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Chapter Five: Higher-Ordered Systems: Second-Ordered and Transportation Lag 

Chapter Seven in the textbook 

 

This section introduces a basic system called a second-order system or a quadratic lag. 

Second-order systems are described by a second-order differential equation that relates  

the output variable y to the input variable x (the forcing function) with time as the independent 

variable. 
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𝑑𝑡
+ 𝐶𝑦 = 𝑘𝑥(𝑡) 

A second-order system can arise from two first-order systems in series, as we saw  

in Chapter 4. Some systems are inherently second-order, and they do not result from a  

series combination of two first-order systems. A general second-order system under a dynamic 

condition is given by the differential equation as follows:  
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𝑑𝑡2
+ 2ζτ 

𝑑𝑌

𝑑𝑡
+ 𝑌 = 𝑘𝑋(𝑡) 

Where k is the steady state gain, Y is the response value, X is the input disturbing variable, ζ is the 

damping factor (damping coefficient) and ωn is the natural frequency of oscillation. Taking 

Laplace for the second-order differential equation, 

)()()(2)(22 skXsYssYsYs  
 

⇒ )()()12( 22 skXsYss  
  

G(s) =
Y(s)

X(s)
=

k

τ2s2 + 2ζτs + 1
 

If X is a sudden force, such as step change inputs, Y will oscillate depending on the value of the 

damping coefficient (ζ). If ζ < 1   (Under damped),       ζ >1   (Over damped),        ζ =1   (Critical 

damped)
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Responses of Second Order System 

 Step Change 
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The quadratic term in this equation may be factored into two linear terms that contain the roots
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Eq. (1) can be re-written as 

))((
)(

21

2

sssss

kA
sY






 

ζ > 1 Overdamped Two distinct real roots 

ζ = 1 Critically Damped Two equal real roots 
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 ζ <1   (Under-damped system) 
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 ζ >1   (Over-damped system) 
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 ζ = 1   (Critical-damped system) 

For this case, the response is given by expression: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5.1): Response of the second order system – Under damping. 
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Terms Used to Describe an Underdamped System Second order system for a step change response 

 Overshoot (OS) 

It is a measure of how much the response exceeds the ultimate value (new steady-state value) 

following a step change and is expressed as the ratio  
A

B
  in Figure (5.1). 
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 Decay Ratio (DR) 

It is defined as the ratio of the sizes of successive peaks and is given by 
C

A
 in Figure (5.1). where C 

is the height of the second peak. 
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 Rise Time (tr) 

This is the time required for the response to first reach its ultimate value. 
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 Response Time 

This is the time required for the response to come within ±5 percent of its ultimate value and 

remain there. The response time is indicated in Figure (5.1). 

 

 Period of Oscillation (T) 

The radian frequency (radians/time) is the coefficient of t in the sine term; thus, 
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 Natural Period of Oscillation (Tn) 

If the damping is eliminated (ζ = 0), the system oscillates continuously without attenuation in 

amplitude. Under these “natural” or undamped condition, the radian frequency is  . This frequency 

is referred to as the natural frequency wn. 
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 Time to First Peak (tp)  

It is the time required for the output to reach its first maximum value. 
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 Impulse Response 

If impulse δ(t) is applied to second order system then transfer response will be as follows: 
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 ζ >1 

2
2

2

2

22

2
2

2

2

2

2
2

2

1
)(

1

1

1
)(

/

1
)(

/
)(













 



















 















































s

kA

s

kA

s

kA
sY

 

wte
kA

tY

t

sinh
1

)(
2












 



 12 
w

 

 

 ζ<1 

2
22

2

22

2
22

2

2

22

2

1

1

1

1

/

1

/
)(













 




























 
































































s

kA

s

kA

s

kA
sY

 
wte

kA
tY

t

sin
1

)(
2












                       


 21
w  

 

 ζ=1 

2

2

2

22

2

2

22

2

1

/

111

/

1

/
)(

























































s

kA

s

kA

s

kA
sY

 





/

2
)( tte

kA
tY 

 

eng
Rectangle

eng
Rectangle

eng
Rectangle



Dr. Farooq Ahmed                                                                            Process Dynamics                                                                                 

12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1: A step change from 15 to 31 psi in actual pressure results in the measured response 

from a pressure indicating 

element shown in the 

figure beside. Assuming 

second-order dynamics, 

calculate all important 

parameters and write and 

approximate transfer 

function in the form 

12)('

)('
22 


ss

K

sP

sR


 

where R' is the instrument output deviation (mm), P' is the actual pressure deviation (psi). 
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Solution: 

psimmGain /20.0
1531

82.11





  

47.0
82.11

2.117.12

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1
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
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






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sec3.2
1

2

2

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
Period  ⇒ sec356.0
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
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Example 2: A control system having a transfer function is expressed as: 
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5
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)(

22 
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sssX
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sG


 

The radian frequency for the control system is 1.9 rad/min. The time constant is 0.5 min. The 

control system is subjected to a step change of the magnitude 2. Calculate: (1) Rise time, (2) Decay 

ratio, (3) Maximum value of Y(t), and (4) Response time.  

Solution: 
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(2) Deacay ratio  = 









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

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
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(3) Ultimate value of the response at t  (B) Yultimate  
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          Decay ratio=Overshoot2 

0.127=Overshoot2  ⇒ Overshoot = 0.356 =
A

B  ⇒ Maximum value of response =10(1+0.356)=13.56 

(4) Response time  ts =3



= 4.8077 min      for valueultimateof%5  

 

Transportation Lag 

A phenomenon that is often present in flow systems is the transportation lag. Synonyms for this 

term are dead time and distance velocity lag. As an example, consider the system shown in the 

figure beside, in which a liquid flows through an insulated tube of uniform cross sectional area A 

and length L at a constant volumetric flow rate q. The 

density r and the heat capacity C are constant. The tube 

wall has a negligible heat capacity, and the velocity 

profile is flat (plug flow). The temperature x of the 
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entering fluid varies with time, and it is desired to find the response of the outlet temperature y (t) 

in terms of a transfer function.  

If a step change were made in x (t) at t 0, the 

change would not be detected at the end of the 

tube until tds later, where td is the time 

required for the entering fluid to pass through 

the tube. This simple step response is shown 

in the figure beside. If the variation in x(t) 

were some arbitrary function, as shown in the figure beside, the response y(t) at the end of the pipe 

would be identical with x(t) but again delayed by td units of time. The transportation lag parameter 

td is simply the time needed for a particle of fluid to flow from the entrance of the tube to the exit, 

and it can be calculated from the expression: 

𝑡𝑑 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑇𝑢𝑏𝑒

𝑉𝑜𝑙𝑢𝑚𝑎𝑡𝑟𝑖𝑐 𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
=  

𝐴𝐿

𝑉
 

It can be seen from the figure above that the relationship between y (t) and x(t) is 

𝑦(𝑡) = 𝑥(𝑡 − 𝜏) 

Introducing the deviation variables 𝑋 = 𝑥 − 𝑥𝑠  𝑎𝑛𝑑 𝑌 = 𝑦 − 𝑦𝑠   

𝑌(𝑡) = 𝑋(𝑡 − 𝜏)  

Taking the Laplace transform, 𝑌(𝑠) = 𝑋(𝑠)𝑒−𝑡𝑑𝑠 →
𝑌(𝑠)

𝑋(𝑠)
=  𝑒−𝑡𝑑𝑠 

Therefore, the transfer function of a transportation lag is 𝑒−𝑡𝑑𝑠 

Approximation of a transportation lag as follows: 

Taylor series:  𝑒−𝑡𝑑𝑠  ≅  
1

1+𝑡𝑑𝑠
 

                        𝑒−𝑡𝑑𝑠  =  
𝑒−𝑡𝑑𝑠/2

𝑒𝑡𝑑𝑠/2  

first-order Padé approximation:  𝑒−𝑡𝑑𝑠  =  
1−𝑡𝑑𝑠/2

1+𝑡𝑑𝑠/2
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Problems 

7.1. A step change of magnitude 4 is introduced into a system having the transfer function 

Y(s)

X(s)
=

10

s2 + 1.6s + 4
 

Determine (a) Percent overshoot, (b) Rise time (c), Maximum value of Y (t), (d) Ultimate value of 

Y (t) and (e) Period of oscillation. 

 

7.2. The two-tank system shown in the figure beside is 

operating at a steady state. At time, t = 0, 10 ft3 of water 

is quickly added to the first tank. Using appropriate 

figures and equations in the text, determine the maximum 

deviation in level (feet) in both tanks from the ultimate 

steady-state values and the time at which each maximum 

occurs. Data: 

A1=A2= 10 ft2, R1=0.1 ft/cfm, R2=0.35 ft/cfm 

 

7.3. The two-tank liquid-level system shown in the 

figure beside is operating at steady state when a 

step change is made in the flow rate to tank 1. The 

transient response is critically damped, and it takes 

1.0 min for the change in level of the second tank 

to reach 50 percent of the total change.  If the ratio 

of the cross-sectional areas of the tanks is A1/A2 = 

2, calculate the ratio R1/R2. Calculate the time constant for each tank. How long does it take for 

the change in the level of the first tank to reach 90 percent of the total change?  

7.10. Determine Y (0), Y (0.6), and Y (∞) if 

Y(s) =
1

s

25(s + 4)

s2 + 2s + 25
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7.11. In the liquid-level 

system shown in the figure 

beside, the deviation in 

flow rate to the first tank is 

an impulse function of 

magnitude 5. The following 

data apply: A1 = 1 ft2 , A2 = 

A3 = 2 ft2 , R1  = 1 ft /cfm, 

and R2 = 1.5 ft/cfm. 

a) Determine expressions 

for H1(s), H2(s), and 

H3(s) where H1, H2, and H3 are deviations in tank level for tanks 1, 2, and 3.  

b) Sketch the responses of H1(t), H2(t), and H3(t). (You need to show only the shape of the 

responses; do not plot.)  

c) Determine H1(3.46), H2(3.46), and H3(3.46). For H2 and H3, use graphs in Chap. 7 of this text 

after first finding values of t and z for an equivalent second-order system. 

 

7.12. Sketch the response Y(t) if  Y(s) =
e−2s

[s2+1.2s+1]
. Determine Y(t) for t = 0, 1, 5, and ∞. 

 

7.13. The two tanks shown in the figure beside are connected in an interacting fashion. The system 

is initially at a steady state with q = 10 cfm. The following data apply to the tanks: A1 = 1 ft2, A2 

= 1.25 ft2, R1 = 1 ft/cfm, and R2 = 0.8 ft/cfm. 

a) If the flow changes from 10 to 11 cfm 

according to a step change, determine H2(s), 

i.e., the Laplace transform of H2(t), where 

H2 is the deviation in h2.   

b) Determine H2(1), H2(4), and H2 (∞).   

c) Determine the initial levels (actual levels) h1(0) and h2(0) in the tanks.  

d) Obtain an expression for H1(s) for the unit-step change described above. 
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7.14. From figures in this chapter, determine Y(4) for the system response expressed by 

Y(s) =
2

s

2s + 4

s2 + 0.8s + 1
 

 

7.15. A step change of magnitude 3 is introduced into the transfer function 

Y(s) =
10

2s2 + 0.3s + 0.5
 

 

Determine the overshoot and the frequency of oscillation. 

 

 


