
 

 

 

الجامعة التكنولوجية 
 

قسم الهندسة الكيمياوية 
 
 الثانيةالمرحلة 
 

 IIالرياضيات 

 
 م.د. زينب يوسف

 
 

 



Multiple Integrals

Integration of functions of one variable

We start by recalling the basics of integration with respect to a single variable.
We have results such as:

∫ b

a

f(x) dx =
[
F (x)

]b

a
:= F (b)−F (a)

where F is an “antiderivative” or indefinite integral of f . (f = dF/dx.)

∫

λf(x) dx = λ

∫

f(x) dx,

∫

(f(x) + g(x)) dx =

∫

f(x) dx+

∫

g(x) dx .

Useful techniques include:

• Integration by parts.

• Integration by substitution.

• Use of partial fractions.

Some specific integrals can be found on the formula sheet.

Question 1. Calculate

∫ 1

0

(
3x4 + x2ex

3)
dx.

Solution. This integral is designed to use a few different techniques! Firstly we can
split the integral as

∫ 1

0

(
3x4 + x2ex

3)
dx = 3

∫ 1

0

x4 dx+

∫ 1

0

x2ex
3

dx.

The first integral on the right-hand side is straightforward:

∫ 1

0

x4 dx =
[x5

5

]1

0
=

1

5
.



To calculate the second integral on the right hand side we use integration by substitution;

taking u = x3 we have du/dx = 3x2 so x2 dx =
1

3
du. Therefore

∫

x2ex
3

dx =

∫
1

3
eu du =

1

3
eu + C =

1

3
ex

3

+ C.

The definite integral can then be computed as

∫ 1

0

x2ex
3

dx =
[1

3
ex

3

]1

0
=

1

3
e1 − 1

3
e0 =

e− 1

3
.

Combining the above calculations we finally get

∫ 1

0

(
3x4 + x2ex

3)
dx = 3× 1

5
+

e− 1

3
=

4 + 5e

15
.

One interpretation of an integral like this is the area under a graph: assuming that f is
positive, the area of a strip of width dx and length f is f dx and then A =

∫ b

a
f(x) dx is

the total area between the x axis and the curve y = f(x) for a < x < b.

y = f (x)

x

a b

A

More generally, if f represents the density of some quantity, i.e. it is the amount per unit
length, f dx is the amount in a short length dx and A =

∫ b

a
f(x) dx is the total amount

between x = a and x = b.

2 Integration of functions of two variables

Thinking of a single integral as giving an area, we might ask: what is the volume under
a surface z = f(x, y) lying above a rectangle in the x - y plane, a < x < b, c < y < d?
(We again take f > 0 for simplicity.)

First look at a small rectangle of length dx and width dy. Its area is dA = dx dy. Then
the volume between that small rectangle and the surface is the height of the enclosed
(aproximately) cuboidal region times the area: f dA = f dx dy.



dy
dx

z = f (x, y)

f

The volume between the x - y plane and the surface in the slab of width dx between y = c
and y = d is then given by integrating with respect to y: (

∫ d

c
f(x, y) dy) dx. (In doing this

integral, x is held fixed.) Finally, to get the total volume, we must integrate with respect
to x from a to b:

volume = V =

∫ b

a

(∫ d

c

f(x, y) dy

)

dx . (7.1)

We usually abbreviate this double integral as

V =

∫ b

a

∫ d

c

f(x, y) dy dx . (7.2)

Noting that, for cases we’ll be considering at least, we could have integrated with respect
to x first and then y, we also have

V =

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ ∫

D

f(x, y) dx dy , (7.3)

where D is our region of integration, here D is the rectangle a < x < b, c < y < d.
More generally if f once again represents some sort of density, e.g. mass per unit area in
a sheet of metal, the double integral

∫ ∫

D
f(x, y) dx dy is the total amount in the region

D.

Question 2. Calculate

∫ 4

2

∫ 3

1

(xy2 + y) dy dx.

Solution. Calculating the inner integral first gives

∫ 3

1

(xy2 + y) dy =

[
xy3

3
+

y2

2

]3

1

=
(

9x+
9

2

)

−
(x

3
+

1

2

)

=
26x

3
+ 4 .



Therefore ∫ 4

2

∫ 3

1

(xy2 + y) dy dx =

∫ 4

2

(26x

3
+ 4

)

dx

=

[
13x2

3
+ 4x

]4

2

=
(13× 16

3
+ 16

)

−
(13× 4

3
+ 8

)

= 13× 4 + 8 = 60 .

Question 3. Calculate

∫ 1

0

∫ 3

2

2xy dx dy.

Solution. Calculating the inner integral first gives

∫ 3

2

2xy dx =
[
x2y

]3

2
= 9y − 4y = 5y.

Therefore
∫ 1

0

∫ 3

2

2xy dx dy =

∫ 1

0

5y dy =

[
5y2

2

]1

0

=
5

2
.

question 4 . For the double integral

∫ 3

2

∫ 1

0

2xyexy
2

dy dx the region of integration D is

the rectangle given by
0 ≤ y ≤ 1, 2 ≤ x ≤ 3.

✲
x

✻y

D

2 3

1

Question 5 . Calculate

∫ 3

2

∫ 1

0

2xyexy
2

dy dx.

Solution. Firstly consider the inner integral

∫ 1

0

2xyexy
2

dy.

We will use integration by substitution for this integral; taking u = xy2 we have
∂u

∂y
= 2xy

so du = 2xy dy and hence
∫

2xyexy
2

dy =

∫

eu du = eu + C = exy
2

+ C.



Thus ∫ 1

0

2xyexy
2

dy =
[
exy

2]1

0
= ex − 1.

It follows that
∫ 3

2

∫ 1

0

2xyexy
2

dy dx =

∫ 3

2

(ex − 1) dx =
[
ex − x

]3

2
= (e3 − 3)− (e2 − 2) = e3 − e2 − 1 .

Question 6 . Let D be the rectangle given by

−1 ≤ y ≤ 0, 1 ≤ x ≤ 3.

Calculate

∫∫

D

(x2 + y) dy dx.

Solution. The region of integration is the following:

✲
x

✻y

D

1 3

−1

Now
∫∫

D

(x2 + y) dy dx =

∫ 3

1

∫ 0

−1

(x2 + y) dy dx =

∫ 3

1

[

x2y +
y2

2

]0

−1

dx =

∫ 3

1

(

x2 − 1

2

)

dx

=

[
x3

3
− x

2

]3

1

=
(

9− 3

2

)

−
(1

3
− 1

2

)

=
23

3
.

Of course a region of integration need not be rectangular. If D can be described by
g(x) < y < h(x) for a < x < b, the (double) integral of f(x, y) over D will be

∫ ∫

D

f(x, y) dy dx =

∫ b

a

(
∫ h(x)

g(x)

f(x, y) dy

)

dx .

We can drop the brackets and simply write this as
∫ b

a

∫ h(x)

g(x)
f(x, y) dy dx.

question 7 . Consider the region given by

−1

2
≤ x ≤ 1

2
, −

√
1− x2 ≤ y ≤

√
1− x2.

This region is part of a disc.



✲
x

✻y

−1 1

y =
√
1− x2

✂✂✌

y = −
√
1− x2

❇❇▼

question 8. Consider the region D:

✲
x

✻y

D

1

1

y = 1− x
!!✠

In this region we have 0 ≤ x ≤ 1 whilst, for a given x, 0 ≤ y ≤ 1− x. Thus the region D
is described by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x.

Question 9 . Calculate

∫ ∫

D

y dA over the region D below:

Solution. In this region we have 0 ≤ x ≤ 1, whilst, for a given x, we have

√
x ≤ y ≤ 1.

0

1

1

y =
√
x

x

y

D



Therefore ∫ ∫

D

y dA =

∫ 1

0

∫ 1

√
x

y dy dx.

Calculating the inner integral first gives

∫ 1

√
x

y dy =
[y2

2

]1

√
x
=

1

2
− x

2
.

Hence
∫

D

y dA =

∫ 1

0

(1

2
− x

2

)

dx =

[
x

2
− x2

4

]1

0

= 0−
(1

2
− 1

4

)

=
1

4
.

question 10. Consider the region D:

✲
x

✻y

D

1

1

y = x ❍❍❥

In this region we have 0 ≤ y ≤ 1, whilst, for a given y, y ≤ x ≤ 1.

Question 1 1     .Calculate

∫∫

D

(3 − x − y) dA where D is the region described in the

previous question.
Solution. Recall that D is described by

0 ≤ y ≤ 1, y ≤ x ≤ 1.

Therefore ∫∫

(3− x− y) dA =

∫ 1

0

∫ 1

y

(3− x− y) dx dy.

Now

∫ 1

y

(3− x− y) dx =

[

3x− x2

2
− yx

]1

y

=
(

3− 1

2
− y

)

−
(

3y − y2

2
− y2

)

=
5

2
− 4y +

3y2

2
.

It follows that

∫∫

(3− x− y) dA =

∫ 1

0

(5

2
− 4y+

3y2

2

)

dy =

[
5y

2
− 2y2 +

y3

2

]1

0

=
(5

2
− 2 +

1

2

)

− 0 = 1 .



3 Interchanging the order of integration

As noted before, we can swap the order in which the order in which the integrals are
carried out :

∫ ∫

D
f dy dx =

∫ ∫

D
f dA =

∫ ∫

D
f dx dy. It is sometimes easier to calculate

the value of a double integral doing the integrations in one order than the other.

Example 7.6. Consider the region D which lies between the line y = x and the parabola
y = x2:

✲
x

✻y

D
❏
❏❫

1

1

y = x2 PPq

y = x
❇
❇▼

This region can be described by

0 ≤ x ≤ 1, x2 ≤ y ≤ x.

On the other hand, the parabola is also given by the equation x =
√
y so the region D

can also be described by

0 ≤ y ≤ 1, y ≤ x ≤ √
y.

It follows that we have

∫ 1

0

∫ x

x2

f(x, y) dy dx =

∫∫

D

f(x, y) dA =

∫ 1

0

∫ √
y

y

f(x, y) dx dy.

Question 1 . Calculate

∫∫

T

ey
2

dA where T is the triangular region with vertices (0, 0),

(0, 1) and (1, 1):

✲
x

✻y

T

1

1

y = x
❇
❇❇▼



Solution. As a first attempt we may describe T by

0 ≤ x ≤ 1, x ≤ y ≤ 1.

It follows that ∫∫

T

ey
2

dA =

∫ 1

0

∫ 1

x

ey
2

dy dx.

The inner integral is then
∫ 1

x

ey
2

dy

which can’t be evaluated very easily! We’ve got stuck!

As a second attempt let us describe T the other way; that is

0 ≤ y ≤ 1, 0 ≤ x ≤ y.

Then ∫∫

T

ey
2

dA =

∫ 1

0

∫ y

0

ey
2

dx dy.

Evaluating the inner integral first gives

∫ y

0

ey
2

dx =
[
xey

2]y

0
= yey

2

.

It follows that

∫∫

T

ey
2

dA =

∫

yey
2

dy =
[ey

2

2

]1

0
=

e

2
− 1

2
=

1

2
(e− 1) ,

where we used the substitution u = y2 to evaluate the integral.

Note. On evaluating a double integral I =
∫ ∫

D
f(x, y) dA by doing the y integral first,

i.e. taking I =
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx, we integrate along vertical strips between the lower

boundary, say y = g1(x), and the upper boundary, say y = g2(x) (this gives a result which

generally depends upon x, but definitely does not depend on y): Iy(x) =
∫ g2(x)

g1(x)
f(x, y) dy.

We then total up the contributions of strips by integrating Iy from the lowest value

of x taken in D, say a, to the largest, say b (see Fig. 7.1(i)): I =
∫ b

a
f(x, y) dx. On

the other hand, doing the y integral first, we take I =
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy, we integrate

along horizontal strips between the left-hand boundary, say x = h1(y), and the right-hand
boundary, say x = h2(y) (this gives a result which generally depends upon y, but definitely

does not depend on x): Ix(y) =
∫ h2(y)

h1(y)
f(x, y) dx. We then total up the contributions of

strips by integrating Ix from the lowest value of y taken in D, say c, to the largest, say d
(see Fig. 7.1(ii)). (Either way, the final result does not depend on either x or y!)



(i) (ii)

D
D

xba

y y

x

c

d

y = g1(x)

y = g2(x)

x = h2(y)

x = h2(y)

Figure 1: Different orders of integration over D.


