Dr. Faroog Ahmed Process Dynamics

Chapter Five: Higher-Ordered Systems: Second-Ordered and Transportation Lag

Chapter Seven in the textbook

This section introduces a basic system called a second-order system or a quadratic lag.
Second-order systems are described by a second-order differential equation that relates
the output variable y to the input variable x (the forcing function) with time as the independent

variable.

P S
dt? ac TV T x(®)

A second-order system can arise from two first-order systems in series, as we saw
in Chapter 4. Some systems are inherently second-order, and they do not result from a
series combination of two first-order systems. A general second-order system under a dynamic

condition is given by the differential equation as follows:

1 d?y  2gdy B 1
wl ar? + o, dt + Y =kX(t) T = o
2dZY+2 dY+Y—kX(t)

Cae TR B

Where k is the steady state gain, Y is the response value, X is the input disturbing variable, { is the
damping factor (damping coefficient) and wn is the natural frequency of oscillation. Taking

Laplace for the second-order differential equation,
7282 () + 2 8Y (5) + Y (5) = kX (s) = (78 +2¢ 8 +1)Y () = kX (s)

Y(s) B k

G(s) = X(s) Tt2sZ242ls+1

If X is a sudden force, such as step change inputs, Y will oscillate depending on the value of the
damping coefficient ({). If C <1 (Under damped), {>1 (Over damped), =1 (Critical

damped)
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Responses of Second Order System

e Step Change

Y(s) _ k
X(s)  t2s2+20ts+1

2
XO=2 = Y@= x A KA @
S 7°8°+2s+1 s 2405y = S
T T

The quadratic term in this equation may be factored into two linear terms that contain the roots

%, (24)2_4 4 4 , [¢7-1

+ 2 47 _4 |

S, = ‘ i i :_—é:i 2 72:—;’i 7’
T 2 T 2

2
2
- -1

=—2+ ¢ Two real roots

T T

- 2.1 - 2.1
slz—g— 3 and szz—§+ 3 (2)

T T T T

Eg. (1) can be re-written as

Y(s)= KA/ 7?2

S(s—5,)(s—$,)

(>1 Overdamped Two distinct real roots
(=1 Critically Damped Two equal real roots
0<(<1 Underdamped Two complex roots

Y (s) = k Xé:ao oS + o,

%8 +2ws+1 s s s+ 2ms+1
a,(r°s* + 208 +1) + a,8* + a5 = KA
s° a, =kA
st 20,lt+a,=0 = a,=-2KAlT

S a,r’+a,=0 = a =-kA7’
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Y (s) = kA[l— rs+2¢7 }

s 7°s*+2Lw+1

1 2£ 1 S-|-2£
Y(s) = kAl = - AR P\ r 2
> (s+2§s+12j+§2—é’2 S (s+2§s C:ZJ+12—§2
T T T T T T T T
si2%
Y — - _ T
T
e (<1 (Under-damped system)
1 s+2£ 1 s+£+£
Y(S)=kAg— T . :kAg_ T T
(5+) [ 1-¢ J (5+) {Jl—e“ }
T T T T
S+
_kal o _
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o V1=¢° Y(t)=kA[1—e(4”’t(coswt+ ¢ _sinwt
T 1_52
o2 ¢ ) _[1
r=4p°+q _\/L{ 1—4”2} = 1_42
P 1 _tan-l 1_4/2
¢ =tan ] tan 5 tan ;
J1-¢72
Y (t) = KAIL— e (rsin(wt + g)) |
e (>1 (Over-damped system)
1 s+2£ 1 s+£+£
Y(S):kA g— 2 2 5 :kA g— 22- TZ
(s+§ +1_2§ (s+§j _¢ 2_1
i T Tt i T Tt
L st ¢
— KAl = — T _ T
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2 J—
Y() = k{l e‘(é”){coshwt + Lsinh wtﬂ where w= ¢ -1
-1 T

e (=1 (Critical-damped system)

For this case, the response is given by expression:

Hﬂ=1—(1+£}ﬂ”
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Figure (5.1): Response of the second order system — Under damping.
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Terms Used to Describe an Underdamped System Second order system for a step change response

e Overshoot (OS)
It is a measure of how much the response exceeds the ultimate value (new steady-state value)
following a step change and is expressed as the ratio % in Figure (5.1).
— ﬂ-é’
J1-¢2

OS % =0S x100

OS =exp

Wt+d=0+nn
nz .
t=— max ormin n=1,2,3
w
Ifn=0,2,4,6,................ min
Ifn=1,3,5"7 ..c..c.......... max

15t max when n=1

(_m_m
w w
—7 T
y(t) = kA 1— e ™ sin [W——I—¢j
2 w

H
|-
&N

Yimax = kA 1_%e@(_3in ¢)

For the underdampded system

cosg=—C , sing=1-¢% | tang= 1__52
1 s
Yiax = KAl 1+ ——=—e " (\/1—42)
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¢
Yonax = kA{1+ e‘/ﬁ}

7471-
KAl 1+ eV <" | — kA
max— B B

B kA 1_4’2

Overshoot = g

e Decay Ratio (DR)

It is defined as the ratio of the sizes of successive peaks and is given by% in Figure (5.1). where C

is the height of the second peak.

2% __ (0sy*

DR:exp\/l_?_

nz T
t=—— for n=3 then t=—
W W
-l
_ ol
First peak at n=1 Ymax = KAl1+e
-374
_ 1-¢?
Second peak at n=3 Ymax = KA 1+e
—37g 37 o
N Ji-¢? 2
Decay Ratio = KAIL+e — I-kA _e ——e

KA[L+eV <" ]—kA eV

. -2n8
Decay Ratio = exp ——=—
SN
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Rise Time (t;)

Process Dynamics

This is the time required for the response to first reach its ultimate value.

7—tan™ “1_42
t, = &
W
(t) =kA 1 L v (tw+¢)
y(t) = - © sin (tw+
J1-¢?
—ct

1

KA = KAl — ———
J1-¢?

0=sin(t,w+¢)]

e © sin (t,w+ ¢)]

]
sin™"(0) —
L _sin(©)-
W
_ /2 2
nz—tan™ & r—tan™ d
nr—
tr = = = tr =
w W w

Response Time

This is the time required for the response to come within +5 percent

remain there. The response time is indicated in Figure (5.1).

Period of Oscillation (T)

for n=1

of its ultimate value and

The radian frequency (radians/time) is the coefficient of t in the sine term; thus,

27T

1-¢7?

T=
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w = Radian frequency =

w=2xa also T =%

e Natural Period of Oscillation (Tn)

If the damping is eliminated ({ = 0), the system oscillates continuously without attenuation in

amplitude. Under these “natural” or undamped condition, the radian frequency is . This frequency

is referred to 1 as the natural frequency wh.
T
1
W, =~
r

The corresponding natural cyclical frequency f,and period T are related by the expression:

1 1
= — = —— Thus, 7 has the significance of the undamped period.

" T 2ar

The system free of any damping for (=0

[_2
1-¢ = an1 for £ =0

T T

w, radian of frequency =

w, =2xf,

e Time to First Peak (tp)

It is the time required for the output to reach its first maximum value.

v T
t _— =
p W 1_4,2

nxz . . nr =« T
t=— The first peak is reached when n=1 t ===

W woow 1-¢°
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Impulse Response

If impulse 6(t) is applied

ot

to second order system then transfer response will be as follows:

k
Y(S)_rzsz+2§zs+lx(s)
X(s)=Area=A
k
Y(S)_rzsz+2§zs+1'
kA/7° KA/ 7?
Y(s)= =
20 1 2 2
e s Ee ()
3 kA/7? B kA/z?
= 2 2= 2 2
sz+2§s+(§j +12—(§j (s+§) +1_2§
T T T T T T
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o (>1
kA 7 £r-1

Y(s)= é/kA/r;._é/zz KA/ 72 _ ANV 2

(S+;)2+ '[2 (S+§)2_{V§ _1J (S+é/)2_{ ; _1J

T T T T
kA

Y({t)=—————e 7 sinhwt

/7 -1
W= S

T
° C<1

kA 7 1-¢72

R e e

[SJré;j +1_ng (S+§J +{1_§2J (s+§) +( 1_§2j

T T T T
A 2

Y(t) = A er sinwt w=ML76

T J1-¢7 T
o (=1
Y(s) = kAzlr2 _ - kA2/T2 _- kA/rz2

(s+ij + _Tf (s+i} +1;21 [s+ij

Y(t)= k—?te‘”’
T
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TYit)

Example 1: A step change from 15 to 31 psi in actual pressure results in the measured response

from a pressure indicating
element shown in the
figure beside. Assuming
second-order  dynamics,
calculate all important R (mm)
parameters and write and
approximate transfer
function in the form

R'(s) _ K

P'(s) r’s®+2¢s+1

12.7
11.2

Time (s)

where R' is the instrument output deviation (mm), P' is the actual pressure deviation (psi).

12
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Solution:
Gain=2=8 _0.20 mmy psi
31-15
Overshoot = 127-112 _ 0.47
11.2-8

Overshoot = exp[ 7o ] =0.47

1-¢7?
£ =0.234
l _ 2
Period = 2m =2.3sec = 1:2.3xﬂ:0.3563ec
1-¢7 2r
R'(s) _ 0.2

P'(s) 0.127s%+0.167s+1

Example 2: A control system having a transfer function is expressed as:

Y(s) 5

ce)=5 (s) 77s+2(m+1

The radian frequency for the control system is 1.9 rad/min. The time constant is 0.5 min. The
control system is subjected to a step change of the magnitude 2. Calculate: (1) Rise time, (2) Decay
ratio, (3) Maximum value of Y(t), and (4) Response time.

Solution:
Given X(s) = 2 Time constant 7 = 0.5 min Radian frequency w=1.9 rad / min
S
2 1_ 2
W= 1-¢ = 19= ¢ = ¢=0312
T 0.5
(1) Rise time
L41-¢7 J1- 2
rotan VO 51406 gt V120312
tr = 6 - 0312 _1.0min
w 1.9

13
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(2) Deacay ratio = % = exp{ —2ng j: exp(m] =0.127

1-¢? V1-(0.312)

(3) Ultimate value of the response Y mae (B) 8t t — o0

Y

(s) _ . 5 X(s)=g
X(s) 0.25s°+0.316s+1 S
Y(S) = 2 1

$(0.25s° +0.316s +1)
Ultimate value = lim sY(s) — I ( 5 ) H
= i =

imate value S1_r)r015 (s) 51_1)135 0.25s2 + 0.316s + 1

Y utimate (B) =10 Maximum value of response = B(l + %j

_ﬂ-é’
J1-¢2

0.127=Overshoot?> = Overshoot = 0.356 :% = Maximum value of response =10(1+0.356)=13.56

Overshoot :% = exp( ] Decay ratio=0vershoot?

(4) Response time ts =35 =4.8077min  for £5% of ultimate value

Transportation Lag

A phenomenon that is often present in flow systems is the transportation lag. Synonyms for this
term are dead time and distance velocity lag. As an example, consider the system shown in the
figure beside, in which a liquid flows through an insulated tube of uniform cross sectional area A

and length L at a constant volumetric flow rate g. The )
Cross-sectional area = A

x® —( (> »w
T . . N
- 1

density r and the heat capacity C are constant. The tube

wall has a negligible heat capacity, and the velocity

profile is flat (plug flow). The temperature x of the

14
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entering fluid varies with time, and it is desired to find the response of the outlet temperature y (t)

in terms of a transfer function.

If a step change were made in x (t) at t 0, the

change would not be detected at the end of the / x(t)
tube until tgs later, where tq is the time I
. . . | it
required for the entering fluid to pass through |
|
the tube. This simple step response is shown 0 T 0 T
(a) (b)

in the figure beside. If the variation in x(t)
were some arbitrary function, as shown in the figure beside, the response y(t) at the end of the pipe
would be identical with x(t) but again delayed by tq units of time. The transportation lag parameter
tq is simply the time needed for a particle of fluid to flow from the entrance of the tube to the exit,

and it can be calculated from the expression:

- Volume of Tube AL
¢~ Volumatric Flow rate ~ V

It can be seen from the figure above that the relationship between y (t) and x(t) is

y(©) =x(t—1)
Introducing the deviation variables X = x —x; and Y =y — yq
Y(t) =X(t—1)
Taking the Laplace transform, Y (s) = X(s)e %S — Ye) _ g-tas

X(s)
Therefore, the transfer function of a transportation lag is e ~ta%

Approximation of a transportation lag as follows:

: _ 1
Taylor series: e ~tdS =
1+tgs
-t 2
e_tds o ﬂ
etdS/Z
: , o _ 1-tgs/2
first-order Padé approximation: e ~fdS = 1-tas/2
1+tgs/2

15
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Problems
7.1. A step change of magnitude 4 is introduced into a system having the transfer function

Y(s) 10
X(s) s2+1.6s+4

Determine (a) Percent overshoot, (b) Rise time (c), Maximum value of Y (t), (d) Ultimate value of
Y (t) and (e) Period of oscillation.

7.2. The two-tank system shown in the figure beside is
_ _ 20 f}/min * * 10 £
operating at a steady state. At time, t = 0, 10 ft* of water A

is quickly added to the first tank. Using appropriate

figures and equations in the text, determine the maximum

i S
=7

deviation in level (feet) in both tanks from the ultimate =

steady-state values and the time at which each maximum i’! R,

occurs. Data:

A1=A,= 10 ft?, R1=0.1 ft/cfm, R2=0.35 ft/cfm

7.3. The two-tank liquid-level system shown in the

q
figure beside is operating at steady state when a l A
step change is made in the flow rate to tank 1. The =

transient response is critically damped, and it takes

1.0 min for the change in level of the second tank

to reach 50 percent of the total change. If the ratio

of the cross-sectional areas of the tanks is Ai/Az =
2, calculate the ratio R1/R». Calculate the time constant for each tank. How long does it take for

the change in the level of the first tank to reach 90 percent of the total change?
7.10. Determine Y (0), Y (0.6), and Y () if

1 25(s+4)
Y(s) = 552+ 25+ 25

16
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7.11. In the liquid-level m:ﬁm—l

system shown in the figure

beside, the deviation in i
flow rate to the first tank is R

an impulse function of Tank 1

IL:n.

‘|‘| i3
|

magnitude 5. The following
data apply: Ay =1ft?, Ao =
As=2ft?, Ry =1 ft/cfm, Tank 2
and R? = 1.5 ft/cfm. e

f=
|

i
=) w

a) Determine expressions
Constant flow
for Ha(s), H2(s), and Tank 3 Q
Hz(s) where Hy, Hz, and Hs are deviations in tank level for tanks 1, 2, and 3.
b) Sketch the responses of Hi(t), Hz(t), and Hs(t). (You need to show only the shape of the

responses; do not plot.)
c) Determine H1(3.46), H2(3.46), and H3(3.46). For H2 and Hz, use graphs in Chap. 7 of this text

after first finding values of t and z for an equivalent second-order system.

e—ZS

7.12. Sketch the response Y (t) if Y(s) = [ . Determine Y(t) fort=0, 1, 5, and co.

s2+1.2s+1]

7.13. The two tanks shown in the figure beside are connected in an interacting fashion. The system
is initially at a steady state with g = 10 cfm. The following data apply to the tanks: A1 = 1 ft?, A,
=1.25 ft?, Ry = 1 ft/cfm, and Rz = 0.8 ft/cfm.

a) If the flow changes from 10 to 11 cfm E"} _fl_ _ fl_
according to a step change, determine Hx(s), _:i: _z—f:
i.e., the Laplace transform of Hx(t), where by by
H2 is the deviation in h,. B, R,

Y e T
s fas -

b) Determine Hz(1), Hz2(4), and Hz ().
c) Determine the initial levels (actual levels) h1(0) and h2(0) in the tanks.

d) Obtain an expression for Hy(s) for the unit-step change described above.

17
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7.14. From figures in this chapter, determine Y (4) for the system response expressed by
2 2s+4

Y(s) =~
(s) ss2+08s+1

7.15. A step change of magnitude 3 is introduced into the transfer function
10
2s2+0.3s+ 0.5

Y(s) =

Determine the overshoot and the frequency of oscillation.
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