Dr. Faroog Ahmed Process Dynamics

Chapter Three: Physical Examples of First-Ordered Systems

Chapter Five in the textbook

In the first part of this chapter, several physical systems that can be represented by a first-order
transfer function will be considered. In the second part, a method for approximating the dynamic
response of a nonlinear system by a linear response will be presented. This approximation is called

linearization.

Examples of First-Order Systems

Consider the system shown in the following figure, which consists of a tank of uniform cross-
sectional area A to which is attached a flow resistance R such as a valve, a pipe, or a weir. Assume
that go, the volumetric flow rate (volume/time) through the resistance, is related to the head h by

the linear relationship:

o =1 (1)

A resistance that has this linear relationship between flow and head is referred to as a linear

resistance.

A time-varying volumetric flow g of liquid of constant density r enters the tank. Determine the
transfer function that relates head to flow. We can analyze this system by writing a transient mass

balance around the tank:

( Rate of ) . ( Rate of ) _ (Rate ofAccumlation)
Mass Flow in Mass Flow in of Mass in Tank

In terms of the variables used in this analysis, the mass balance becomes:

d(pAh)

Pq(t) — pqo(t) = — ()
q(t) — (1) = 222 (3)
qt) -5 =" @)
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At a steady state, gt
hg ——
Qs — R 0 _::___ =
dhho h(r)
1 s
(@—gs) —g(h—hg) = A—— (%) x
o QOU}
1 d(h — hy)
— =—(h—-h A— S
(@-g9)=pt—ho+ It

In a deviation form, Q = q — g H=h—hy

Q= %H + A?j—lt{ Taking the Laplace transform,

Q(s) = %H(s) + AsH(s) —» RQ(s) = H(s) + RAsH(s) = RQ(s) = H(s)(1 + RA)

He) _ R
Q(s) T s+l

(6)

T =AR foralevel tank.
To find the transfer function relating the inlet flow q(t) to the outlet flow is desired as follows:

h hg H(s)
do =% = at steady state qo s = r Take Laplace — Q,(s) = = H(s) = RQ,(s)

Sub. in Eq. (6),

RO _ R Q) _ 1
Q(s) Ts+1 Q(s) Ts+1

Liquid-Level Process with Constant-Flow Outlet

dh
q(t) = qo(t) = A—

dt 10—

qs _qo(t) =0 —_
Q=9—qs hir)
H=h-—hg

g,. §,= COnstant
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—AdH _ 4 H(s) 1
Q=A 2006 = SH@)"@-&

Example 5.1. A tank having atime constant of 1 min and a resistance of % ftfcfm
is operating at steady state with an inlet flow of 10 ft*fmin (or cfm). At ime ¢ = (),
the flow is suddenly increased to 100 ft’/min for 0.1 min by adding an additional
9 fi' of water to the tank uniformly over a period of (0.1 min. (See Fig. 5=2a
for this input disturbance.) Plot the response in tank level and compare with the
impulse response.

Before proceeding with the details of the computation., we should observe
that as the time interval over which the 9 ft* of water is added to the tank is short-
ened. the input approaches an impulse function having a magnitude of 9.

From the data given in this example, the transfer function of the process is

H(s) %

iy s+ 1

The input may be expressed as the difference in step functions, as was done in
Example 3A 5.

Nty = Q0[eeir)y — wis — 0.1)]

The transform of this 1s
o — 0.1z
o = —|1 — -
Q) = —(1 — &%)

Combining this and the transfer function of the process, we obtain

His) = lL‘rI: — ] (5.13)
sls + 1) s + 1)

The first term in Eq. (5.13) can be inverted as shown in Eq. (4.15) to give
1001 — & "). The second term, which includes e~ ™ must be inverted by use of
the theorem on translation of functions given in App. 3A. According to this theo-
rem, the inverse of E_H':'fﬁ_.'.‘,'l is flf — fplu(t — fp) with n(f — ) = 0forf — fp<0
or f < fp. The inverse of the second term in Eq. (5.13) is thus

3 E—'IZI-I.':
L m =0 for r = 0.1
1

m{l — o) fort = 0.1

oar

m{l — e T — 0.1
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g (min)

100

The complete solution to this problem, which is the inverse of Eq. (5.13), is
H() = 10(1 — & Ju(r) — 10(1 — e """ u(r — 0.1 (5.14)
which is equivalent to
H(r) = 10(1 — &™) r < 0.1
Ho =10f(t-e") = (1-"")] =01
Simplifying this expression for Hy#) for ¢ = 0.1 gives
Hir) = 1.0527 =01

From Egq. (4.19), the response of the system to an impulse of magnitude 9 is
given by

H{rjllmpn]_ﬂe = {Q] {é E_F} =&

In Fig. 5-2. the pulse response of the liquid-level system and the ideal
impulse response are shown for comparison. Notice that the level rises very rap-
idly during the 0.1 min that additional flow is entering the tank: the level then
decays exponentially and follows very closely the ideal impulse response.

FIGURE 512
Approximation of an impulse function in a liguid-level system
(Example 5.1). {a) Pulse input; (&) response of tank level.

The responses to step and sinusoidal forcing functions are the same for the liquid-

level system as for the mercury thermometer of Chap. 4. Hence, they need not be
rederived. This is the advantage of characterizing all first-order systems by the same
transfer function.

Process Dynamics
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Mixing Tank

Consider the mixing process shown in the figure in which a stream of solution containing dissolved
salt flows at a constant volumetric flow rate q into a tank of the constant holdup volume V. The
concentration of the salt in the entering stream x (mass of salt/volume) varies with time. It is
desired to determine the transfer function relating the outlet concentration y to the inlet
concentration x. If we assume the density of the solution to be constant, the flow rate in must equal
the flow rate out, since the holdup volume is fixed. A transient mass balance for the salt is as
follows:

(Flow Rate of) B (Flow Rate of) _ ( Rate of Accumlation )
Salt in Salt in of Salt in Tank

d(Vy) d
gx—qy=—2=V=

Xy
i }
qxs —qys =0 /

X=x—x Y=y—y :f_d q
¥

X Y—VdY

a2 —qr =V r ¥(n
Y(s) 1

X(s) Ts+1

T= g for a mixing tank.

Heating Process

Consider the heating process shown in the following figure. A stream at temperature Ti is fed to
the tank. Heat is added to the tank by means of an electric heater. The tank is well mixed, and the
temperature of the exiting stream is T. The flow rate to the tank is constant at w Ib/h. A transient

energy balance on the tank yields
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Rate of Rate of Rate of Rate of Accumlation
(Energy flow ) - (Energy flow > - (Energy flow in > = < )

, of Energy in Tank
into Tank out of Tank from Heater

WC(T; — Trer) — wC(T — Toer) + g = ppe T = Tref) _ predT
dat dt
wC (T — -T.'r} +g: = 0 Steam or
electricity
wC(L — Ti:) —wC(T — L) + g — g: = pVC%
I"'=T—1I:
@=4qg—4q: . l
L W, T,-—i g
’ I
—wET + @ = prc L =
dt —_—

—wCT'(s) + Qis) = p¥VCsT'(s)

T'(5)= 1/Wc _ K
Q(s) (pV/W)S+ 1 Ts+1

T= % for a heating tank.

Example 5.2. Consider the mixed tank heater shown in Fig. 5=6. Develop a
transfer function relating the tank outlet temperature to changes in the inlet tem-
perature. Determine the response of the outlet temperature of the tank to a step
change in the inlet temperature from 60 w 70°C. Before we proceed, intitively
what would we expect o happen? If the inlet temperature rises by 10°C, we
expect the outlet temperature to eventually rise by 10°C if nothing else changes.
Let’s see what modeling the process will tell us.

From Eq. (5.26) we can write the following simplified balance, realizing
that g = g.:

wC( — Ti:) — wC(T — I:) = pVC%

In terms of deviation variable=, this becomes

o
ait

wCTi — wCI* = pVbFC
Transforming. we get

wCTHis) — wCT(5) = pVFCsT'(s)

and finally, after rearranging,.

T(sy 1 1

HEaI:qJ:I‘I.PIJI (=) - {p'l:"hd.}_'; + 1 - r= + 1

=, I
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Substituting in numerical values for the variables, we obtain the actual transfer
function for this mixed tank heater.

. oV V V tank volume L0D0 L 5 mi
— — | e— i — -_— — I
W Wi L volumetric flow rate 200 L/min
™is) 1

T7i(s) 55+ 1

If the inlet temperature is stepped from 60 to 70°C, IF'(f) = 70 — 60 = 10 and
Ti(s) = 10/5. Thus,

ris) = E[—l ]
s\55+ 1
Inverting to the time domain, we obtain the expression for T ()
™ = Iﬂ{l — e—”f}
and finally, we obtain the expression for T, the actual tank outlet temperature.
Tin =T, + T(H = 80 + m[l — e—*”}

A plot of the outlet temperature (in deviation wvariables) is shown in the
Fig. 5=7a. The actual outlet temperature is shown in Fig. 5=Th Note that for
the uncontrolled mixing tank, a step change of 10°C in the inlet temperature

Outlet temperatiure ("C)
- deviation variables 1 &0

= I = =

B i s LA

Actual outlet ||:m-|:n':mt|.|.n: “C)

5 ] 15 20 75 o 5 0 15 >0 35
Time {mind Timee (muin’}y

() L]

FICURE 57
(&) Tank outlet temperatare (deviation variable); (&) actoal tank owtlet
temperaiure.
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Linearization

Thus far, all the examples of physical systems, including the liquid-level system of
Fig. 5=1, have been linear. Actually, most physical systems of practical importance are
nonlinear.

Charactenization of a dynamic system by a transfer function can be done only for
linear systems (those described by linear differential equations). The convenience of
using transfer functions for dynamic analysis, which we have already seen in applica-
tions, provides significant motivation for approximating nonlinear systems by linear
ones. A very important technique for such approximation is illustrated by the following
discussion of the liquid-level system of Fig. 5-=1.

We now assume that the flow out of the tank follows a square root relationship

go = CH" (5.30)

where Cis a constant.
For a liquid of constant density and a tank of uniform cross-sectional area A, a
material balance around the tank gives

dh
g — golt) = A

— 5.31)
dt t
Combining Egs. (5.30) and (5.31) gives the nonlinear differential equation
dh
g— CH"* = AE (5.32)

At this point, we cannot proceed as before and take the Laplace transform. This 1s due
to the presence of the nonlinear term 1", for which there is no simple transtorm. This
difficulty can be circumvented by lineanzing the nonlinear term.
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By means of a Taylor series expansion, the function g.(f) may be expanded
around the steady-state value A.: thus

- _ e}
gz Un)h — he)® |

ge = galhz) + g5 (R )k — h:) + -

where ga{f:=) is the first derivative of gg evaluated at hz. g5 (fiz) is the second deriva-
tive, etc. If we keep only the linear term. the result is

Fo = galh:) + ga(h: J(h — h:) (5.33)

Taking the derivative of g, with respect to i in Eqg. (5.30) and evaluating the derivative
at i = h; give

. 1 — 152
galh:) = 3Ch_
Introducing this into Eq. (5.33) gives
1
- . + —(h _.Ff;} {5-34}
HFo Ja "
— 142
where go, = go (h:) and /Ry = 1 Ch,
Substituting Eq. {(5.34) into Eq. (5.31) gives
h—h: _ dh
g~ ge. — - = A7 (5.35)

At steady state the flow entering the tank equals the flow leaving the tank: thus

qs = Go, (5.36)
Introducing this last equation into Eq. (5.35) gives

dh h — hs
A— 4+ — = = — g {5.3?}
ot Ry 9 4
Introducing deviation variables @ = g — g. and A = h — k. into Eq. (5.37) and trans-
forming give

Hixs) — Ry (5.38)
CHED rs + 1
where
2p12
B = Tr = A
i = Ry

We see that a transfer function is obtained that is identical in form with that of the linear
system., Eq. (5.8). However, in this case. the resistance R; depends on the steady-state
conditions arcound which the process operates. Graphically. the resistance R is the recip-
rocal of the slope of the tangent line passing through the point (go., A:), as shown in

Tangent line
] %|  siope=l- )
== - L dh
- =" Monlinear
RN I
resistance % | go=ChI7
|
'/ Goli) 0 !
0 h
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In general, the linearization of a nonlinear function is accomplished wsing a
Taylor series expansion truncated to include only the linear terms. Thus for a single-
variable function

{x — xz) + (higher-order terms) (5.39)

fooy = flae) + 4L
ax

X

For functions of two variables, we have

af af
(x.¥) = filxz.yc) + =— (x — xz) + — (v — w:)
s 7 ! athJ‘:i a}: XEN ) ’ (5.40)

+ (higher-order terms)

Consider the differential equation describing the dynamics of a system

dy
-+ Jfy} = x()
dt -:E'fn_e'u (5.41)
Linearizing the nonlinear term gives
dy af
- + =) + ¥ — ¥:) = xlt
7 Sz .. vy — ¥) () (5.42)
limearized aﬁpmxim:liu:rn
Writing this equation again for the steady-state case gives
ays af
—I + )+ == o= ) = as
o Slx:) 3}[ (¥ — ¥:) s (5.43)

Subtracting the steady-state case in Eq. (5.43) from Eq. (5.42), we can convert the origi-
nal differential equation to deviation variables:

aly — ¥:) df
—_— r— ¥ = — Xz
ar ":-T"'lr: (y ¥s) X —x
a¥ + {_i

— YF=X
dt dhy

s
where X = x — x, and ¥ = y — y.. Note that the fi{y,) term is eliminated in the process

of forming deviation variables, and we are left with only linear terms in the equation
which is now amenable to solution using Laplace transforms.

10
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Here are some physical examples of first-order systems:

System Transfer function
qiry —*
A = arca
—_——————
= = Figure 5—1 Liguid E(sY R
= . - level system Felie T 4Rz 4+ 1
o
- Fal7)
x(ry
q
- WA} . - Tizh 1
g Figure 5—4 Mixing -
process Xizh (Fighs + 1

Figure 5—5 Heating T _ 1w C)

W Ty 1. lq process oiz)  [pFm)s +1

= w, I
System Transfer function
Fluid
¥ = thermometer
reading ———— _
x = fluid temperature  Figure 4—la Fis» _ 1
Thermsometer Xiz)y [mcihd)s +1

Merncury Glass wall

TAYLOR SERIES EXPANSIONS FOR LINEARITZING
NONLINEAR TERMS

Functions of a single variable: fix) = fxz) + ::iL (x — xz)
L [

Functions of two variables:

d o
Fix, )y = Flxs,p:) + % x;‘l_:}{x —x:) + a_{lx:.u]h- — »=)

11
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Problems

5.1. Derive the transfer function H(s)/Q(s) for the liquid-level

system of the following figure when
(a) The tank level operates about the steady-state value of hs = 1 ft.
(b) The tank level operates about the steady-state value of hs = 3 ft.

The pump removes water at a constant rate of 10 cfm (cubic feet
per minute); this rate is independent of head. The cross-sectional

area of the tank is 1.0 ft? and the resistance R is 0.5 ft/cfm.

g. f’/min

Process Dynamics

5.2. A liquid-level system, such as the one shown in the figure of the question 5.1, has a cross-

sectional area of 3.0 ft2. The valve characteristics are ¢ = 8vh. Where: q = flow rate cfm, h = level

above the valve, ft. Calculate the time constant for this system if the average operating level is (a)

3 ft (b) 9 ft

5.3. A tank having a cross-sectional area of 2 ft? is operating at
steady state with an inlet flow rate of 2.0 cfm. The flow-head

characteristics are shown in the following figure.
(a) Find the transfer function H(s)/Q(s).

(b) If the flow to the tank increases from 2.0 to 2.2 cfm according
to a step change, calculate the level h two minutes after the change

occurs.

gl ft’/min)

]

=

[a—

"

| Outlet flow

h(ft)

12
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5.4. Develop a formula for finding the time constant of the liquid-

level system shown in the following figure when the average

operating level is h. The resistance R is linear. The tank has three

vertical walls and one which slopes at an angle (r from the vertical

as shown. The distance separating the parallel walls is 1.

5.5. Consider the stirred-tank reactor shown in the following figure. the reaction occurring is A —

B and it proceeds at a rate r = kC,

Where: r=moles A reacting/ (volume) (time)

C.F —*
k = reaction velocity constant

Co(t) = concentration of A in reactor, moles/volume E— —

- Volume v

V = volume of mixture in reactor

Further let F = constant feed rate, volume/time
Ci(t) = concentration of A in feed stream

Assuming constant density and constant V, derive the transfer function relating the concentration
in the reactor to the feed-stream concentration. Prepare a block diagram for the reactor. Sketch the

response of the reactor to a unit-step change in Ci.

5.6. A thermocouple junction of area A, mass m, heat capacity C, and emissivity e is located in a
furnace that normally is at Tis, °C. At these temperatures convective and conductive heat transfer
to the junction am negligible compared with radiative heat transfer. Determine the linearized
transfer function between the furnace temperature Ti and the junction temperature T,. For the case
m = 0.1 g, ¢ = 0.12 cal/(g) (°c), e = 0.7, A = 0. cm?, Tis, = 1100 °C. Plot the response of the
thermocouple to a 10 °C step change in furnace temperature. Compare this with the true response

obtained by integration of the differential equation.

13

C.F
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5.7. A liquid-level system has the following properties: Tank dimensions: 10 ft high by 5 ft

diameter Steady-state operating characteristics:

Inflow (gal/hr) 0 | 5000 | 10,000 | 15,000 | 20,000 | 25,000 | 30,000
Steady state Level (ft) 0 0.7 1.1 2.3 3.9 6.3 8.8

(a) Plot the level response of the tank under the following circumstances: The inlet flow rate is

held at 300 gal/min for 1 hr and then suddenly raised to 400 gal/min.

(b) How accurate is the steady-state level calculated from the dynamic response in part (a) when

compared with the value given by the table above?

(c) The tank is now connected in series with a second tank that has identical operating
characteristics, but which has dimensions 8 ft high by 4 ft diameter. Plot the response of the
original tank (which is upstream of the new tank) to the change described in part (a) when the
connection is such that the tanks are (1) interacting, (2) non-interacting. (See Chap. 7.)

5.8. A mixing process may be described as follows: a 21

stream with solute concentration C; (pounds/volume) is

fed to a perfectly stirred tank at a constant flow rate of q

(volume/time). The perfectly mixed product is

withdrawn from the tank, also at the flow rate g at the

L/

same concentration as the material in the tank, C. The 18

C(Ib/gal) ——

total volume of solution in the tank is constant at V.

Density may be considered to be independent of 1.1 630 652

concentration. A trace of the tank concentration versus AM AN

—— Time

time appears as shown in Fig. P6.8.

(a) Plot on this same figure your best guess of the quantitative behavior of the inlet concentration
versus time. Be sum to label the graph with quantitative information regarding times and

magnitudes and any other data that will demonstrate your understanding of the situation.

(b) Write an equation for Cj as a function of time.

14
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Data: Tank dimensions: 8 ft high by 5 ft diameter
Tank volume V: 700 gal
Flow rate g: 100 gal/min

Average density: 70 Ib/ft3

operating at steady state when the following disturbance

5.9. The liquid-level process shown in the following figure is 10 cfm —l l_ Disturbance

occurs: at time t = 0, 1 ft3 water is added suddenly (unit
impulse) to the tank; at t = 1, 2 ft® of water is added suddenly

h =1 min

to the tank. Sketch the response of the level in the tank versus

time and determine the level att = 0.5, 1, and 1.5.

R=05

5.10. A tank having a cross-sectional area of 2 ft? and a linear

resistance of R = 1 ft/cfm is operating at steady state with a < 7
|
|

flow rate of 1 cfm. At time zero, the flow varies as shown in

g (ctm)

the following figure.

|

|

|

1 I I
0 1 2 3

(a) Determine Q(t) and Q(s) by combining simple functions. ¢ (imin)

Note that Q is the deviation in flow rate.
(b) Obtain an expression for H (t) where H is the deviation in level.
(c) Determine H(r) atr =2 and t = oo.

e—3S

s(7s+1)

5.11. Determine Y (5) if Y(s) =

15
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5.12. Derive the transfer function H/Q for the liquid level 3 )
g tt/min i

system shown in the following figure. The resistances are —l /

linear. H and Q are deviation variables. Show clearly how —_ |— =

]
[

you derived the transfer function. You are expected to -

give numerical values in the transfer function.

-

R; =2 ftfefm R, =5 ftfcfm

5.13. The liquid-level

Train of impulses

system shown in the  lcfm l d=112 L

following  figure s j‘l: —/—: HHM i
initially at steady state —f- gl L N NN :__
with the inlet flow rate at ' i i i i

1 cfm. At time zero, one FENg " i ”:H ”:_2 —

ft® of water is suddenly i
added to the tank; at t = 1, one ft® is added, etc. In other words, a train of unit impulses is applied
to the tank at intervals of one minute. Ultimately the output wave train becomes periodic as shown

in the sketch. Determine the maximum and minimum values of this output.

5.14. The two-tank mixing agy
. . gp=1cfm

process shown in the following —l \

figure contains a recirculation (1) = feed = —

concentration | —— — e _—

loop that transfers solution —_—_ = —_ =
from tank 2 to tank 1 at a flow

rate of a qo. € c o

(a) Develop a transfer function that relates the concentration in tank 2, C», to the concentration in
the feed, x; i.e. C2(s)/X(s) where C, and X are deviation variables. For convenience, assume that

the initial concentrations are x = C;=C, = 0.

16
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(b) If a unit-step change in x occurs, determine the time needed for C> to reach 60 percent of its
ultimate value for the cases where a. =0, 1, and .

(c) Sketch the response for o = oo.

Assume that each tank has a constant holdup volume of 1 ft3. Neglect transportation lag in the line
connecting the tanks and the recirculation line. Try to answer parts (b) and (c) by intuition.

5.15. Dye for our new line of blue

Water 20 gal/min

jeans is being blended in a mixing T

tank. The desired color of blue is

Concentrated

produced using a concentration of dye injector

20 gal/min aqueous dye for jeans
(1500 ppm blue dye)

1500 ppm blue dye, with a minimum
acceptable concentration of 1400
ppm. At 9 A.M. today the dye injector plugged, and the dye flow was interrupted for 10 min, until
we realized the problem and unclogged the nozzle. For how many minutes was the flow leaving
the mixer off-specification (< 1400 ppm)? How many gallons of off-spec dye were made? See the

following figure.

5.16. For the reactor (CSTR) shown in the

following figure, determine the transfer  si/min Reaction : 24 — B
function that relates the exit concentration ™" Rate law : -ry = kCf’
from the reactor to changes in the feed

concentration. If we instantaneously 5 L/min

double the feed concentration from 1 to 2 Co”h2malt >
mol/L, what is the new exiting Volume = S0 L

concentration 1 min later? What is the new

2

(mol/L)(min) The reaction rate law is

steady-state reactor concentration? The rate constant is K =

—r, = kC%, where 1, is the production rate of A in moles per liter per minute.

17




Dr. Faroog Ahmed Process Dynamics

5.17. The Antoine equation for the vapor pressure of a liquid at a given temperature is given by

p* = eA-B/(T+0)
The constants for benzene are A = 15.9008 B = 2788.51 °C C=220.8°C

for the vapor pressure in millimeters of mercury (mmHg). Linearize the equation about a
temperature of 40°C. Compare the actual vapor pressure (from the Antoine equation) at 45 and
60°C. with the vapor pressure calculated from the linearized equation. What is the percent

difference in each case? Comment on the suitability of the linearized equation.

5.18. Find the transfer function that relates the height in the vessel (figure below) to changes in the
inlet flow rate.

gy (cfm)

gy (cfm)

R

(valve resistance)

18




