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Chapter Three: Physical Examples of First-Ordered Systems 

Chapter Five in the textbook 

 

In the first part of this chapter, several physical systems that can be represented by a first-order 

transfer function will be considered. In the second part, a method for approximating the dynamic 

response of a nonlinear system by a linear response will be presented. This approximation is called 

linearization. 

 

Examples of First-Order Systems  

Consider the system shown in the following figure, which consists of a tank of uniform cross-

sectional area A to which is attached a flow resistance R such as a valve, a pipe, or a weir. Assume 

that qo, the volumetric flow rate (volume/time) through the resistance, is related to the head h by 

the linear relationship: 

qo =
h

R
                                                                      (1) 

A resistance that has this linear relationship between flow and head is referred to as a linear 

resistance. 

A time-varying volumetric flow q of liquid of constant density r enters the tank.  Determine the 

transfer function that relates head to flow. We can analyze this system by writing a transient mass 

balance around the tank: 

(
Rate of 

Mass Flow in
) − (

Rate of 
Mass Flow in

) = (
Rate of Accumlation 

of Mass in Tank
) 

In terms of the variables used in this analysis, the mass balance becomes: 

ρq(t) − ρqo(t) =
d(ρAh)

dt
                                                                (2) 

q(t) − qo(t) =
d(Ah)

dt
                                                                 (3) 

q(t) −
h

R
=

Adh

dt
                                                                 (4) 
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At a steady state, 

qs −
hs

R
= 0 

(q − qs) −
1

R
(h − hs) = A

d(h−hs)

dt
             (5) 

(q − qs) =
1

R
(h − hs) + A

d(h − hs)

dt
 

In a deviation form, Q = q − qs         H = h − hs 

Q =
1

R
H + A

dH

dt
                 Taking the Laplace transform, 

Q(s) =
1

R
H(s) + AsH(s) → RQ(s) = H(s) + RAsH(s) → RQ(s) = H(s)(1 + RA) 

H(s)

Q(s)
=

R

τs+1
                                                                      (6) 

τ = AR     for a level tank. 

To find the transfer function relating the inlet flow q(t) to the outlet flow is desired as follows: 

qo =
h

R
 → 𝑎𝑡 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 qo,s =

hs

R
 → 𝑇𝑎𝑘𝑒 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 →  𝑄𝑜(𝑠) =

H(s)

𝑅
→  H(s) = 𝑅𝑄𝑜(𝑠) 

Sub. in Eq. (6),  

𝑅𝑄𝑜(𝑠)

Q(s)
=

R

τs + 1
 →

𝑄𝑜(𝑠)

Q(s)
=

1

τs + 1
  

Liquid-Level Process with Constant-Flow Outlet 

q(t) − qo(t) = A
dh

dt
 

𝑞𝑠 − qo(t) = 0 

Q = q − qs 

H = h − hs 
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Q = A
dH

dt
 → 𝑄(𝑠) = 𝐴𝑠𝐻(𝑠) →

H(s)

Q(s)
=

1

As
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Mixing Tank 

Consider the mixing process shown in the figure in which a stream of solution containing dissolved 

salt flows at a constant volumetric flow rate q into a tank of the constant holdup volume V. The 

concentration of the salt in the entering stream x (mass of salt/volume) varies with time. It is 

desired to determine the transfer function relating the outlet concentration y to the inlet 

concentration x. If we assume the density of the solution to be constant, the flow rate in must equal 

the flow rate out, since the holdup volume is fixed. A transient mass balance for the salt is as 

follows: 

(
Flow Rate of 

Salt in
) − (

Flow Rate of 
Salt in

) = (
 Rate of Accumlation 

of Salt in Tank
) 

 

𝑞𝑥 − 𝑞𝑦 =
𝑑(𝑉𝑦)

𝑑𝑡
= 𝑉

𝑑𝑦

𝑑𝑡
  

𝑞𝑥𝑠 − 𝑞𝑦𝑠 = 0 

𝑋 = 𝑥 − 𝑥𝑠          𝑌 = 𝑦 − 𝑦𝑠 

𝑞𝑋 − 𝑞𝑌 = 𝑉
𝑑𝑌

𝑑𝑡
 

𝑌(𝑠)

X(s)
=

1

τs + 1
 

τ =
𝑉

𝑞
     for a mixing tank. 

 

Heating Process 

Consider the heating process shown in the following figure. A stream at temperature Ti is fed to 

the tank. Heat is added to the tank by means of an electric heater. The tank is well mixed, and the 

temperature of the exiting stream is T. The flow rate to the tank is constant at w lb/h.  A transient 

energy balance on the tank yields 
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(
Rate of 

Energy flow  
into Tank

) − (
Rate of 

Energy flow  

out of Tank

) − (
Rate of 

Energy flow in   

from Heater

) = (
 Rate of Accumlation 

of Energy in Tank
) 

 

 

 

 

 

 

 

𝑇′(𝑠)

𝑄(𝑠)
=

1
𝑤𝑐⁄

(
𝜌𝑉

𝑤⁄ ) 𝑠 + 1
=

𝐾

𝜏𝑠 + 1
 

τ =
𝜌𝑉

𝑤
     for a heating tank. 
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Linearization 
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Problems 

5.1. Derive the transfer function H(s)/Q(s) for the liquid-level 

system of the following figure when 

(a) The tank level operates about the steady-state value of hS = 1 ft. 

(b) The tank level operates about the steady-state value of hS = 3 ft. 

The pump removes water at a constant rate of 10 cfm (cubic feet 

per minute); this rate is independent of head. The cross-sectional 

area of the tank is 1.0 ft2 and the resistance R is 0.5 ft/cfm. 

 

5.2. A liquid-level system, such as the one shown in the figure of the question 5.1, has a cross-

sectional area of 3.0 ft2. The valve characteristics are 𝑞 = 8√ℎ. Where: q = flow rate cfm, h = level 

above the valve, ft. Calculate the time constant for this system if the average operating level is (a) 

3 ft (b) 9 ft 

 

5.3. A tank having a cross-sectional area of 2 ft2 is operating at 

steady state with an inlet flow rate of 2.0 cfm. The flow-head 

characteristics are shown in the following figure. 

(a) Find the transfer function H(s)/Q(s). 

(b) If the flow to the tank increases from 2.0 to 2.2 cfm according 

to a step change, calculate the level h two minutes after the change 

occurs. 
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5.4. Develop a formula for finding the time constant of the liquid-

level system shown in the following figure when the average 

operating level is h. The resistance R is linear. The tank has three 

vertical walls and one which slopes at an angle (r from the vertical 

as shown. The distance separating the parallel walls is 1.                                  

 

5.5. Consider the stirred-tank reactor shown in the following figure. the reaction occurring is 𝐴 →

𝐵 and it proceeds at a rate 𝑟 = 𝑘𝐶𝑜 

Where:   r = moles A reacting/ (volume) (time) 

              k = reaction velocity constant 

             Co(t) = concentration of A in reactor, moles/volume 

             V = volume of mixture in reactor 

             Further let F = constant feed rate, volume/time 

             Ci(t) = concentration of A in feed stream 

Assuming constant density and constant V, derive the transfer function relating the concentration 

in the reactor to the feed-stream concentration. Prepare a block diagram for the reactor. Sketch the 

response of the reactor to a unit-step change in Ci. 

 

5.6. A thermocouple junction of area A, mass m, heat capacity C, and emissivity e is located in a 

furnace that normally is at Tis, oC. At these temperatures convective and conductive heat transfer 

to the junction am negligible compared with radiative heat transfer. Determine the linearized 

transfer function between the furnace temperature Ti and the junction temperature To. For the case 

m = 0.l g, c = 0.12 cal/(g) (oc), e = 0.7, A = 0.l cm2, Tis, = 1100 °C. Plot the response of the 

thermocouple to a 10 °C step change in furnace temperature. Compare this with the true response 

obtained by integration of the differential equation. 
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5.7. A liquid-level system has the following properties: Tank dimensions: 10 ft high by 5 ft 

diameter Steady-state operating characteristics: 

Inflow (gal/hr) 0 5,000 10,000 15,000 20,000 25,000 30,000 

Steady state Level (ft) 0 0.7 1.1 2.3 3.9 6.3 8.8 

 

(a) Plot the level response of the tank under the following circumstances: The inlet flow rate is 

held at 300 gal/min for 1 hr and then suddenly raised to 400 gal/min. 

(b) How accurate is the steady-state level calculated from the dynamic response in part (a) when 

compared with the value given by the table above? 

(c) The tank is now connected in series with a second tank that has identical operating 

characteristics, but which has dimensions 8 ft high by 4 ft diameter. Plot the response of the 

original tank (which is upstream of the new tank) to the change described in part (a) when the 

connection is such that the tanks are (1) interacting, (2) non-interacting. (See Chap. 7.) 

 

5.8. A mixing process may be described as follows: a 

stream with solute concentration Ci (pounds/volume) is 

fed to a perfectly stirred tank at a constant flow rate of q 

(volume/time). The perfectly mixed product is 

withdrawn from the tank, also at the flow rate q at the 

same concentration as the material in the tank, C. The 

total volume of solution in the tank is constant at V. 

Density may be considered to be independent of 

concentration. A trace of the tank concentration versus 

time appears as shown in Fig. P6.8. 

(a) Plot on this same figure your best guess of the quantitative behavior of the inlet concentration 

versus time. Be sum to label the graph with quantitative information regarding times and 

magnitudes and any other data that will demonstrate your understanding of the situation. 

(b) Write an equation for Ci as a function of time.  
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Data: Tank dimensions: 8 ft high by 5 ft diameter                                     

          Tank volume V: 700 gal 

          Flow rate q: 100 gal/min 

          Average density: 70 lb/ft3 

  

5.9. The liquid-level process shown in the following figure is 

operating at steady state when the following disturbance 

occurs: at time t = 0, 1 ft3 water is added suddenly (unit 

impulse) to the tank; at t = 1, 2 ft3 of water is added suddenly 

to the tank. Sketch the response of the level in the tank versus 

time and determine the level at t = 0.5, 1, and 1.5. 

 

5.10. A tank having a cross-sectional area of 2 ft2 and a linear 

resistance of R = 1 ft/cfm is operating at steady state with a 

flow rate of 1 cfm. At time zero, the flow varies as shown in 

the following figure.  

(a) Determine Q(t) and Q(s) by combining simple functions. 

Note that Q is the deviation in flow rate. 

(b) Obtain an expression for H (t) where H is the deviation in level. 

(c) Determine H(r) at r = 2 and t = ∞. 

 

5.11. Determine Y (5) if Y(s) =
𝑒−3𝑠

𝑠(7𝑠+1)
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5.12. Derive the transfer function H/Q for the liquid level 

system shown in the following figure. The resistances are 

linear. H and Q are deviation variables. Show clearly how 

you derived the transfer function. You are expected to 

give numerical values in the transfer function. 

 

 

 

5.13. The liquid-level 

system shown in the 

following figure is 

initially at steady state 

with the inlet flow rate at 

1 cfm. At time zero, one 

ft3 of water is suddenly 

added to the tank; at t = 1, one ft3 is added, etc. In other words, a train of unit impulses is applied 

to the tank at intervals of one minute. Ultimately the output wave train becomes periodic as shown 

in the sketch. Determine the maximum and minimum values of this output. 

 

5.14. The two-tank mixing 

process shown in the following 

figure contains a recirculation 

loop that transfers solution 

from tank 2 to tank 1 at a flow 

rate of α qo. 

(a) Develop a transfer function that relates the concentration in tank 2, C2, to the concentration in 

the feed, x; i.e. C2(s)/X(s) where C2 and X are deviation variables. For convenience, assume that 

the initial concentrations are x = Cl = C2 = 0. 
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(b) If a unit-step change in x occurs, determine the time needed for C2 to reach 60 percent of its 

ultimate value for the cases where α = 0, 1, and ∞. 

(c) Sketch the response for α = ∞. 

Assume that each tank has a constant holdup volume of 1 ft3. Neglect transportation lag in the line 

connecting the tanks and the recirculation line. Try to answer parts (b) and (c) by intuition. 

 

5.15. Dye for our new line of blue 

jeans is being blended in a mixing 

tank. The desired color of blue is 

produced using a concentration of 

1500 ppm blue dye, with a minimum 

acceptable concentration of 1400 

ppm. At 9 A.M. today the dye injector plugged, and the dye flow was interrupted for 10 min, until 

we realized the problem and unclogged the nozzle. For how many minutes was the flow leaving 

the mixer off-specification (< 1400 ppm)? How many gallons of off-spec dye were made? See the 

following figure. 

 

5.16.  For the reactor (CSTR) shown in the 

following figure, determine the transfer 

function that relates the exit concentration 

from the reactor to changes in the feed 

concentration. If we instantaneously 

double the feed concentration from 1 to 2 

mol/L, what is the new exiting 

concentration 1 min later? What is the new 

steady-state reactor concentration?  The rate constant is K =  
2

(mol/L)(min)
 The reaction rate law is 

−𝑟𝐴 = 𝑘𝐶𝐴
2, where 𝑟𝐴 is the production rate of  A in moles per liter per minute. 
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5.17. The Antoine equation for the vapor pressure of a liquid at a given temperature is given by  

P∗ = eA−B (T+C)⁄  

The constants for benzene are A = 15.9008                B = 2788.51 ℃          C = 220.8 ℃ 

for the vapor pressure in millimeters of mercury (mmHg). Linearize the equation about a 

temperature of 40oC. Compare the actual vapor pressure (from the Antoine equation) at 45 and 

60oC. with the vapor pressure calculated from the linearized equation. What is the percent 

difference in each case? Comment on the suitability of the linearized equation. 

 

5.18. Find the transfer function that relates the height in the vessel (figure below) to changes in the 

inlet flow rate. 

 

 

 

 

 


