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Chapter Four: Response of First Order-Order Systems in Series 

Chapter Six in the textbook  

 

A physical system can be represented by several first-order processes connected in series. Consider 

the liquid-level systems shown in the figure below in which two tanks are arranged so that the 

outlet flow from the first tank is the inlet flow to the second tank. Two possible piping 

arrangements are shown in in the figure below. In the figure a, the outlet flow from Tank 1 

discharges directly into the atmosphere before spilling into tank 2, and the flow through R1 depends 

only on h1. The variation in h2 in Tank 2 does not affect the transient response occurring in Tank 

1. This type of system is referred to as a noninteracting system. In contrast to this, the system 

shown in the figure b is said to be   interacting because the flow through   R1 now depends on the 

difference between h1 and h2.  

 

Non-interacting System  

A balance on Tank 1 gives: 

q − q1 = 𝐴1
dℎ1

dt
                                                                     (1) 

qs − q1s = 𝐴1
dℎ1s

dt
                                                                 (2) 

(q − qs) − (q1 − q1s) = 𝐴1
d(ℎ1−ℎ1s)

dt
                                   (3) 
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(q − qs) = (q1 − q1s) + 𝐴1
d(ℎ1−ℎ1s)

dt
                                   (4) 

In a deviation form, Q = q − qs         Q1 = q1 − q1s     Taking the Laplace transform, 

Q1(s)

Q(s)
=

1

𝜏1s+1
                                                                        (5) 

𝜏1 = A1R1     for a level Tank 1. 

A balance on Tank 2 gives: 

q1 − q2 = 𝐴2
dℎ2

dt
                                                                     (6) 

q1s − q2s = 𝐴2
dℎ1s

dt
                                                                 (7) 

(q1 − q1s) − (q2 − q2s) = 𝐴2
d(ℎ2−ℎ2s)

dt
                                 (8) 

(q1 − q1s) = (q2 − q2s) + 𝐴2
d(ℎ2−ℎ2s)

dt
                                 (9) 

In a deviation form, Q1 = q1 − q1s         Q2 = q2 − q2s    Taking the Laplace transform, 

𝑄2(s)

𝑄1(s)
=

1

𝜏2s+1
                                                                         (10) 

𝜏2 = A2R2     for a level Tank 2. 

𝑄2(s) =
𝐻2(s)

𝑅2
                                                                           (11) 

𝐻2(s)

𝑄1(s)
=

𝑅2

𝜏2s+1
                                                                            (12) 

Sub. Eq. 5 into Eq. 12: 

𝐻2(s)

Q(s)
=

1

𝜏1s+1

𝑅2

𝜏2s+1
    or   

𝐻2(s)

Q(s)
=

𝑅2

𝜏1𝜏2𝑠2+(𝜏1+𝜏2)s+1
        (13) 

Q(s) =
1

𝑠
   Taking Laplace inverse, 

𝐻2(t) = 𝑅2 [
𝜏1𝜏2

𝜏1−𝜏2
(

1

𝜏2
𝑒−𝑡 𝜏1⁄ −

1

𝜏1
𝑒−𝑡 𝜏2⁄ )]                  (14) 
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Generalization for Several Noninteracting Systems in Series 

We have observed that the overall transfer function for two noninteracting first-order  

systems connected in series is simply the product of the individual transfer functions.  

We may now generalize this concept by considering n noninteracting first-order systems as 

represented by the block diagram of the following figure. 

The block diagram is equivalent to the relationships 

𝑋1(s)

𝑋𝑜(s)
=

𝐾1

𝜏1s+1
         

𝑋2(s)

𝑋1(s)
=

𝐾2

𝜏2s+1
           

𝑋3(s)

𝑋2(s)
=

𝐾3

𝜏3s+1
           

𝑋𝑛(s)

𝑋𝑛−1(s)
=

𝐾𝑛

𝜏𝑛s+1
 

To obtain the overall transfer function, we simply multiply the individual transfer functions; thus 

𝑋𝑛(s)

𝑋𝑜(s)
= ∏

𝐾𝑖

𝜏𝑖s + 1

𝑛

𝑖=1
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Interacting System  

To illustrate an interacting system, we will derive the transfer function for the system  

shown in the figure b. 

Tank 1: q − q1 = 𝐴1
dℎ1

dt
                                                                     (1) 

Tank 2: q1 − q2 = 𝐴2
dℎ2

dt
                                                                   (2) 

Tank 1: q1 =
ℎ1−ℎ2

𝑅1
                                                                             (3) 

Tank 2: q2 =
ℎ2

𝑅2
                                                                                  (4) 

At a steady state, 

Tank 1: 𝑞𝑠 − q1𝑠
= 0                                                                         (5) 

Tank 2: q1𝑠
− q2𝑠

= 0                                                                       (6) 

In a deviation form, 

Tank 1: Q − Q1 = 𝐴1
d𝐻1

dt
                                                                    (7) 

Tank 2: Q1 − Q2 = 𝐴2
d𝐻2

dt
                                                                   (8) 

Valve 1: Q1 =
𝐻1−𝐻2

𝑅1
                                                                            (9) 

Valve 2: Q2 =
𝐻2

𝑅2
                                                                               (10) 

Taking Laplace and Rearrange, 

Tank 1: Q(s) − Q1(s) = 𝐴1𝑠𝐻1(s)                                                     (11) 

Tank 2: Q1(s) − Q2(s) = 𝐴2𝑠𝐻2(s)                                                   (12) 

Valve 1: 𝑅1Q1(s) = 𝐻1(s) − 𝐻2(s)                                                    (13) 

Valve 2: 𝑅2Q2(s) = 𝐻2(s)                                                                  (14) 
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𝐻2(s)

Q(s)
=

𝑅2

𝜏1𝜏2𝑠2+(𝜏1+𝜏2+𝐴1𝑅2)s+1
                                                  (15) 

 

The term interacting is often referred to as loading. The second tank of the figure b 

is said to load the first tank. To understand the effect of interaction on the transient response of a 

system, consider a two-tank system for which the time constants are equal (𝜏1 = 𝜏2 = 𝜏).  

If the tanks are noninteracting, the transfer function relating inlet flow to outlet flow is: 

𝑄2(s)

Q(s)
= (

1

𝜏𝑠 + 1
)

2

 

The unit-step response for this transfer function can be obtained by the usual procedure  

to give 

𝑄2(t) = 1 − 𝑒−𝑡 𝜏⁄ −
𝑡

𝜏
𝑒−𝑡 𝜏⁄                    

If the tanks are interacting, the overall transfer function, according to Eq. (6.24), is  

(assuming further that (𝐴1 = 𝐴2) 

𝑄2(s)

Q(s)
=

𝑅2

𝜏2𝑠2 + 3𝜏s + 1
 

By application of the quadratic formula, the denominator of this transfer function can  

be written as: 

𝑄2(s)

Q(s)
=

1

(0.38𝜏s + 1)(2.62𝜏s + 1)
 

 

𝑄2(t) = 1 + 0.17𝑒−𝑡 0.38𝜏⁄ − 1.17𝑒−𝑡 2.62𝜏⁄  
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In general, the effect of interaction on a system containing two first-order lags  

is to change the ratio of effective time constants in the interacting system. In terms of  

the transient response, this means that the interacting system is more sluggish than the  

noninteracting system. 
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Problems 

6.1. Determine the transfer 

function H(s)/Q(s) for the liquid-

level system shown in the 

following figure. Resistances Rl 

and R2 are linear. The flow rate 

from tank 3 is maintained constant 

at b by means of a pump; i.e., the 

flow rate from tank 3 is 

independent of head h. The tanks 

are non-interacting. 

 

6.2. The mercury thermometer in Chap. 4 was considered to have all its resistance in the convective 

film surrounding the bulb and all its capacitance in the mercury. A more detailed analysis would 

consider both the convective resistance surrounding the bulb and that between the bulb and 

mercury. In addition, the capacitance of the glass bulb would be included. Let 

Ai = inside area of bulb, for heat transfer to mercury, A0 = outside area of bulb, for heat transfer 

from surrounding fluid 

m = mass of mercury in bulb, rnb = mass of glass bulb 

C = heat capacity of mercury, Cb = heat capacity of glass bulb 

hi = convective coefficient between bulb and mercury, h, = convective coefficient between bulb 

and surrounding fluid 

T = temperature of mercury, Tb = temperature of glass bulb 

Tf = temperature of surrounding fluid 

Determine the transfer function between Tf and T. What is the effect of the bulb resistance and 

capacitance on the thermometer response? Note that the inclusion of the bulb results in a pair of 

interacting systems, which give an overall transfer function.  
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6.3. There are N storage tanks of volume V arranged so that when water is fed into the first tank, 

an equal volume of liquid overflows from the first tank into the second tank, and so on. Each tank 

initially contains component A at some concentration Co and is equipped with a perfect stirrer. At 

time zero, a stream of zero concentration is fed into the first tank at a volumetric rate q. Find the 

resulting concentration in each tank as a function of time. 

 

6.4. (a) Find the transfer functions H2/Q(s) 

and H3/Q for the three-tank system shown 

in the following figure where:  H2, H3 and 

Q are deviation variables. Tank 1 and Tank 

2 are interacting. (b) For a unit-step change 

in q (i.e., Q = l/s), determine H3(0), H3(∞), 

and sketch H3(t) versus t. 

 

6.5. Three identical tanks are operated in series in a 

non-interacting fashion as shown in the following 

figure. For each tank, R = 1, τ = 1. If the deviation in 

flow rate to the first tank is an impulse function of 

magnitude 2, determine (a) An expression for H(s) 

where H is the deviation in level in the third tank. (b) 

Sketch the response H (t). (c) Obtain an expression 

for H (t). 

 

6.6. In the two-tank mixing process shown in 

the following figure, x varies from 0 lb 

salt/ft3 to 1 lb salt/ft3 according to a step 

function. At what time does the salt 

concentration in tank 2 reach 0.6 lb salt/ft3? 

The holdup volume of each tank is 6 ft3. 
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6.7. Starting from first 

principles, derive the transfer 

functions Hl(s)/Q(s) and 

H2(s)/Q(s) for the liquid level 

system shown in the following 

figure. The resistances are linear 

and R1 = R2 =1. Note that two 

streams are flowing from tank 1, 

one of which flows into tank 2. 

You are expected to give 

numerical values of the 

parameters in the transfer functions and to show clearly how you derived the transfer functions.  

 

 

 

 

 

  

 

 


