246.1°C S =75019 kg™ K™
Moreover, by Eq. (7.14). the work required is:
W,=AH =2845kl kg~!

Where such information is not available, the generalized correlations of Sec. 6.7 may be
used in conjunction with Egs. (6.84) and (6.85), exactly as illustrated in Ex. 7.7 for an
expansion process. The assumption of ideal gases leads to equations of relative
simplicity. By Eqg. (5.18) for an ideal gas:

% P,
AS=(Cp)cln — — RIn—
( P),g“T] nP[

where for simplicity the superscript "ig" has been omitted from the mean heat capacity. If
the compression is isentropic, AS = 0, and this equation becomes:

R/(Ch)s
T =T (%) (7.18)



where T, is the temperature that results when compression from T; and P; to P, is
isentropic and where (Cp)s is the mean heat-capacity for the temperature range from T;to
T

Applied to isentropic compression, Eq. (4.9) here becomes:

(AH)g = <CL>H(T£ - Iy)
In accord with Eq. (7.15),
W(isentropic) = (Cp) (T, — 1)) (7.19)

This result may be combined with the compressor efficiency to give:

_ W;(isentropic)
n

W, (7.20)

The actual discharge temperature T, resulting from compression is also found from Eq.
(4.9), rewritten as:

AH = (Cp)y(l2 — T))
Whence,

AH

hL=T+
' Cr)s

(7.21)

where by Eq. (7.14) AH = Ws, Here (Cp)n is the mean heat-capacity for the temperature
range from Ty to T,

For the special case of an ideal gas with constant heat capacities,
(C}’}H - (CF)H = ( Hg =Cp

Equations (7.18) and (7.19) therefore become:

R/Cp
P
=" (?T) and W, (isentropicy = Cp(T) — T})

Combining these equations gives:



P R/Cp
W, (isentropic) = Cp T (F) -1 (7.22)
1

For monatomic gases, such as argon and helium, R/Cp = 2/5 = 0.4. For such diatomic
gases as oxygen, nitrogen, and air at moderate temperatures, R/Cp = 2/7 = 0.2857. For
gases of greater molecular complexity the ideal-gas heat capacity depends more strongly
on temperature, and Eq. (7.22) is less likely to be suitable. One can easily show that the
assumption of constant heat capacities also leads to the result:

oy

=T + (7.23)

Example 7.9

If methane (assumed to be an ideal gas) is compressed adiabatically from 20°C and
140 kPa to 560 kPa, estimate the work requirement and the discharge temperature of
the methane. The compressor efficiency is 0.75.

Solution 7.9

Application of Eq. (7.18) requires evaluation of the exponent B/{Cp)s. This is
provided Eq. (5.17). which for the present computation is represented by:

_‘C;’S = MCPS(203.15,T2:1.702,9.081E-3 2. 164E-6,0.0)

where the constants for methane are from Table C.1. Choose a value for 75
somewhat higher than the imitial temperature 7) = 293.15 K. The exponent in
Eq. (7.18) is the reciprocal of (Cp)o/R. With Po/Py = 560/140 = 4.0 and
T =293.15K.ﬁndancwvalucof7'§. The procedure is repeated entil no farther

significant change occurs in the value of 75. This process produces the values:
{Ch)e
€r)s _ 45574 and T) = 397.37K
For the same Ty and T, evaluate (Cp),/R by Eq. (4.8):

——(C,’;’" = MCPH(293.15,397.37;1.702,9.081E-3,-2. 164E-6,0.0) = 4.5774

Whenge. (Cpiy = (4.5774)(8.314) = 38.056 J mol ' K~*



Then by Eq. (7.19),
W, (isentropic) = (38.056)(397.37 — 293.15) = 3,966.2 J mol -’

The actual work is found from Eq. (7.20):

39662

W, = = 5.288.3 J mol~!
0.75 m

Application of Eq. (7.21) for the calculation of T3 gives:

52883
((:P )"

T2 =293.15+

Because (Cp), depends on T3, we again iterate. With Tz' as a starting value, this
leads to the results:

T, =42865K or ty = 155.5°C

and (Cply = 39.027 I mol~* K™!

Pumps A

Liquids are usually moved by pumps, generally rotating equipment. The same equations
apply to adiabatic pumps as to adiabatic compressors. Thus, Egs. (7.13) through (7.15)
and Eq. (7.17) are valid. However, application of Eq. (7.14) for the calculation of W; =
AH requires values of the enthalpy of compressed (subcooled) liquids, and these are
seldom available. The fundamental property relation, Eq. (6.8), provides an alternative.
For an isentropic process,

dH=VdP (const S)
Combining this with Eq. (7.15) yields:
»

W (isentropic) = (A H)s = f VAP
P



The usual assumption for liquids (at conditions well removed from the critical point) is
that V is independent of P. Integration then gives:

W,(isentropic) = (AH)s = V(P, — P,) (7.24)

Also useful are the following equations from Chap. 6:

dH = CpdT + V(1 — BT)dP (6.28)
dS=ch —BVdP (6.29)

where the volume expansivity £ is defined by Eq. (3.2). Since temperature changes in
the pumped fluid are very small and since the properties of liquids are insensitive to
pressure (again at conditions not close to the critical point), these equations are usually
integrated on the assumption that Cp, V, and £ are constant, usually at initial values.
Thus, to a good approximation

AH =Cp AT + V(1 — BT)AP (7.25)
éS:Cpln¥—ﬁVA\P (7.26)
1
Example 7.10

Water at 45°C and 10 kPa enters an adiabatic pump and is discharged at a pressure
of 8,600 kPa. Assume the pump efficiency to be 0.75. Calculate the work of the pump,
the temperature change of the water, and the entropy change of the water.

Solution 7.10
The following are properties for saturated liquid water at 45°C (318,15 K):

V=1010cm’ kg~' S=435x10°K"' Cp=4178kg 'K’

By Eq. (7.24),
W, (isentropic) = (AH)s = (1.010)(8,600 — 10) = 8.676 x 10° kPacm® kg"'

Because 1 kJ = 10° kPa cm’.



W, (isentropic) = (AH)s = 8676 kJ kg~

(AH)s 8676
n 075

and W, =AH=1157Tk) kg™’

ByEq.(7.17), AH= = 1157 kJ kg™

The temperature change of the water duning pumping, from Eq. (7.25):

1157 = 4.178AT + 1,010[1 — (425 x 10'*)(3ns.|s)] %‘:9
Solution for AT gives:
AT = 097K or 097°C
The entropy change of the water is given by Eq. (7.26):

319.12 i 2.590 ‘ N
AS !4.|78111m - (425 < 10 )(L(HO)W = 0.0090 kJ kg7’ K



