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Chapter Two: Response of First Order-Order Systems  

Chapter Four in the textbook 

This chapter and the three that follow describe in detail the behavior of several basic systems and 

show that a great variety of physical systems can be represented by a combination of these basic 

systems. 

 

To summarize the procedure for determining the transfer function for a process: 

Step 1: Write the appropriate balance equations (usually mass or energy balances  

for a chemical process).  

Step 2: Linearize terms if necessary (details on this step are given in the next chapters).  

Step 3: Place balance equations in deviation variable form.  

Step 4: Take Laplace-transform to the linear balance equations.  

Step 5: Solve the resulting transformed equations for the transfer function, the output divided by the input.  

Step 6:  Select the appropriate change of the process. 

Step 7:  Take Laplace inverse to find the response of the system.  

 

Standard Form for First-Order Transfer Functions 

The general form for a first-order system is 

τ
dy

dt
+ y = Kpx(t)                                                            (1) 

where y is the output variable and x (t) is the input forcing function. The initial conditions are 

y(0) =  ys = Kpxs 

τ
dys

dt
+ ys = Kpxs                                                           (2) 
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Subtracting Eq. (1) from Eq. (2): 

τ
d(y−ys)

dt
+ (y − ys) = Kp(x − xs)                                            (3) 

Introducing deviation variables gives: 

X = x − xs 

Y = y − ys 

Eq. (3) becomes: 

τ
dY

dt
+ Y = KpX(t)                                                          (4) 

 

Taking Laplace for Eq. (3): 

τY(s) + Y(s) = KpX(s)                                                       (5) 

By rearranging, the standard first-order transfer function is: 

Y(s)

X(s)
=

Kp

τs+1
                                                               (6) 

Where Kp is the steady-state gain and τ is the time constant. The denominator must be of the form 

τs + 1. 

 

Example 1:  

Place the following transfer functions in standard first-order form, and identify the time constant 

and the steady state gain. 

Y(s)

X(s)
=

4

2s+1
             Kp = 4   and τ = 2          

 

Y(s)

X(s)
=

8

2s+4
         divide by 4 →

Y(s)

X(s)
=

2

0.5s+1
          Kp = 2   and τ = 0.5  

 

Y(s)

X(s)
=

2

s+
1

3

           multiple by 3 →
Y(s)

X(s)
=

6

3s+1
         Kp = 6   and τ = 3  
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Example 2:  

It is a measuring device use to measure the temperature of a stream. Consider a mercury in glass 

thermometer to be located in a flowing stream of fluid for which the temperature x varies with 

time. The opject is to  calculate the time variation of the thermometer reading y for a particular 

change of x. The following assumptions will be used in this analysis:- 

1. All the resistance to heat transfer resides in the film surrounding the bulb (i.e., the resistance 

offered by the glass and mercury is neglected). 

2. All the thermal capacity is in the mercury. Furthermore, at any instant the mercury assumes 

a uniform temperature throughout. 

3. The glass wall containing the mercury does not expand or contract during the transient 

response.  

It is assumed that the thermometer is initially at steady state. This means that, before time zero, 

there is no change in temperature with time. At time zero the thermometer will be subjected to 

some change in the surrounding temperature x(t). (i.e. at t <0  ,  x(t) = y(t) = constant  there is no 

change in temperature with time). At t = 0 there is a change in the surounding temperature x(t). 

 

 

 

 

 

 

 

 

Unsteady state energy balance: 

m Cp 
dy

dt
= hA (x − y) − 0 = h A x − hA y                                                (*) 

1st order linear differential equation 
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Where A is the area of the bulb, Cp is the heat capacity of mercury, m is mass of mercury in the 

bulb, t is the time, h is the film heat transfer coefficient and depends on the flowrate and properties 

of the surounding fluid and the dimension of the bulb. 

The dynamic behaviour must be defined by a deviation variables. 

At steady state (s.s.) ,  t<0 , x(t) = constant = xs   ,   y(t) = constant = ys   ,    

m cp 
dys

dt
= h A (xs − yss) = h Axs − h Ays                                                  (**) 

Substract Eq. (*) from Eq. (**) 

m cp 
d(y − ys)

dt
= h A (x − xs) − h A (y − yss) 

Y =  y − ys =     and    X =  x − xs at t=0  Y(0) = 0  and X(0) = 0 

m cp 
dY

dt
= h A X − h A Y →

m cp

h A

dY

dt
=  X −  Y 

τ =
m cp

h A
 = time constant and has time units 

τ 
dY

dt
+ Y =  X    by taking laplace for the equation 

τ[sY(s) − Y(0)] + Y(s) = X(s)  → (τs + 1)Y(s) = X(s) →
Y(s)

X(s)
= G(s) =

1

τs + 1
 

T. F =
Y(s)

X(s)
= G(s) =

Lapalce teansform of the deviation in thermometer reading

Lapalce teansform of the deviation in surounding Temperature
 

In terms of the example of the mercury thermometer, the surrounding temperature is the cause or 

input, whereas the thermometer reading is the effect or output. 

 

Properties of Transfer Function 

In general, a transfer function relates two variables in a physical process; one of these is the cause 

(forcing function or input variable), and the other is the effect (response or output variable). We 

may write  
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Transfrt Function =  
Y(s)

X(s)
=  G(s) 

Where G(s) is the symbol for a transfer function, X(s) is the transform of forcing function or input 

in a deviation form and Y(s) is the transform of response or output in a deviation form. The transfer 

function completely describes the dynamic 

characteristics of the system. The functional 

relationship contained in a transfer function is 

often expressed by a block diagram representation, 

as shown in following figure: The arrow entering 

the box is the forcing function or input variable, 

and the arrow leaving the box is the response or 

output variable.  

Y(s) = G(s)X(s) 

Y(s) =
Kp

τs+1
X(s)                                                           (7) 

Initial value = lim
t→0

Y(t)    𝑜𝑟   lim
s→∞

sY(s)  

Final value = Ultimate value = lim
t→∞

Y(t)    𝑜𝑟   lim
s→0

sY(s)  

Maximum value =
𝑑(Y(t))

𝑑𝑡
 at t = 0 

 

Step Function 

X(t) = A                 where A is the step value. 

X(s) =
A

s
                  Sub. in Eq. (7):  

Y(s) =
Kp

τs + 1
X(s)  →

A

s

Kp

τs + 1
→

AKp

s(τs + 1)
  

By taking Laplace inverse using partial fractions: 

Y(t) 

AKp 
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Y(s) =
AKp

s(τs + 1)
 →  AKp (

1

s
+

1

τs + 1
) 

Y(t) = AKp(1 − e−t τ⁄ )      

Where Y(t) the response of the system in the deviation form, and t is the time. 

Y(t) =  y(t) − 𝑦𝑠 

y(t) = AKp(1 − e−t τ⁄ ) + 𝑦𝑠 

Initial value =  lim
s→∞

sY(s) → s
AKp

s(τs + 1)
= 0   

Final value = lim
s→0

sY(s)  → lim
s→0

s
AKp

s(τs + 1)
=  AKp 

Maximum value =
dY(t)

𝑑𝑡
=

d

𝑑𝑡
(AKp(1 − e−t τ⁄ )) =  AKp 

Characteristics of step response  

A. The value of the output reaches 63.2% 

of its ultimate value after t= τ  

B. If the initial rate of change is 

maintained the response will be 

completed after t= τ  

C. The speed of the response of a first-

order system is determined by the time 

constant for the system. As t increases, it 

takes longer for the system to respond to 

the step disturbance.  

D. When the time elapsed is 2 𝜏, 3 𝜏, and 

4 𝜏, the percent response is 86.5%, 95%, and 98%, respectively. 

E. The response is completed after t= 5 τ  
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Impulse Function 

X(t) =  Aδt              where A is the impulse value.   

X(s) = A                  Sub. in Eq. (7):  

Y(s) =
𝐴Kp

τs + 1
   

By taking Laplace inverse using partial fractions:  

Y(t) =
AKp

𝜏
e−t τ⁄         

y(t) =
AKp

𝜏
e−t τ⁄ + 𝑦𝑠 

Initial value =  lim
s→∞

sY(s) → lim
s→0

s
AKp

(τs + 1)
=  0   

Final value = lim
s→0

sY(s)  → lim
s→0

s
AKp

(τs + 1)
=  0 

Maximum value =
dY(t)

𝑑𝑡
=

d

𝑑𝑡
(

AKp

𝜏
e−t τ⁄ ) =  

AKp

𝜏
 

 

 

Pulse Function 

X(t) = {
𝐴         0 <   𝑡 < 𝑎 
0                     𝑡 > 𝑎 

   where A is the step value. 

X(s) =
A

s
−

A

s
𝑒−𝑎𝑠                  Sub. in Eq. (7):  

Y(s) =
Kp

τs + 1
(

A

s
−

A

s
𝑒−𝑎𝑠)  

Y(s) =
AKp

s(τs + 1)
−

AKp𝑒−𝑎𝑠

s(τs + 1)
 

By taking Laplace inverse using partial fractions: 

X(t) 

t 

A 
AKp

𝜏
 

Y(t) 

Y(t) 

AKp 

a 
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Y(t) = AKp(1 − e−t τ⁄ ) − AKp(1 − e−(t−a) τ⁄ )      

(t) = AKp(1 − e−t τ⁄ )                                                     0 <   𝑡 < 𝑎 

Y(t) = AKp(1 − e−t τ⁄ ) − AKp(1 − e−(t−a) τ⁄ )         𝑡 > 𝑎        

Where Y(t) the response of the system in the deviation form, and t is the time. 

Y(t) =  y(t) − 𝑦𝑠 

y(t) = AKp(1 − e−t τ⁄ ) − AKp(1 − e−(t−a) τ⁄ ) + 𝑦𝑠 

Initial value =  lim
s→∞

sY(s) → s (
AKp

s(τs + 1)
−

AKp𝑒−𝑎𝑠

s(τs + 1)
) = 0   

Final value = lim
s→0

sY(s)  → lim
s→0

s (
AKp

s(τs + 1)
−

AKp𝑒−𝑎𝑠

s(τs + 1)
) =  0 

Maximum value =
dY(t)

𝑑𝑡
=

d

𝑑𝑡
(AKp(1 − e−t τ⁄ ) − AKp(1 − e−(t−a) τ⁄ )) =  AKp 

 

 

Ramp Function 

X(t) = At                 where A is the slope value. 

X(s) =
A

𝑠2                  Sub. in Eq. (7):  

Y(s) =
Kp

τs + 1
X(s)  →

A

𝑠2

Kp

τs + 1
→

AKp

𝑠2(τs + 1)
  

By taking Laplace inverse using partial fractions:  

Y(s) =
AKp

𝑠2(τs + 1)
 →  AKp (

1

𝑠2
−

τ

s
+

τ2

τs + 1
) 

Y(t) = AKp(t − τ (1 − e−t τ⁄ ))      

Where Y(t) the response of the system in the deviation form, and t is the time. 
t 

X(t) 

Y(t) 

𝜏 
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Y(t) =  y(t) − 𝑦𝑠 

y(t) = AKp(t − τ (1 − e−t τ⁄ )) + 𝑦𝑠 

Initial value =  lim
s→∞

sY(s) → s
AKp

𝑠2(τs + 1)
= 0   

Final value = lim
s→0

sY(s)  → lim
s→0

s
AKp

𝑠2(τs + 1)
=  ∞  

Maximum value =
dY(t)

𝑑𝑡
=

d

𝑑𝑡
(AKp(t − τ (1 − e−t τ⁄ ))) =  ∞ 

 

 

Sinusoidal Function 

x(t) = 𝑥𝑠 + A sin 𝜔𝑡         

X(t) = A sin 𝜔𝑡           

X(s) =
𝐴ω

𝑠2+𝜔2
                  Sub. in Eq. (7):  

Y(s) =
Kp

τs + 1

αω

𝑠2 + 𝜔2
   

This equation can be solved for Y(t) by means of a partial fraction expansion, as described. The 

result is: 

Y(t) =  
Aωτe−t τ⁄

𝜏2𝜔2+1
−

Aωτ

𝜏2𝜔2+1
𝑐𝑜𝑠𝜔𝑡 +

A

𝜏2𝜔2+1
𝑠𝑖𝑛𝜔𝑡                                              (*) 

The equation above can be written in another form by using the trigonometric identity: 

𝑝 𝑐𝑜𝑠𝐵 + 𝑞 𝑠𝑖𝑛 𝐵 = 𝑟 sin(𝐵 + 𝜃) 

r = √𝑝2 + 𝑞2                     tan 𝜃 =  
𝑝

𝑞
 

 

Where Y(t) the response of the system in the deviation form, and t is the time. 
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𝑌(𝑡) =
Aωτ

𝜏2𝜔2 + 1
e−t τ⁄ +  

𝐴

√𝜏2𝜔2 + 1
 𝑠𝑖𝑛(𝜔𝑡 + ∅) 

∅ = tan−1(−𝜔𝑡) 

As t → ∞, the first term on the right side of equation above vanishes and leaves only the ultimate 

periodic solution, which is sometimes called the steady-state solution. 

𝑌(𝑡) ∣𝑠=
𝐴

√𝜏2𝜔2+1
 𝑠𝑖𝑛(𝜔𝑡 + ∅)                                                       (**) 

By comparing Eq. (*) for the input forcing function with Eq. (**) for the ultimate periodic 

response, we see that 

1. The output is a sine wave with a frequency 𝜔 equal to that of the input signal.  

2. The ratio of output amplitude to input amplitude is  
1

√𝜏2𝜔2+1
 . This ratio is always smaller 

than 1. We often state this by saying that the signal is attenuated. 

3. The output lags behind the input by an angle  ∅ . It is clear that lag occurs, for the sign of  ∅ 

is always negative. 

∅ < 0             𝑝ℎ𝑎𝑠𝑒 𝑙𝑎𝑔 

∅ > 0           𝑝ℎ𝑎𝑠𝑒 𝑙𝑒𝑎𝑑 

 

 

 

 

 

 

 

 

 

 

 

Y(t) 

t 
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Example 3: 
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Problems 

4.1. A thermometer having a time constant of 0.2 min is placed in a temperature bath, and after the 

thermometer comes to equilibrium with the bath, the temperature of the bath is increased linearly 

with time at a rate of lo/min. Find the difference between the indicated temperature and the bath 

temperature. 

(a) 0.1 min after the change in temperature begins,  

(b) 1.0 min after the change in temperature begins? 

(c) What is the maximum deviation between indicated temperature and bath temperature, and when 

does it occur? 

(d) Plot the forcing function and response on the same graph. After a long enough time, by how 

many minutes does the response lag the input? 

 

4.2. A mercury thermometer bulb is 
1

2
 in. long by  

1

8
  in. diameter. The glass envelope is very thin. 

Calculate the time constant in water flowing at 10 ft/sec at a temperature of 100°F. In your solution, 

give a summary which includes: 

(a) Assumptions used 

(b) Source of data  

(c) Results 

 

4.3. Given a system with the transfer function 
Y(s)

X(s)
=

τ1s+1

τ2s+1
. Find Y(t) if X(t) is a unit-step 

function. If  
𝜏1

𝜏2
= 5, sketch Y(t) versus 

𝑡

𝜏2
. Show the numerical values of minimum, maximum, and 

ultimate values that may occur during the transient. Check these using the initial-value and final-

value theorems of App. A3. 
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4.4. A thermometer having first-order dynamics with a time constant of 1 min is placed in a 

temperature bath at 100 °F. After the thermometer reaches steady state, it is suddenly placed in a 

bath at 110 °F at t = 0 and left there for 1 min, after which it is immediately returned to the bath at 

100 °F. 

(a) Draw a sketch showing the variation of the thermometer reading with time. 

(b) Calculate the thermometer reading at t = 0.5 min and at t = 2.0 min. 

 

4.5. Repeat Prob. 4.4 if the thermometer is in the 110 °F bath for only 10 sec. 

 

4.6. A mercury thermometer, which has been on a table for some time, is registering the room 

temperature, 75 °F. Suddenly, it is placed in a 400°F oil bath. The following data are obtained for 

the response of the thermometer. 

Time, sec 0 1 2.5 5 8 10 15 30 

Thermometer reading, oF 75 107 140 205 244 282 328 385 

 

4.7. Rewrite the sinusoidal response of a first-order system [Eq. (4.27)] in terms of a cosine wave. 

Re-express the forcing function [Eq. (4.22)] as a cosine wave, and compute the phase difference 

between input and output cosine waves. 

 

4.8. The mercury thermometer of Prob. 4.6 is again allowed to come to equilibrium in the room 

air at 75°F. Then it is placed in the 400oF oil bath for a length of time less than 1 sec, and quickly 

removed from the bath and re-exposed to the 75°F ambient conditions. It may be estimated that 

the heat-transfer coefficient to the thermometer in air is one-fifth that in the oil bath. If 10 sec after 

the thermometer is removed from the bath it reads 98oF, estimate the length of time that the 

thermometer was in the bath. 
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4.9. A thermometer having a time constant of 1 min is initially at 50°C. It is immersed in a bath 

maintained at 100°C at t = 0. Determine the temperature reading at t = 1.2 min. 

 

4.10. In problem 4.9, if at t = 1.5 min, the thermometer is removed from the bath and put in a bath 

at 75oC, determine the maximum temperature indicated by the thermometer. What will be the 

indicated temperature at t = 20 min? 

 

4.11. A process of unknown transfer function is subjected to a unit-impulse input. The output of 

the process is measured accurately and is found to be represented by the function 𝑌(𝑡) = 𝑡𝑒−𝑡. 

Determine the unit-step response of this process. 

 

4.12. The temperature of an oven being heated using a pulsed resistance heater varies as 

𝑇 = 120 + cos (25𝑡 + 30𝑜) 

where t is the time in seconds. The temperature of the oven is being measured with a thermocouple 

having a time constant of 5 sec. 

a) What are the maximum and minimum temperatures indicated by the thermocouple?  

b) What is the maximum difference between the actual temperature and the indicated 

temperature?   

c) What is the time lag between the actual temperature and the indicated temperature? 

 

4.13. The temperature of an experimental heated enclosure is being ramped up from 80 to 450°F 

at the rate of 20°F/min. A thermocouple, embedded in a thermowell for protection, is being used 

to monitor the oven temperature. The thermocouple has a time constant of 6 sec. 

a) At t = 10 min, what is the difference between the actual temperature and the temperature 

indicated by the thermocouple? What is it at 60 min?  
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b) When the thermocouple indicates 450°F, the heater will begin to modulate and maintain 

the temperature at the desired 450°F. What is the actual oven temperature when the 

thermocouple first indicates 450°F? 

 

4.14. For the transfer function in following figure, the response Y(t) is sinusoidal. The amplitude 

of the output wave is 0.6 and it lags behind the input 

by 1.5 min. Find X (t). Note: the time constant in the 

transfer function is in minutes. 

 

4.15. The graph in following figure is the response of a suspected first-order process to an impulse 

function of magnitude 3. Determine the transfer function G(s) of the unknown process. 

 

 

 

 

 

 

 

 

 

 

 

4.16. The level in a tank responds as a first-order system with changes in the inlet flow. Given the 

following level versus time data that were gathered (figure below) after the inlet flow was 

increased quickly from 1.5 to 4.8 gal/min, determine the transfer function that relates the height in 

the tank to the inlet flow. Be sure to use deviation variables and include units on the steady-state 

gain and the time constant. 
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4.17. A simple mixing process follows first-order behavior. A 200-

gal mixing tank process, initially at steady state, is shown in 

following figure. At time t = 0, the inlet flow is switched from 5% 

salt to freshwater. What does the inlet flow rate need to be to reduce 

the exit concentration to less than 0.5% in 30 min? 

 

4.18. Joe, the maintenance man, dumps the contents of a 55-gal drum 

of water into the tank process shown below.  

a) Will the tank overflow?  

b) Plot the height as f (t), starting at t = 0, the time of the dump.  

c) Plot the output flow as f (t), starting at t = 0, the time of the dump. 

NOTE: The output flow is proportional to the height of fluid in the tank. 
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Multi-Choice Questions 

1. Laplace transform of a ramp input of slope K is: 

a) 
𝐾

𝑠
              b) 

𝐾

𝑠2
           c) 

1

𝑠
            d) 

𝐾

𝑠3
 

 

2. Laplace transform of time lag of L time unit is: 

a) 𝑒−𝐿𝑠         b) 𝑒−𝐿𝑡      c) 𝑒𝐿𝑠         d) 𝑒𝐿𝑡 

 

3. The time constant of a first order system is defined as time for the system to reach following 

a step input change ………% of its final value. 

a) 63.2         b) 99.8      c) 85.4        d) 18.8 

 

 

 

 


