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Chapter Five: Controller Tuning 

Chapter Eighteen in the textbook 

 

The selection of a controller type (P, PI, and PID) and its parameters (intimately related to the 

model of the process to be controlled. The adjustment of the controller parameters to achieve 

satisfactory control is called tuning. The selection of the controller parameters is essentially an 

optimization problem in which the designer of the control system attempts to satisfy some criterion 

of optimality, the result of which is often referred to as “good” control. The process of tuning can 

vary from atrial-and-error attempt to find suitable control parameters for good control to an 

elaborate optimization calculation based on a model of the process and a specific criterion of 

optimal control. In many applications, there is no model of the process, and the criterion for good 

control is only vaguely defined. A typical criterion for good control is that the response of the 

system to a step change in set point or load has minimum overshoot and a one-quarter decay ratio. 

Other criteria may include minimum rise time and minimum settling time. 

Controller Tuning 

 Tuning is the adjustment of the controller parameters to obtain a specified closed-loop 

response. Controller tuning is the process of setting controller gains to achieve desired 

performance. 

 After a control system is installed, the controller settings must usually be adjusted until the 

control system performance is considered to be satisfactory. 

 The tuning goal is to determine the gains that optimize system response. A high gain 

increases responses but moves the system closer to instability. 

 A low gain improves the stability but the system becomes sluggish. 
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Design and Tuning of a Control System 

1. What should type of feedback controller be used to control a given process? 

Some engineers select PI and others select PID. In all cases, the selection of Kc and τI has an 

important effect on the response of the controlled process. 

2. How do we select the best values of the adjustable parameters of the feedback controller? 

This is known as the controller tuning problem. We need to have a quantitative measure to compare 

the alternatives and then select the best type of controller and its parameters. 

3. What performance criteria should be used for selecting and tuning the controller? 

A variety of performance criteria should be used to keep the max derivation (Error) as small as 

possible by achieving a short settling time, minimizing the integral of errors until the process has 

settled to its set point, and keeping a low decay ratio. 

 

Simple Performance Criteria 

1. Steady-state performance criteria 

The principal steady-state performance criteria usually are zero. So, the P control cannot achieve 

steady-state error while a PI can. 

2. Dynamic response performance criteria 

a. The criteria that use only a few points of the response are simpler but approximate. 

b. The criteria that use the entire closed–loop response from t = 0 to very large are more 

precise but more cumbersome to use. 

c. For the best criteria, the decay ratio, and the optimum value of DR is. 

C

A
=

1

4
 

It is the reasonable tradeoff between a fast rise time and a 

reasonable settling time. 

This criterion is usually known as the one-quarter decay ratio. 
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Example 1: Select the gain of a proportional controller (Kc) using the one-quarter decay ratio 

criterion (DR=0.25). The process is described by:   

GP(s) =
10

(s + 2)(2s + 1)
, Assume Gm(s) = Gf(s) = 1 

Answer: 

Y(s) =
GPGvGc

1 + GPGvGcGm
    

 

 

 
 

 

 

 

 

2 ξ  

 

ξ  →  ξ =
10Kc

1+10Kc
 

 

→  ξ = 0.2154 

 

 
 

 =6.93 
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Example 2: Find the gain of a proportional controller that produces a closed-loop response for a 

second-order system with decay ratio equal to 1/4. The process is described by: 

GP(s) =
1

s2 + 3s + 1
     ,   Gm(s) = Gf(s) = 1 

 

Answer: 

Y(s) =
GPGvGc

1 + GPGvGcGm
 

Y(s) =
Kc

1
s2 + 3s + 1

1 + Kc
1

s2 + 3s + 1

    

Y(s) =

Kc

s2 + 3s + 1
s2 + 3s + 1 + Kc

s2 + 3s + 1

 

Y(s) =
Kc

s2 + 3s + 1 + Kc
 

Y(s) =

Kc

1 + Kc

s2

1 + Kc
+

3
1 + Kc

s + 1
 

τ2 =
1

1 + Kc
→ τ =

1

√1 + Kc

 

2ξτ =
3

1 + Kc
 

ξ =
3√1 + Kc

2(1 + Kc)
=

3

2√1 + Kc

 

 

For DR=1/4, the ξ = 0.2154 

0.2154 =
3

2√1 + Kc

 

√1 + Kc = 6.9621 → Kc = 47.4718 
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Controller Tuning 

Process Reaction Curve (PRC) Method 

It is an empirical rule which has been proven in practice and is known as the Cohen and Coon 

method.  It applies only to open-loop processes that are inherently stable and suggests a method to 

first model the process in the open loop and then pick the appropriate control parameters. Noted 

that most responses have a “sigmoidal” response to a step change. The procedure of this method 

is to open the control system by disconnection the controller from the final control element, and 

introduce a step change of the magnitude M in the variable X which actuates the final control 

element to find the Transfer function between Y and X as follows: 

GPRC =
Y(s)

X(s)
= Gv(s) Gp(s)H(s) 

 

Figure 1: Block diagram of a control loop for measurement of a process reaction curve. 

Cohen and coon suggested estimating the response of the above equation as a first order with time 

delay. 

1. After the process reaches a steady state at the normal level of operation, switch the 

controller to manual. In a modern controller, the controller output will remain at the same 

value after switching as it had before switching. (This is called “bumpless” transfer.) 

𝑀

𝑆
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2. With the controller in the manual, introduce a small step change in the controller output 

that goes to the valve and records the transient, which is the process reaction curve (Figure 

2). 

3. Draw a straight line tangent to the curve at the point of inflection, as shown in Figure 2. 

The intersection of the tangent line with the time axis is the apparent transport lag td; the 

apparent first-order time constant τ is obtained from  

τ =
B

S
=

Output (at steady state)

Slope
 

where B is the ultimate value and S is the slope of the tangent line. The steady-state gain that relates 

B to A in Figure 2 is given by 

KP =
B

A
=

Output (at steady state)

Intput (at steady state)
 

ym

td t

B

(a)

S

ym

td t

B

(b)

Slop = S

Approximate 

response

Actual 

response

 

Figure 2: Typical process reaction curve showing graphical construction to determine first-order 

with transport lag model. 

4. Using the values of KP, T, and td from step 3, the controller settings are found from the 

relations given in equations below. All the controller settings are a function of the 
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dimensionless group td/τ, the ratio of the apparent transport lag to the apparent time 

constant. Also, Kc is inversely proportional to KP. 

According to Cohen and Coon, most processes will have a response to this change that may be 

approximated as a first-order system with dead time. This model is First order pulse dead-time 

(FOPDT): 

GPRC =
Y(s)

X(s)
≈

Ke−tds

τs + 1
 

Cohen and coon used the approximated model of Equation 2 and estimated KP, τ, and td. So, the 

derived expression of the best controller setting using the load change and variation criteria, such 

as one-quarter decay ratio, minimum offset, and minimum square error (ISE). 

Cohen-Coon controller settings are as follows: 

For Proportional controller: 

Kc =
1

K

τ

td
(1 +

td

3τ
) 

 

For Proportional-Integral controller: 

Kc =
1

K

τ

td
(0.9 +

td

12τ
) 

 

τI = td (
30 + 3td/τ

9 + 20td/τ
) 

 

For Proportional-Integral-Derivative controller: 

 

Kc =
1

K

τ

td
(

4

3
+

td

4τ
) 
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τI = td (
32 + 6td/τ

13 + 8td/τ
) 

 

τD = td (
4

11 + 2td/τ
) 

 

Advantages of the C-C or process reaction curve method: 

 Only a single experimental test is required. 

 It does not require trial and error.  

 The controller settings are easily calculated. 

Disadvantages of the C-C or process reaction curve method: 

 The experimental test is performed under open-loop conditions. Thus if a significant load 

change occurs during the test, no corrective action is taken and the test results may be 

significantly distorted. 

 It may be difficult to determine the slope at the inflection point accurately, especially if 

the measurement is noisy and a small recorder is used.  

 The method tends to be sensitive to controller calibration errors. By contrast, the Z-N 

method is less sensitive to controller errors in Kp since the controller gain is adjusted 

during the experimental test. 

 This method is not recommended for processes that have oscillatory open-loop responses. 

 

Example 3: Consider the system with the following Transfer functions: 

Gp =
1

(5s+1)(2s+1)
                  Gm =

1

10s+1
                                Gf = 1 

Determine the optimum control elements using the PRC method. 

GPRC = GfGpGm =
1

(5s+1)(2s+1)
×

1

(10s+1)
× 1 ⇒

1

(5s+1)(2s+1)(10s+1)
     

Solution: 

Take Laplace inverse to the equation above and then draw Y(t) against t using partial fraction of 

the above equations. 
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For unit step change in X(s)  

𝑋(𝑠) =
1

𝑠
 

)110(

1

)15)(12(

11
)(




ssss
sY          (3) 

Solving equation (3) by partial fraction  

1

𝑠(2𝑠 + 1)(5𝑠 + 1)(10𝑠 + 1)
=

𝛼𝑜

𝑠
+

𝛼1

2𝑠 + 1
+

𝛼2

5𝑠 + 1
+

𝛼3

10𝑠 + 1
 

1 = 𝛼𝑜(2𝑠 + 1)(5𝑠 + 1)(10𝑠 + 1) + 𝛼1𝑠(5𝑠 + 1)(10𝑠 + 1) + 𝛼2𝑠(2𝑠 + 1)(10𝑠 + 1)

+ 𝛼3𝑠(2𝑠 + 1)(5𝑠 + 1) 

For s=0   then 𝛼𝑜 = 1 

For s=-1/2   then 1 = 𝛼1(−
1

2
)(−5/2 + 1)(−10/2 + 1) 

1 = 𝛼1(−
1

2
)(−

3

2
)(−4) 

𝛼1 = −
1

3
 

For s=-1/5   then 1 = 𝛼2𝑠(2𝑠 + 1)(10𝑠 + 1) 

1 = 𝛼2(−
1

5
)(−

2

5
+ 1)(−

10

5
+ 1) 

1 = 𝛼2(−
1

5
)(

3

5
)(−1) 

𝛼2 =
25

3
 

For s=-1/10   then 1 = 𝛼3𝑠(2𝑠 + 1)(5𝑠 + 1) 

1 = 𝛼3(−
1

10
)(−

2

10
+ 1)(−

5

10
+ 1) 

1 = 𝛼3(−
1

10
)(

8

10
)(

5

10
) 

𝛼3 = −25 

𝑌(𝑠) =
1

𝑠
−

1
3

2𝑠 + 1
+

25
3

5𝑠 + 1
−

25

10𝑠 + 1
 

𝑌(𝑠) =
1

𝑠
−

1
6

𝑠 +
1
2

+

5
3

𝑠 +
1
5

−
2.5

𝑠 +
1

10

 

 

𝑌(𝑡) = 1 −
1

6
𝑒−

𝑡
2 +

5

3
𝑒−

𝑡
5 − 2.5𝑒−

𝑡
10 

 

Then draw Y(t) against t by using partial fraction of the above eqn. 
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Then GPRC =
Ke−tds

τs+1
  From the figure above,  

K = gain = 
B

A
=

1

1
= 1 

S = slope at the inflection point = 0.05 

B = Ultimate response = 1.0 

τ = effective time constant = 
B

S
=

1

0.05
= 20  

td = delay time = 2.5 

∴ GPRC =
1.0e−2.5s

20s + 1
 

 

Using Cohen and Coon settings 

For Proportional controller:  

Kc =
1

K

τ

td
(1 +

td

3τ
) =

1

1
×

20

2.5
(1 +

2.5

3 × 20
) =  8.33 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 10 20 30 40 50 60 70 80 90 100

Y(
t)

Time (min)

Time (min) Y(t) 

0 0.000 

5 0.083 

10 0.305 

15 0.525 

20 0.692 

25 0.806 

30 0.880 

35 0.926 

40 0.955 

45 0.972 

50 0.983 

55 0.990 

60 0.994 

65 0.996 

70 0.998 

75 0.999 

80 0.999 

85 0.999 

90 1.000 

95 1.000 

100 1.000 
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For PI controller: 

 Kc =
1

K

τ

td
(0.9 +

td

12τ
) =

1

1
×

20

2.5
(0.9 +

2.5

12×20
) = 7.28 

 

τI = td (
30+3td/τ

9+20td/τ
) = 2.5 (

30+3×2.5/20

9+20×2.5/20
) = 6.6   

 

For PID controller: 

Kc =
1

K

τ

td
(

4

3
+

td

4τ
) = 10.9  

 

τI = td (
32 + 6td/τ

13 + 8td/τ
) = 5.85 

 

τD = td (
4

11 + 2td/τ
) = 0.89 

 

 

Example 4: Table 1 shows the experimental process reaction curve of the open loop system with 

a PI controller. Using the data in given in the Table 1:  

Table 1: Input and output variables with respect to time 

Time (min) -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

Manipulated input 10 10 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 

Measurement of 

output 
0.650 0.650 0.650 0.651 0.652 0.668 0.735 0.817 0.881 0.979 1.075 1.151 1.213 1.239 1.262 1.311 1.329 1.338 1.350 1.350 1.350 

 

Table 2: Cohen and Coon Controller Settings. 

 P PI PID 

Kc Kc =
1

K

τ

td

(1 +
td

3τ
) Kc =

1

K

τ

td

(0.9 +
td

12τ
) Kc =

1

K

τ

td

(
4

3
+

td

4τ
) 

τI - τI = td (
30 + 3td/τ

9 + 20td/τ
) τI = td (

32 + 6td/τ

13 + 8td/τ
) 

τD - - τD = td (
4

11 + 2td/τ
) 
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Solution: 

A = 15 − 10 = 5  

B = 1.35 − 0.65 = 0.7  

K =
B

A
=

0.7

5
= 0.14 

S =
1.35 − 0.65

60 − 14
=  0.0152 

τ =
B

S
=

0.7

0.0152
= 46 min  

td = 14 min  

 

GPRC =
0.14e−14s

46 s + 1
 

 

Kc =
1

K

τ

td
(0.9 +

td

12τ
) =

1

0.14
×

46

14
(0.9 +

14

12 × 46
) = 21.71 

 

τI = td (
30 + 3td/τ

9 + 20td/τ
) = 14 (

30 + 3 × 14/46

9 + 20 × 14/46
) = 28.68 min 

 

Example 5: Consider the feedback control system for the stirred-tank blending process shown in 

Fig. 1 and the following step test. The controller was placed in manual, and then its output was 

suddenly changed from 30% to 43%. The resulting process reaction curve is shown in Figure (2). 

Thus, after the step change occurred at t = 0, the measured exit composition changed from 35% to 

55% (expressed as a percentage of the measurement span), which is equivalent to the mole fraction 

changing from 0.10 to 0.30. Select the PID controller settings using the Cohen-Coon technique. 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100

Y(
t)

Time (min)
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Figure 1: Composition control system for a stirred-tank blending process. 

 
Figure 2: Process reaction curve. 

Cohen and Coon Controller Settings 

 P PI PID 

Kc 
Kc =

1

K

τ

td

(1 +
td

3τ
) Kc =

1

K

τ

td

(0.9 +
td

12τ
) Kc =

1

K

τ

td

(
4

3
+

td

4τ
) 

τI - 
τI = td (

30 + 3td/τ

9 + 20td/τ
) τI = td (

32 + 6td/τ

13 + 8td/τ
) 

τD - - 
τD = td (

4

11 + 2td/τ
) 

 td = time delay  
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Solution: 

A first-order-plus-time-delay model can be developed from the process reaction curve in Figure 

(2) using the graphical method. The tangent line through the inflection point intersects the 

horizontal lines for the initial and final composition values at 1.07 min and 7.00 min, respectively.  

S =
∆Y

∆X
=

55 − 35

7 − 1.07
= 3.3726 %/min 

K =
Output

Input
=

B

A
=

55 − 35

43 − 30
=

20

13
= 1.5384 %/% 

τd = 1.07 min 

τ =
B

S
=

20

3.3726
= 5.93 min 

 

The resulting empirical process model can be expressed as: 

X(s)

P(s)
= Gprc =

1.538e−1.07s

5.93s + 1
 

 

Kc =
1

K

τ

td
(

4

3
+

td

4τ
) =

1

1.538
×

5.93

1.07
(

4

3
+

1.07

4 × 5.93
) = 4.967 

 

τI = td (
32 + 6td/τ

13 + 8td/τ
) = 1.07 (

32 + 6 × 1.07/5.93

13 + 8 × 1.07/5.93
) = 2.54 min 

 

τD = td (
4

11 + 2td/τ
) = 1.07 (

4

11 + 2 × 1.07/5.93
) = 0.3767 min 

 

Ziegler-Nichols (Z-N) Method 

These rules were first proposed by Ziegler and Nichols (1942), who were engineers for a major 

control hardware company in the United States (Taylor Instrument Co.). Based on their experience 

with the transients from many types of processes, they developed a closed-loop tuning method still 

used today in one form or another. The method is described as a closed-loop method because the 

controller remains in the loop as an active controller in automatic mode. This closed-loop method 

will be contrasted with an open-loop tuning method to be discussed later. We have already 

discussed the ZieglerNichols rules in Chapter 16 as a natural consequence of our study of 
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frequency response. Ziegler and Nichols did not suggest that the ultimate gain Kcu and ultimate 

period Pu be computed from frequency response calculations based on the model of the process. 

They intended that Kcu and Pu be obtained from a closed-loop test of the actual process. When 

the rules were first proposed, frequency response methods and process models were not generally 

available to the control engineers. The rules are presented below and are in the form that one would 

use for actual application to a real process. 

1. After the process reaches a steady state at the normal level of operation, remove the integral 

and derivative modes of the controller, leaving only proportional control. On some PID 

controllers, this requires that the integral time tI be set to its maximum value and the 

derivative time tD to its minimum value. On computer-based controllers, the integral and 

derivative modes can be removed completely from the controller. 

2. Select a value of proportional gain Kc, disturb the system, and observe the transient 

response. If the response decays, select a higher value of Kc and again observe the response 

of the system. Continue increasing the gain in small steps until the response first exhibits 

a sustained oscillation. The value of gain and the period of oscillation that correspond to 

the sustained oscillation are the ultimate gain Kcu and the ultimate period Pu.  

Some very important precautions to take in applying this step of the tuning method are given in 

the next section. 

3. From the values of Kcu and Pu found in step 2, use the Ziegler-Nichols rules given in Table 

2 to determine controller settings (Kc, tI, and tD). (This table is the same as Table 16.1.) 

Although variations in the tuning rules given in Table 2  are used by the industry, the same 

approach of using Kcu and Pu to obtain controller parameters is used. The Ziegler-Nichols rules 

generally provide conservative (and safe) controller settings. The Z-N settings should be 

considered as only approximate settings for satisfactory control. Fine-tuning of the controller 

settings is usually required to get an improved control response. Ziegler-Nicholas (Z-N) method 

is a popular method for tuning P, PI, and PID controllers. The Z-N controller tuning method is 

developed by J.G. Zielger and N.B. Nichols, and is pseudo-standard in the control field. The ZN 

setting are benchmarks against which the performances of other controller settings are compared 

in many studies. This method starts by zeroing the integral and differential gains and then raising 

the proportional gain until the system is unstable. The value of Kp at the point of instability is 

called K max the frequency of oscillation is f0.  The method of Ziegler and Nichols known as the 



Dr. Farooq Ahmed                                                                                  Control System                                                                                 

16 
 

continuous cycling method. In this method, integration and derivative terms of the controller are 

disabled and the proportional gain is increased until a continuous oscillation occurs at ultimate 

gain Kcu for the closed loop system. Considering Kcu and its related oscillating ultimate period, Pu 

, the controller parameters can be calculated from the equation bellow. 

𝐾𝑐𝑢 ⇒  𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 continuous cycling method  

𝑃𝑢 =
2𝜋

𝑤
                                                             𝑤ℎ𝑒𝑛 (𝑤) = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

For Proportional controller: 

   𝐾𝑐 =
𝐾𝑐𝑢

2
                                                                       

For Proportional-Integral controller: 

  𝐾𝑐 =
𝐾𝑐𝑢

2.2
                                                                      

  𝜏𝐼 =
𝑃𝑢

1.2
                                                                                

For Proportional-Integral-Derivative controller: 

  𝐾𝑐 =
𝐾𝑐𝑢

1.7
                                                                       

  𝜏𝐼 =
𝑃𝑢

2
                                                                          

  𝜏𝐷 =
𝑃𝑢

8
                                                                       

Also, Ziegler-Nichols used another method bode diagram of two graphs: one is a plot of the 

logarithm of the magnitude of sinusoidal transfer function; the other is a plot of phase angle; both 

Pu 

Pu 

Pu 
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are plotted against the frequency on a logarithm scale as shown in Figure (2). Gain margin (GM) 

and crossover frequency (𝜔) can be found from two plots therefore, the ultimate gain and period 

of oscillation are calculated from following: 

𝐾𝑢 = 20 log(𝐺𝑀) 

𝑃𝑢 =
2𝜋

𝜔
                                                                     

ω

Gain 

margin

M

1.0

A.R

Phase 

margin

-180o

0o

Ø(I)

Ø

ωCO

 

Figure 2: Definition of gain and phase margins. 

Example 6: Determine the Ziegler – Nichols tuning parameters for a PID controller, with the given 

transfer functions. Assume that the time constants have units of minutes. 
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𝐺𝑣 =
5

2𝑆+1
                   𝐺𝑚 =

0.4

5𝑆+1
                      𝐺𝑝 =

2

𝑆+1
                              

Solution: 

Continuous cycling method  

1+ Gloop = 0 

1+Gv Gm Gp Gc = 0 

Put    Gc = Kcu 

1 + (
5

2𝑆+1
× 

0.4

5𝑆+1
× 

2

𝑆+1
× 𝐾𝑐𝑢) = 0  

1 + (
4 𝐾𝑐𝑢

(2𝑆 + 1)(5𝑆 + 1)(𝑆 + 1)
  ) = 0 →

(2𝑆 + 1)(5𝑆 + 1)(𝑆 + 1)

(2𝑆 + 1)(5𝑆 + 1)(𝑆 + 1)
+

4 𝐾𝑐𝑢

(2𝑆 + 1)(5𝑆 + 1)(𝑆 + 1)
= 0 

 

10 S3 + 17 S2 + 8 S +1 + 4 Kcu = 0 

Put S=iw, and  i= -1 

10 (iw)3 + 17 (iw)2 + 8 (iw) +1 + 4 Kcu = 0 

-10 iw3 – 17 w2  + 8 iw +1 + 4 Kcu = 0  

Real: – 17 w2  +1 + 4 Kcu = 0 

Imaginary: -10 iw3 + 8 iw = 0  

10 iw3 = 8 iw 

w2 = 0.8      →       w = 0.894 

-17 × 0.8 + 1 + 4 Kcu = 0 

Kcu = 3.15 

𝑃𝑢 =
2𝜋

𝑤
=  

2𝜋

0.894
= 7.03 min  

For Kc, ꚍI, and ꚍD 

𝐾𝑐 =
𝐾𝑐𝑢

1.7
=  

3.15

1.7
= 1.85  

𝜏𝐼 =
𝑃𝑢

2
=  

7.03

2
= 3.52 min 

𝜏𝐷 =
𝑃𝑢

8
=  

7.03

8
= 0.879 min 
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• Controller tuning relations have been developed that optimize the closed-loop response for 

a simple process model and a specified disturbance or set-point change.  

• The optimum settings minimize an integral error criterion.  

• Three popular integral error criteria are: 

The main three methods of the integral error performance criteria used in terms of: 

 Integral of the absolute value of the error (IAE) 

IAE = ∫ |e(t)|
∞

0
dt                                                                         

where the error signal e(t) is the difference between the set point and the measurement. 

 Integrated Square Error (ISE)  

This error uses the square of the error, thereby penalizing large errors more than small 

errors. This gives more conservative response (faster return to set point). 

dteISE 



0

2                                                                                      

 Integrated Time-Weighted Absolute Error (ITAE)  

This criterion is based on the integral of the absolute value of the error multiplied by time. It results 

in errors existing over time being penalized even though may be small, which results in a more 

heavily damped response.  

dtetITAE 



0

                                                                                

If the performance indices increases, control system can perform poorly and even become unstable. 

So it needs to tune the controller parameters to achieve good control performance with the proper 

choice of tuning constants. Also, they derived expression for the best controller setting using load 

change and variation criteria, such as One quarter decay Ratio, Minimum offset and Minimum 

square error (ISE) 

 


